Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution: n=6, p=. Binomial Distribution: n=1, p=. Binomial Distribution: n=14, p=. P() P() P() 1 3 4 6 1 3 4 6 7 8 9 1 1 3 4 6 7 8 9 1 11 1 13 14 Κανονική Κατανομή πιθανότητας: f ( ) 1 e όπου e.718818... και for 3.14196... f().4 - Normal Distribution: =, = 1
4-3 Η Κανονική συνάρτηση πιθανότητας Η κανονική συνάρτηση πυκνότητας πιθανότητας: f ( ) 1 e for όπου e. 718818... και 3. 14196... f().4 Normal Distribution: =, = 1 -
4- Ιδιότητες της Κανονικής Κατανομής 4-4 Η κανονική είναι μια οικογένεια Συμμετρικών και Καμπανοειδών Κατανομών. Επειδή η κατανομή είναι συμμετρική το % των παρατηρήσεων βρίσκεται σε κάθε πλευρά του μέσου. Που χαρακτηρίζεται από διαφορετικό ζεύγος μέσων,, και διακυμάνσεων,. Δηλαδή [X~N( )]. ασυμπτωτική στον οριζόντιο άξονα. Η περιοχή κάτω από την συνάρτηση πυκνότητας-πιθανότητας της κανονικής κατανομής εντός k τυπικές αποκλίσεις από το είναι η ίδια για κάθε μια κανονική κατανομή, ανεξάρτητα από τον μέσο και την διακύμανση.
4- Κανονικές Κατανομές Πιθανότητας Όλες οι παρακάτω κατανομές είναι κανονικές με διαφορετικό μέσο και διακύμανση. Normal Distribution: =4, =1 Normal Distribution: =3, = Normal Distribution: =, =3.4 f(w) f() f(y) 3 4 w 4 1 3 4 6 3 4 y 6 W~N(4,1) X~N(3,) Y~N(,9) f(z).4 - Normal Distribution: =, =1 z Έστω: P(39 W 41) P( X 3) P(47 Y 3) P(-1 Z 1) Η πιθανότητα σε κάθε περίπτωση είναι μια περιοχή κάτω από την κανονική συνάρτηση πυκνότητας πιθανότητας. Z~N(,1)
{ 4-6 4-3 Η τυπική Κανονική κατανομή Η τυπική κανονική τυχαία μεταβλητή, Z, είναι η κανονική τυχαία μεταβλητή με μέσο = και τυπική απόκλιση = 1: Z~N(,1 ). Standard Normal Distribution. 4. 3 f(z). =1. 1. - - 4-3 - - 1 = Z 1 3 4
{ 4-4 Μετασχηματισμός Κανονικών Τυχαίων Μεταβλητών Η περιοχή περιοχή εντός εντός k k τυπικών τυπικών αποκλίσεων από από τον τον μέσο μέσο είναι είναι η ίδια ίδια για για όλες όλες τις τις κανονικές τυχαίες τυχαίες μεταβλητές. Συνεπώς Συνεπώς η περιοχή περιοχή κάτω κάτω από από κάθε κάθε κανονική κατανομή είναι είναι ισοδύναμη με με την την περιοχή περιοχή κάτω κάτω από από την την τυπική τυπική κανονική. Σε Σε αυτό αυτό το το παράδειγμα: P(4 P(4 X X P(-1 P(-1 Z Z επειδή και Ο μετασχηματισμός του του X σε σε Z: Z: Z.4 X Standard Normal Distribution Μετασχηματισμός (1) Αφαίρεση: (X - ) f() Normal Distribution: =, =1 7 6 4 3 =1 1 1 3 4 6 7 8 9 1 X 4-7 f(z) - -4-3 1.{ - -1 Z 1 3 4 () Διαίρεση με ) Ο αντίστροφος μετασχηματισμός του του Z σε σε X: X: X Z
Παράδειγμα 4-: Χρησιμοποιώντας τον κανονικό μετασχηματισμό 4-8 Παράδειγμα 4- X~N(16,3 ) P( 1 X 18) 1 X 18 P 1 16 18 16 P Z 3 3 P Z. 6666. 477. 47. 747
Παράδειγμα 4-6: Χρησιμοποιώντας τον κανονικό μετασχηματισμό 4-9 Παράδειγμα 4-6 X~N(17, ) P( X 1) P X 1 1 17 P Z PZ 1. 4.. 3. 8
Παράδειγμα 4-7: Χρησιμοποιώντας τον κανονικό μετασχηματισμό 4-1 Normal Distribution: = 383, = 1 Παράδειγμα 4-7 X~N(383,1 ).4 34 39 44 P( 394 X 399) 394 X 399 P 394 383 399 383 P Z 1 1 P. 9166 Z 1. 333. 488. 33. 88 f(z) Standard Normal Distribution - -4-3 - -1 1 3 4 Z f(x) 4 3 1 Ισοδύναμες περιοχές X
Μετασχηματισμοί Κανονικών Τυχαίων μεταβλητών 4-11 Ο μετασχηματισμός του X σε Z: X Z Ο αντίστροφος μετασχηματισμός του Z σε X: X Z Ο μετασχηματισμός του X σε Z, όπου τα a και b είναι αριθμοί: a P( X a) P Z P( X b) P Z b P( a X b) P a Z b
Κανονικές πιθανότητες (Εμπειρικός κανόνας) 4-1 Η πιθανότητα ότι μια κανονική τυχαία μεταβλητή θα βρίσκεται εντός 1 τυπικής απόκλισης από τον μέσο της (σε κάθε πλευρά) είναι.686, ή περίπου.68. f(z).4 S tand ard N o rm al D is trib utio n Η πιθανότητα ότι μια κανονική τυχαία μεταβλητή θα βρίσκεται εντός τυπικών αποκλίσεων από τον μέσο της είναι.944, ή περίπου.9. - -4-3 - -1 Z 1 3 4 Η πιθανότητα ότι μια κανονική τυχαία μεταβλητή θα βρίσκεται εντός 3 τυπικών αποκλίσεων από τον μέσο της είναι.9974.