ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:28/05/2012

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΘΕΜΑ Α : Α1. Σχολικό βιβλίο σελίδα 253. Α2. Σχολικό βιβλίο σελίδα 191. Α3. Σχολικό βιβλίο σελίδα 150. Α4. Α)Σ β)σ γ)λ δ)λ ε)λ ΘΕΜΑ Β : Β1.

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ( ) ( ) ( ) ( )

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2015zi 2015zi 2015zi 2015zi 4030zi 4030zi z z

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2015

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 Σχολικό βιβλίο σελ Α2 Σχολικό βιβλίο σελ. 28 Α3. α σωστό, β σωστό, γ λάθος, δ λάθος, ε σωστό. ΘΕΜΑ Β

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ 2012

Πανελλαδικές εξετάσεις 2015

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα).

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

AΠΑΝΤΗΣΕΙΣ. z z 0 που είναι τριώνυμο με διακρίνουσα. 2 Re z 4Im z R. x 2 y x y 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Δευτέρα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ. Α4.) α) Λάθος, β) Σωστό, γ) Λάθος, δ) Σωστό, ε) Σωστό

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μεθοδικό Φροντιςτήριο Βουλιαγμένησ & Κύπρου 2, Αργυρούπολη, Τηλ:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

x είναι f 1 f 0 f κ λ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

55 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 16 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

Λύσεις του διαγωνίσματος στις παραγώγους

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ (ΟΜΑΔΑ Β )

Τομέας Mαθηματικών "ρούλα μακρή"

ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ


ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

Προτεινόμενες λύσεις ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 25/5/2015. ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

Transcript:

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:8/5/ ΘΕΜΑ Α Α. Θεωρία. Σελίδα σχολικού βιβλίου 53 Α. Θεωρία. Σελίδα σχολικού βιβλίου 9 Α3. Θεωρία. Σελίδα σχολικού βιβλίου 58 Α4. α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β. Αν z = yi, με,yî είναι: yi - yi = 4 Û - y y = 4Û y = Άρα ο ζητούμενος γεωμετρικός τόπος των εικόνων του z είναι κύκλος κέντρου Ο(, ) και ακτίνα ρ= Β. Είναι ( )( ) z - z = Û z - z = Û z -z z - z = Û οπότε z z ( z z)( z z) Άρα z z = = = z z -zz - zz = Û zz zz = () z z z z z z = Β3. Αν w = yi με,yî είναι: yi -5( - yi) = Û - 4 6yi = Û y 6 36y = 44 Û = 9 4

Άρα ο ζητούμενος γεωμετρικός τόπος των εικόνων του w είναι η παραπάνω έλλειψη. Τα κοινά σημεία της έλλειψης με τον άξονα που έχει εξίσωση y = είναι Α( 3, ) και Α ( 3,) -. Άρα η μέγιστη τιμή του w είναι 3. Τα κοινά σημεία της έλλειψης με τον άξονα yy που έχει εξίσωση = είναι Β(,) και Β (, ) -. Άρα η ελάχιστη τιμή του w είναι Β4. Είναι z = και w 3, οπότε: z- w z w 3 = 4 z- w ³ z - w = w - z = w - = w - ³ ΘΕΜΑ Γ Γ. Είναι f ln ( ) = -, > με f = > Άρα η f είναι γνησίως αύξουσα με f =, οπότε; > Û f > f Û f > < < Û f < f Û f < f = > για κάθε Άρα η f είναι γνησίως φθίνουσα στο Δ (,] [ ) Δ =, και παρουσιάζει ολικό ελάχιστο στο Είναι lim f = και lim f f Δ é f, lim f ö, êë ø = () = [- ) f Δ é f, lim f, êë = () ) = [- ) =, οπότε: =, γνησίως αύξουσα στο = το Άρα το σύνολο τιμών f ( Δ) είναι f( Δ) = f( Δ ) È f( Δ ) = [-, ) y = f =- ΟΕ Γ. Η δοσμένη εξίσωση ισοδύναμα γράφεται: 3 ln - = ln Û - ln - 3 = Ûf - =

Έστω η συνάρτηση h με h = f -, >. Η h έχει το ίδιο είδος μονοτονίας με την f, δηλαδή η h είναι γνησίως φθίνουσα στο Δκαι γνησίως αύξουσα στο Δ με yοε =- 3. Είναι h( Δ) = [- 3, ). Επειδή Î h( Δ ) η h έχει μια τουλάχιστον ρίζα στο Δ και επειδή είναι γνησίως φθίνουσα η ρίζα είναι μοναδική. Είναι h( Δ ) = [- 3, ). Επειδή Î h( Δ ) η h έχει μια τουλάχιστον ρίζα στο Δ και επειδή είναι γνησίως αύξουσα η ρίζα είναι μοναδική. Άρα η h επομένως και η δοσμένη εξίσωση έχει δύο θετικές ρίζες. Γ3. Είναι h = h = Έστω η συνάρτηση φ με φ = f f -, Î[, ] Η φ είναι συνεχής στο [,] ως αποτέλεσμα πράξεων συνεχών συναρτήσεων. φ = f f - = f < φ = f f - = f > Άρα φ φ <, οπότε για την φ ισχύουν οι προϋποθέσεις του θεωρήματος του Bolzano στο [, ], άρα υπάρχει ένα τουλάχιστον Î (, ), τέτοιο ώστε να είναι φ( ) = που είναι το ζητούμενο. Γ4. Είναι g = ( - ) ln με g = και g ³ για κάθε [,] Επομένως: æ ö Ε = ( - ) ln d = - ln d = ç è ø éæ ö ù æ ö = ê - lnú - - d = ç ç ë û êè ø ú è ø = æ - ö - é - ù = -- é - ù é - ù = ç ê ú ê ú 4 4 ê4 ú è ø ëê ûú ëê ûú ë û 3-3 = -- - = 4 4 4 Î. ΘΕΜΑ Δ Δ. Η f είναι συνεχής στο διάστημα (, ) με f ¹ για κάθε >. Επομένως η f διατηρεί σταθερό πρόσημο. Για κάθε > ισχύει: - () f t dt - ³

Έστω η συνάρτηση g με () - ισχύει g ³ και g =. Άρα ισχύει g g g = f t dt -,Î για την οποία ³ για κάθε Î, δηλαδή η g παρουσιάζει στο = ελάχιστο και σύμφωνα με το θεώρημα του Frmat είναι g =. Είναι: g = f - - -, οπότε: g () = Û f () = Û f () = - < Άρα είναι f < για κάθε >. Για κάθε > ισχύει: æ lnt-t ö ln- = dt f ç f() t è ø Επειδή ln- < για κάθε > από την παραπάνω ισότητα συμπεραίνουμε ότι ισχύει lnt-t dt > για κάθε f t () > άρα ln- f =, > lnt-t dt f t και η f είναι παραγωγίσιμη ως πηλίκο παραγωγίσιμων συναρτήσεων. Είναι ln - lnt t = - dt. Παραγωγίζουμε τα μέλη της ισότητας οπότε: f f() t () æln-ö ln- =. Άρα ç f è ø f Για = προκύπτει = c Û c = - Άρα f = ln-, > ln- = c f Δ. Έίναι ημ - é ù f f f ημ - f = f êημ - ú = f êë f f úû f Θέτουμε u =, οπότε επειδή lim f f é ù - lim ê( f ) ημ f ú lim - u = - είναι lim =, οπότε: f ημu u συνu - συνu - - = = lim = lim = - - êë f úû u u u u u

Δ3. Είναι F = f - æ ö F = f = ç - ln -, > è ø > για κάθε Επομένως είναι F >, άρα η F είναι κυρτή στο (, ) Για την F ισχύουν οι προϋποθέσεις του θεωρήματος της Μέσης Τιμής στα ξ Î, και διαστήματα [, ] και [,3 ], οπότε υπάρχουν ξ Î (,3) τέτοια ώστε να είναι: F -F F ( ξ ) = και F ( ξ F( 3) -F ) = Επειδή η F είναι κυρτή η F είναι γνησίως αύξουσα συνάρτηση οπότε: ξ < ξ Û F ξ < F ξ ÛF - F < F 3 -F Û F F 3 > F Δ4. Έστω η συνάρτηση Η με Η = F -F β -F 3β, Î β,β Η Η είναι συνεχής στο [ β,β ] συναρτήσεων Η β = F β -F β - F 3β < Η( β) = F( β) - F( 3β) > [ ] ως αποτέλεσμα πράξεων συνεχών διότι F = f < για κάθε >, άρα η F είναι γνησίως φθίνουσα, οπότε: β< 3βÛ Fβ > F3β ÛFβ - F3β > Û Hβ > Άρα H( β) Η( β) <, επομένως για την Η ισχύουν οι προϋποθέσεις του θεωρήματος του Bolzano, οπότε υπάρχει ένα τουλάχιστον ξ Î ( β,β ), τέτοιο ώστε να είναι Η( ξ) = που είναι το ζητούμενο. Κλάδος Μαθηματικών Σκύφας Αθανάσιος Γιαννάκος Παναγιώτης Ανδριώτης Δημήτρης Σαρρή Ελένη Παύλου Φώτης Τάτσης Πέτρος Κουκόσιας Δημήτρης Σταθοπούλου Ιωάννα Βασιλακόπουλος Πραξιτέλης Μπαλαδήμα Βάνα ΑΘΗΝΑ: ΣΟΛΩΝΟΣ ΤΗΛ. 388854 384539 ΠΑΓΚΡΑΤΙ: ΑΓ. ΦΑΝΟΥΡΙΟΥ 3 ΤΗΛ. 75883 75949 ΒΥΡΩΝΑΣ: ΝΙΚΗΦΟΡΙΔΗ ΤΗΛ. 76699 766633 www.spoudi.gr, -mail: info@ spoudi.gr