A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n

Σχετικά έγγραφα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΜΑΘΗΜΑΤΙΚΑ IIB. Εξετάσεις Ιουνίου ) Δίνεται ο πίνακας Α= 5) α) Αν v 0 ένα στοιχείο ενός διαν. χώρου V[F] με εσωτερικό γινόμενο, να

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

A, και εξετάστε αν είναι διαγωνίσιμη.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

Γραµµικη Αλγεβρα ΙΙ. Θεωρητικα Θεµατα

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

lim (f(x + 1) f(x)) = 0.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

ΑΣΚΗΣΕΙΣ 7 ης ΕΒΔΟΜΑΔΑΣ

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 ιαδικασία διαγωνιοποίησης

Gauss. x + y + z = 2 3x + 3y z = 6 x y + z = 1. x + y + z = r x y = 0 3x + y + sz = s 0

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Copyright: Ψωμόπουλος Ευάγγελος, Eκδόσεις Zήτη, Γ έκδοση: Μάρτιος 2012, Θεσσαλονίκη

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).


8.1 Διαγωνοποίηση πίνακα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Εφαρμοσμένα Μαθηματικά ΙΙ

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΜΑΘΗΜΑΤΙΚΑ IIB. Εξετάσεις Ιουνίου τέμνει το επίπεδο 4x+3z+5=0 κατά τον κύκλο ακτίνας 42. (2)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 6

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

Εφαρμοσμένα Μαθηματικά ΙΙ

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

g (v + W ) = gv + W gv = 0.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.

2 3x 5x x

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 2

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

Έντυπο Yποβολής Αξιολόγησης ΓΕ

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A =

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 2. Σύντομες Λύσεις

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

= k. n! k! (n k)!, k=0

Transcript:

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ III ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN 1 Εστω f : V V γραμμική απεικόνιση Εστω A = ker(f i ) και B = ker(f i+1 ) Δείξτε ότι (i) A B και (ii) f(b) A Αποδ: (i) Εστω x ker(f i ) Τότε f i (x) = Κατά συνέπεια f(f i (x)) = f() = Άρα f i+1 (x) =, δηλαδή x ker(f i+1 ) (ii) Εστω x ker(f i+1 ) Τότε f i+1 (x) = Κατά συνέπεια f i (f(x)) = Άρα f(x) ker(f i ) Εστω f : V V γραμμική απεικόνιση Εάν W είναι ένας υπόχωρος του V ο οποίος είναι αναλλοίωτος από την f, δείξτε ότι υπάρχει μια βάση B του V, ως προς την οποία ο πίνακας της f είναι της μορφής: (f; B) = ( A B C Επιπλέον, αν υπάρχουν W 1, W υπόχωροι του V, αναλλοίωτοι από την f, τέτοιοι ώστε V = W 1 W, δείξτε ότι υπάρχει μια βάση B του V, ως προς την οποία ο πίνακας της f είναι της μορφής: ( ) A (f; B) = B Αποδ: Εστω B 1 = {x 1, x,, x k } μια βάση του W Επεκτείνουμε τη βάση αυτή σε μια βάση B = {x 1,, x k, x k+1,, x n } του V Υπολογίζουμε τον πίνακα της f ως προς τη βάση B Επειδή ο W είναι αναλλοίωτος από την f θα έχουμε: ) f(x 1 ) = a 11 x 1 + a k1 x k + x k+1 + + x n f(x ) = a 1 x 1 + a k x k + x k+1 + + x n Άρα ο πίνακας της f ως προς τη βάση B θα είναι: a 11 a 1 a 1k a 1,k+1 a 1n a 1 a a k a,k+1 a n (f; B) = a k1 a k a kk a k,k+1 a kn a k+1,k+1 a k+1,n a n,k+1 a nn 1

Αν τώρα υπάρχουν W 1, W υπόχωροι του V, αναλλοίωτοι από την f, τέτοιοι ώστε V = W 1 W, επιλέγουμε βάσεις B 1 = {x 1, x,, x k } και B = {y k+1, y k+,, y n } των W 1 και W αντίστοιχα Τότε το σύνολο B = {x 1, x,, x k, y k+1, y k+,, y n } αποτελεί βάση του V Υπολογίζουμε στη συνέχεια τον πίνακα της f ως προς τη βάση B του V Επειδή οι W 1 και W είναι αναλλοίωτοι από την f θα έχουμε: f(x 1 ) = a 11 x 1 + a k1 x k + y k+1 + + y n f(x ) = a 1 x 1 + a k x k + y k+1 + + y n f(x k ) = a 1k x 1 + + a kk x k + y k+1 + + y n f(y k+1 ) = x 1 + x k + a k+1,k+1 y k+1 + + a n,k+1 y n f(y n ) = x 1 + + x k + a k+1,n y k+1 + + a nn y n Άρα ο πίνακας της f ως προς τη βάση B θα είναι: a 11 a 1 a 1k a 1 a a k (f; B) = a k1 a k a kk a k+1,k+1 a k+1,n a n,k+1 a nn 3 Εστω A M n (C) με A I n Υποθέτουμε ότι A 3 = I n Είναι ο πίνακας A διαγωνοποιήσιμος; Ισχύει το ίδιο αν A M n (R); Αποδ: Στην πρώτη περίπτωση θεωρούμε A M n (C) (διανυσματικός χώρος υπεράνω του C) Επειδή από την υπόθεση έχουμε A 3 = I, έπεται ότι το πολυώνυμο p(t) = t 3 1 = (t 1)(t + 1+i 3 )(t 1+i 3 ) μηδενίζεται από τον πίνακα A Από την άσκηση 7 του φυλλαδίου, έπεται ότι το ελάχιστο πολυώνυμο Q A του πίνακα A διαιρεί το πολυώνυμο p(t) Επιπλέον από την υπόθεση έχουμε A I n, δηλαδή το ελάχιστο πολυώνυμο του A δεν μπορεί να είναι το t 1 Άρα Q A (t) = (t 1)(t + 1+i 3 ) ή Q A (t) = (t 1)(t + 1 i 3 ) ή Q A (t) = t 3 1 Συνεπώς επειδή σε κάθε περίπτωση οι ιδιοτιμές ανήκουν στο σώμα C και το ελάχιστο πολυώνυμο είναι γινόμενο πρωτοβάθμιων όρων, έπεται ότι ο A είναι διαγωνοποιήσιμος Στη δεύτερη περίπτωση θεωρούμε A M n (R) (διανυσματικός χώρος υπεράνω του R) Τώρα επειδή οι ιδιοτιμές δεν ανήκουν στο σώμα, έπεται ότι ο A δεν είναι διαγωνοποιήσιμος 4 Εστω f : V V γραμμική απεικόνιση Αν χ f (t) = (t ) 4 (t 3) 3 και Q f (t) = (t ) (t 3), βρείτε τις πιθανές κανονικές μορφές Jordan της f Αποδ: Αν χ f (t) = (t ) 4 (t 3) 3 και Q f (t) = (t ) (t 3) τότε οι

πιθανές κανονικές μορφές Jordan της f είναι: ( ) 1 ( ) 1 (3) (3) (3) ή ( ) 1 () () (3) (3) (3) 5 Βρείτε όλες τις πιθανές κανονικές μορφές Jordan μιας γραμμικής απεικόνισης f : V V με χ f (t) = (t ) 3 (t 5) Αποδ: Επειδή το χαρακτηριστικό πολυώνυμο είναι πέμπτου βαθμού, έπεται ότι ο πίνακας της f θα είναι 5 5 Οι πιθανές τιμες του ελάχιστου πολυωνύμου είναι: Q A (t) = (t ) 3 (t 5) ή Q A (t) = (t ) (t 5) ή Q A (t) = (t )(t 5) ή Q A (t) = (t ) 3 (t 5) ή Q A (t) = (t ) (t 5) ή Q A (t) = (t )(t 5) Αν Q A (t) = (t ) 3 (t 5) τότε οι κανονικές μορφές Jordan της f είναι: 1 1 ( 5 1 5 ) Αν Q A (t) = (t ) (t 5) τότε οι κανονικές μορφές Jordan της f είναι: ( ) 1 () ( ) 5 1 5 Αν Q A (t) = (t )(t 5) τότε οι κανονικές μορφές Jordan της f είναι: () () () ( 5 1 5 ) Αν Q A (t) = (t ) 3 (t 5) τότε οι κανονικές μορφές Jordan της f είναι: 1 1 (5) (5) 3

Αν Q A (t) = (t ) (t 5) τότε οι κανονικές μορφές Jordan της f είναι: ( ) 1 () (5) (5) Αν Q A (t) = (t )(t 5) τότε οι κανονικές μορφές Jordan της f είναι: () () () (5) (5) 6 Βρείτε όλες τις πιθανές κανονικές μορφές Jordan ενός πίνακα A M 5 (C) του οποίου το ελάχιστο πολυώνυμο είναι Q A (t) = (t ) Επειδή ο πίνακας A είναι 5 5, έπεται ότι το χαρακτηριστικό πολυώνυμο του A είναι χ A (t) = (t ) 5 Άρα οι πιθανές κανονικές μορφές Jordan του A είναι: ( ) ( ) 1 1 ( ) 1 ή () 7 Να βρεθεί η κανονική μορφή Jordan του πίνακα: 1 1 1 A = 1 1 1 M 5(R) 1 1 1 3 () () () Αποδ: Το χαρακτηριστικό πολυώνυμο του A είναι χ A (t) = (t 1) 3 (t ) και το ελάχιστο πολυώνυμο του A είναι Q A (t) = (t 1) (t ) Συνεπώς η μορφή Jordan του A είναι: ( ) 1 1 1 (1) ( ) 1 8 Θεωρούμε τις γραμμικές απεικονίσεις f : V V και g : V V Εστω λ 1, λ,, λ k οι ιδιοτιμές της f τέτοιες ώστε V = V (λ 1 ) V (λ ) V (λ k ), (όπου V (λ i ), i = 1,, k είναι οι αντίστοιχοι ιδιόχωροι) Αν κάθε ιδιόχωρος V (λ i ), i = 1,, k είναι αναλλοίωτος από τη g, να δειχθεί fg = gf 4

(Υποδ Γράψτε ένα τυχαίο διάνυσμα v V στη μορφή v = v 1 + v + + v k με v i V (λ i ) i = 1,,, k και δείξτε ότι g(f(v)) = f(g(v))) Αποδ: Γράφουμε ένα τυχαίο διάνυσμα v V στη μορφή v = v 1 +v + +v k με v i V (λ i ) i = 1,,, k Εχουμε g(f(v)) = g(f(v 1 + v + + v k )) = g(λ 1 v 1 + λ v + + λ k v k ) (Επειδή v i V (λ i )) = λ 1 g(v 1 ) + λ g(v ) + + λ k g(v k ) (Επειδή g γραμμική) (1) Από την άλλη μεριά έχουμε f(g(v)) = f(g(v 1 + v + + v k )) = f(g(v 1 )) + f(g(v )) + + f(g(v k )) (Επειδή f, g γραμμικές) = λ 1 g(v 1 ) + λ g(v ) + + λ k g(v k ) (Επειδή g(v i ) V (λ i ) για κάθε i) () Από (1) και () προκύπτει ότι g(f(v)) = f(g(v)) για κάθε v V άρα gf = fg 9 Δίνεται ο πίνακας: A = 1 1 1 1 1 M 3 (R) 1 1 Να βρεθεί πίνακας P τέτοιος ώστε ο πίνακας P 1 AP να είναι σε κανονική μορφή Jordan Αποδ: Το χαρακτηριστικό πολυώνυμο του A είναι χ A (t) = (t 1) 3 και το ελάχιστο πολυώνυμο του A είναι Q A (t) = (t 1) 3 Συνεπώς η μορφή Jordan του A είναι: J = 1 1 1 1 1 Επομένως υπάρχει αντιστρέψιμος πίνακας P τέτοιος ώστε P 1 AP = J AP = P J Θέτουμε P = p 11 p 1 p 13 p 1 p p 3 p 31 p 3 p 33 Επομένως θα έχουμε: 1 1 1 1 1 p 11 p 1 p 13 p 1 p p 3 = p 11 p 1 p 13 p 1 p p 3 1 1 1 1 1 1 p 31 p 3 p 33 p 31 p 3 p 33 1 5

απ όπου προκύπτει το σύστημα των εξισώσεων: p 11 + p 1 + p 31 = p 11 p 11 + p 1 p 31 = p 1 p 11 p 1 = p 31 p 1 + p + p 3 = p 11 + p 1 p 1 + p p 3 = p 1 + p p 1 p = p 31 + p 3 p 13 + p 3 + p 33 = p 1 + p 13 p 13 + p 3 p 33 = p + p 3 p 13 p 3 = p 3 + p 33 p 11 + p 1 + p 31 = p 11 + p 31 = p 11 + p 1 + p 31 = p 1 + p + p 3 p 11 = p 1 + p 3 + p 1 = p 1 + p + p 31 + p 3 = p 13 + p 3 + p 33 p 1 = p 13 + p 3 + p = p 13 + p 3 + p 3 + p 33 = p 1 = p 31 = p 11 p 11 R p 1 R p = p 11 p 3 = p 1 p 13 R p 3 = p 11 + p 1 p 33 = p 13 p 11 Λύνοντας το παραπάνω σύστημα βρίσκουμε (υπάρχουν άπειροι πίνακες P ): P = 1 1 1 1 1 1 1 Δίνεται ο πίνακας: A = 5 1 1 4 M 3 (R) 3 3 1 Να βρεθεί πίνακας B, όμοιος του A, που να είναι σε κανονική μορφή Jordan Αποδ: Το χαρακτηριστικό πολυώνυμο του πίνακα A είναι χ A (t) = (t + )(t 4) Το ελάχιστο πολυώνυμο του πίνακα A είναι Q A (t) = (t + )(t 4) 6

Επομένως ο πίνακας B όμοιος του A, που να είναι σε κανονική μορφή Jordan είναι ο: B = 4 1 4 11 Εστω f : V V γραμμική απεικόνιση τέτοια ώστε f = id V Να δείξετε ότι υπάρχουν W 1, W υπόχωροι του V τέτοιοι ώστε V = W 1 W, f(x) = x, x W 1 και f(y) = y, y W (Υποδ: α) τρόπος: βρείτε τις πιθανές περιπτώσεις του ελάχιστου πολυωνύμου της f και εφαρμόστε την πρωταρχική ανάλυση, β) τρόπος: Θέσετε W 1 = {x V f(x) = x} και W = {x V f(x) = x} και αποδείξτε ότι V = W 1 W γράφοντας ένα τυχαίο διάνυσμα του V στη μορφή x = x f(x) + x+f(x) ) Αποδ: Α τρόπος: Το πολυώνυμο p(t) = t 1 μηδενίζεται από την f Επομένως το ελάχιστο πολυώνυμο της f είναι Q f (t) = t 1 ή Q f (t) = t + 1 ή Q f (t) = t 1 Αν Q f (t) = t 1 τότε f id V =, δηλαδή f(x) = x για κάθε x V Άρα αν θέσουμε W 1 = V και W = {} έχουμε το αποτέλεσμα Ομοια, αν Q f (t) = t + 1 τότε f + id V =, δηλαδή f(x) = x για κάθε x V Άρα αν θέσουμε W 1 = {} και W = V έχουμε το αποτέλεσμα Εάν τώρα Q f (t) = t 1 = (t 1)(t + 1), εφαρμόζουμε την πρωταρχική ανάλυση: N t 1 = {v V (f id V )v = } = {v V f(v) = v}, N t+1 = {v V (f + id V )v = } = {v V f(v) = v} Εχουμε V = N t 1 N t+1 Επομένως αν θέσουμε W 1 = N t 1 και W = N t+1 έχουμε το αποτέλεσμα Β τρόπος: Θέτουμε W 1 = {x V f(x) = x} και W = {x V f(x) = x} Εαν x είναι ένα τυχαίο διάνυσμα του V, τότε το x γράφεται: x = x f(x) + x+f(x) Εχουμε f = id V, συνεπώς f (x) = x για κάθε x V Άρα, f( x f(x) ) = f(x) f (x) = f(x) x = x f(x) Άρα x f(x) W Επίσης, f( x+f(x) ) = f(x)+f (x) = f(x)+x κατά συνέπεια x+f(x) W 1 Άρα δείξαμε ότι V = W 1 + W Αν τώρα x W 1 W, τότε f(x) = x και f(x) = x Συνεπώς x = x, άρα x = Δηλαδή W 1 W = {}, συνεπώς V = W 1 W 7