Ασκήσεις Επανάληψης Λύσεις

Σχετικά έγγραφα
Ασκήσεις Επανάληψης Λύσεις

Λύσεις Σειράς Ασκήσεων 2

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 1

Ασκήσεις Επανάληψης Λύσεις

Λύσεις 1 ης Σειράς Ασκήσεων

Σειρά Προβλημάτων 4 Λύσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 4

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο )

Λύσεις Σειράς Ασκήσεων 2

CTL - Λογική Δένδρου Υπολογισμού

Γραμμική και διακλαδωμένη χρονική λογική

Σειρά Προβλημάτων 1 Λύσεις

Κατ οίκον Εργασία 2 Λύσεις

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4)

Λύσεις Σειράς Ασκήσεων 4

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σειρά Προβλημάτων 1 Λύσεις

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Μη γράφετε στο πίσω μέρος της σελίδας

Σειρά Προβλημάτων 4 Λύσεις

CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1)

Σειρά Προβλημάτων 1 Λύσεις

Λύσεις 1 ης Σειράς Ασκήσεων

Σειρά Προβλημάτων 5 Λύσεις

Λύσεις 2 ης Σειράς Ασκήσεων

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Λύσεις Σειράς Ασκήσεων 5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Σειρά Προβλημάτων 1 Λύσεις

Λύσεις Σειράς Ασκήσεων 5

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Λύσεις Σειράς Ασκήσεων 4

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013

\5. Κατηγορηματικός Λογισμός (Predicate Calculus)

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL

HY118-Διακριτά Μαθηματικά

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 5

HY118-Διακριτά Μαθηματικά

Λύσεις Σειράς Ασκήσεων 5

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Υπολογιστικά & Διακριτά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

Στοιχεία προτασιακής λογικής

Σειρά Προβλημάτων 1 Λύσεις

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής

HY118-Διακριτά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Στοιχεία Κατηγορηματικής Λογικής

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

Στοιχεία Προτασιακής Λογικής

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο

Mαθηματική Λογική και Λογικός Προγραμματισμός

Μη γράφετε στο πίσω μέρος της σελίδας

Άλγεβρες ιεργασιών και Τροπικές Λογικές

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16

Λύσεις Σειράς Ασκήσεων 5

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

Σειρά Προβλημάτων 3 Λύσεις

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μη γράφετε στο πίσω μέρος της σελίδας

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Στοιχεία Προτασιακής Λογικής

Λύσεις Σειράς Ασκήσεων 3

Μαθηματική Λογική και Λογικός Προγραμματισμός

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Μη γράφετε στο πίσω μέρος της σελίδας

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων

Υποθετικές προτάσεις και λογική αλήθεια

Στοιχεία Προτασιακής Λογικής

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

ΕΠΛ 412 Λογική στην Πληροφορική 4-1

Φροντιστήριο 7 Λύσεις Ασκήσεων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ

Transcript:

Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x) Q(x)) Υπόθεση 2. x Q(x) Υπόθεση 3. x 0 4. P(x 0 ) Q(x 0 ) x e 1 5. Q(x 0 ) x e 2 6. P(x 0 ) Υπόθεση 7. Q(x 0 ) e 4, 6 8. i 5, 7 9. P(x 0 ) i 6 8 10. x P(x) x i 3 9 11. (x Q(x)) (x P(x)) i 2 10 12. (x(p(x) Q(x))) ((x Q(x)) (x P(x))) i 1 11 (γ) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x) R(x)) Προϋπόθεση 2. x(r(x) Q(x)) Προϋπόθεση 3. x 0 4. Q(x 0 ) Υπόθεση 5. R(x 0 ) Υπόθεση 6. Q(x 0 ) R(x 0 ) i 4, 5 7. x(r(x) Q(x)) x i 6 8. i 2, 7 9. R(x 0 ) e 5 8 10. R(x 0 ) e 9 11. Q(x 0 ) R(x 0 ) i 4 10 12. P(x 0 ) Q(x 0 ) R(x 0 ) i 11 13. x(p(x) Q(x) R(x)) x i 3 12 Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 1

(δ) Ακολουθεί η απόδειξη του επακόλουθου. 1. x (P(x) Q(x)) Προϋπόθεση 2. x 0 3. P(x 0 ) Q(x 0 ) Υπόθεση 4. P(x 0 ) e 3 5. P(x 0 ) Q(x 0 ) Υπόθεση 6. P(x 0 ) e 5 7. i 4, 6 8. ( P(x 0 ) Q(x 0 )) e 7 9. x ( (P(x) Q(x))) x i 8 10. x ( (P(x) Q(x))) x e 1, 2 9 Άσκηση 2 α) Impl_Free((p ( ((q p) q)))) = Impl_Free ((p ( ((q p) q)))) = Impl_Free ((p ( ((q p) q)))) NNF ((p ( ((q p) q)))) = NNF (p ( ((q p) q)))) = NNF (p ((q p) q)) = NNF (p) NNF((q p) q) = p NNF(q p q) = p NNF(q p q) = p (q p q) CNF_Rec (p (q p q) = p (q p q) (β) (i) (p 5 p 11 ) (p 2 p 3 p 5 p 13 ) (T p 5 ) (p 5 p 11 ) Μάρκαρε όλα τα p 5 ( p 5 p 11 ) (p 2 p 3 p5 p 13 ) (T p 5 ) ( p5 p 11 ) Μάρκαρε όλα τα p 11 ( p 5 p 11 ) (p 2 p 3 p5 p 13 ) (T p 5 ) ( p5 p 11 ) Εντοπίζουμε τον όρο p5 p 11 και συμπεραίνουμε ότι η πρόταση δεν είναι ικανοποιήσιμη αφού η πρόταση Τ αποτελεί αντίφαση. (ii) (p q s ) (q r p) (T s) Μάρκαρε όλα τα s (p q s ) (q r p) (T s ) Η πρόταση είναι ικανοποιήσιμη για τις πιο κάτω τιμές των ατομικών προτάσεων που την απαρτίζουν: [p] = [q] = [r] = F [s] = T Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 2

Άσκηση 3 Επιλέγουμε ως Α το σύνολο των ακεραίων και g M (a,a ) = a a. Επίσης, θέτουμε ως Q(x,y,z) το κατηγόρημα (z = x*y). Επομένως, η πρόταση = x y Q(g(x, y), g(y, y), z) εκφράζει ότι (x y)*(y y) = z δηλαδή, 0 = z. Αυτό σημαίνει πως αν επιλέξουμε l(z) = 0 η πρόταση είναι αληθής, ενώ για οποιαδήποτε απονομή με l(z) 0 η πρόταση είναι ψευδής. Άσκηση 4 Χρησιμοποιούμε τα κατηγορήματα Π(x,y) και Τ(x) τα οποία ερμηνεύουμε ως «ο κύβος x βρίσκεται πάνω από τον κύβο y» και «ο κύβος x βρίσκεται πάνω στο τραπέζι». Οι προτάσεις μεταφράζονται στον Κατηγορηματικό λογισμό ως εξής. 1. Αν ένας κύβος βρίσκεται πάνω σε κάποιο άλλο κύβο, τότε δεν βρίσκεται πάνω στο τραπέζι. xy (Π(x,y) T(x)) 2. Κάθε κύβος βρίσκεται είτε πάνω στο τραπέζι είτε πάνω σε κάποιο άλλο κύβο. x (T(x) y Π(x,y)) 3. Κανένας κύβος δεν βρίσκεται πάνω σε κάποιο κύβο ο οποίος βρίσκεται επίσης πάνω σε κάποιο κύβο. x (y Π(x,y) z Π(y,z)) 4. Αν κάποιος κύβος βρίσκεται πάνω σε κάποιο άλλο κύβο τότε ο δεύτερος κύβος βρίσκεται πάνω στο τραπέζι. x (y Π(x,y) T(y)) Για να ελέγξουμε την εγκυρότητα του συλλογισμού θα κτίσουμε την προτασιακή μορφή των πρώτων τριών προτάσεων και της άρνησης της τέταρτης πρότασης και θα εφαρμόσουμε σε αυτές τη μέθοδο της επίλυσης. 1. xy (Π(x,y) T(x)) = xy (Π(x,y) T(x)) x (Π(x,f(x)) T(x)) 2. x (T(x) y Π(x,y)) = xy (T(x) Π(x,y)) x(t(x) Π(x,g(x))) 3. x (y Π(x,y) z Π(y,z)) = x y [Π(x,y) z Π(y,z)] = x y [Π(x,y) z Π(y,z)] = x y [Π(x,y) z Π(y,z)] = x y z [Π(x,y) Π(y,z)] 4. x (y Π(x,y) T(y)) = x (y Π(x,y) T(y)) = x (y Π(x,y) T(y)) = x (y Π(x,y) T(y)) = y Π(a,y) T(y) Η προτασιακή μορφή των προτάσεων είναι η {Π(x, f(x)), T(x)}, {T(x), Π(x, g(x))}, {Π(x, y), Π(y, z)}, {Π(a,y)}, {T(y)} και με τη Μέθοδο της Επίλυσης εντοπίζουμε αντίφαση ως εξής. Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 3

{Π(x, f(x)), T(x)} {T(x), Π(x, g(x))} {Π(x, y), Π(y, z)} {Π(a,y)} {T(y)} {T(y)} {Π(y,z)} Άσκηση 5 (α) FX p XF p (LTL) Θα δείξουμε ότι η πρόταση είναι ταυτολογία. Έστω δομή Kripke M. Έχουμε ότι Μ = FX p αν και μόνο αν κάθε μονοπάτι w που ξεκινά από το s είναι τέτοιο ώστε w = FX p. w = FX p αν και μόνο αν j 0 τέτοιο ώστε w j = X p αν και μόνο αν j 0 τέτοιο ώστε (w j ) 1 = p αν και μόνο αν j 0 τέτοιο ώστε w j+1 = p αν και μόνο αν j 0 τέτοιο ώστε (w 1 ) j = p αν και μόνο αν w 1 = F p αν και μόνο αν w = XF p Επομένως Μ = XF p. (β) AF AX p AX AF p (CTL) H πρόταση δεν είναι ταυτολογία όπως φαίνεται στο πιο κάτω αντιπαράδειγμα. p p Η δομή αυτή ικανοποιεί την ιδιότητα AX AF p αλλά όχι την AF AX p. (γ) EG (φ ψ) EG φ EG ψ (CTL) H πρόταση δεν είναι ταυτολογία όπως φαίνεται στο πιο κάτω αντιπαράδειγμα φ φ ψ Η δομή αυτή ικανοποιεί την ιδιότητα EG (φ ψ) αλλά όχι την EG φ EG ψ. (δ) AG φ AG ψ AG (φ ψ) (CTL) Θα αποδείξουμε ότι πρόταση αυτή είναι ταυτολογία. Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 4

Έστω δομή Κripke M και κατάσταση s. Τότε, αν Μ,s =AG φ AG ψ, ισχύει ότι Μ, s = AG φ και Μ, s = AG ψ. Επομένως για κάθε μονοπάτι w που ξεκινά από την s και κάθε j 0, M,w[j] φ και M,w[j] ψ. Αυτό συνεπάγεται ότι M,w[j] φψ και επομένως Μ,s = AG (φψ). Παρόμοια, αν Μ,s = AG (φψ) ισχύει και ότι Μ,s = AG φ AG ψ και το ζητούμενο έπεται. Άσκηση 6 α) Θεωρήστε την ακόλουθη δομή Kripke. {r} 1 {p,t,r} 2 3 {p} 4 {q,r} (i) p r Ικανοποιείται στις καταστάσεις 2 και 3 (αφού εκεί ισχύει η p) καθώς και στις 1 και 4 (αφού εκεί p). (ii) EG r Ικανοποιείται μόνο στην 3 αφού αυτή είναι η μόνη κατάσταση από την οποία δεν υπάρχει μονοπάτι που να ικανοποιεί καθολικά την r. (iii) E (t U q) Ικανοποιείται στην 4 αφού αμέσως ισχύει η q καθώς και στην 2 αφού εδώ ικανοποιείται η t και μετά από ένα βήμα η q. (iv) AF q Ικανοποιείται στην 4 αφού αμέσως ισχύει η q καθώς και στις 2 και 3 αφού από εδώ είναι αναπόφευκτη η μετάβαση στη 4. (v) EF E(p U EG (q r)) Η (q r) ικανοποιείται στις 1 4. Η EG (q r) ικανοποιείται και πάλι στις 1 4. Η E(p U EG (q r)) ικανοποιείται και πάλι στις 1 4 και τέλος Η EF E(p U EG (q r)) ικανοποιείται στις 1 4. (β) Κατ αρχή επεξεργαζόμαστε την ιδιότητα για να την φέρουμε στη ζητούμενη μορφή. Ε(r U q) EF E(p U AG (q r)) = Ε(r U q) E (true U E(p U AG (q r))) = Ε(r U q) E (true U E(p U EF (q r))) = Ε(r U q) E (true U E(p U EF (q r)) = Ε(r U q) E[true U E(p U E [true U (q r)])] Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 5

Στο πιο κάτω σχήμα θεωρούμε το δένδρο που αντιστοιχεί στην ιδιότητα και το σύνολο Sat(φ) για κάθε υποιδιότητά της. r q true {4} {2,3} p {} true {} {1,2,3} r {4} q Άσκηση 7 Κτίζοντας πίνακα που δείχνει τις τιμές των a και y κατά τη διάρκεια της εκτέλεσης του βρόχου φθάνουμε στο συμπέρασμα ότι η αμετάβλητη συνθήκη του είναι η y = x!/a!. Ενδυναμώνουμε την αμετάβλητη συνθήκη με τον περιορισμό a 0 έτσι ώστε να έχουμε ότι η αμετάβλητη συνθήκη και η άρνηση του φρουρού μας δίνουν την μετασυνθήκη της προδιαγραφής. Η μεταβλητή έκφραση είναι η a. H απόδειξη έχει ως εξής. {x 0} {1 = a!/a! x 0} Συνεπαγωγή a := x; {1 = x!/a! a 0} Αξ. Ανάθεσης y := 1; {y = x!/a! a 0} Αξ. Ανάθεσης while (a > 0){ {y = x!/a! a 0 a > 0 0 a = E 0 } Αμ. Συνθήκη, Φρουρός και Μετ. Έκφραση Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 6

{y*a = x!/(a 1)! a 1 0 0 a 1 < E 0 } y := y*a; Συνεπαγωγή {y = x!/(a 1)! a 1 0 0 a 1 < E 0 } Αξ. Ανάθεσης a := a-1; {y = x!/a! a 0 0 a < E 0 } Αξ. Ανάθεσης } {y = x!/a! a 0 a > 0} Κανόνας while {y = x!} Συνεπαγωγή Άσκηση 8 (α) Κανένα πιρούνι δεν χρησιμοποιείται ποτέ από περισσότερους από ένα φιλόσοφους. ΑG [ (l 1 r 3 ) (l 2 r 1 ) (l 3 r 2 )] (β) Ο φιλόσοφος 2 θα φάει τουλάχιστον μια φορά. AF (eat 2 ) (γ) Αν κάποιος φιλόσοφος πεινάσει στο μέλλον θα φάει. AG [ (hungry 1 AF eat 1 ) (hungry 2 AF eat 2 ) (hungry 3 AF eat 3 ) ] (δ) Ο φιλόσοφος 1 θα φάει ακριβώς μια φορά. Α [eat 1 U [eat 1 Α (eat 1 U (eat 1 ΑG eat 1 )) ]] (ε) Αν κάποιος φιλόσοφος κρατάει το πιρούνι στα αριστερά του τότε δεν θα το αφήσει παρά μόνο όταν φάει. AG [ i{1,2,3} (l i A (l i U eat i )) ] (ζ) Ένας φιλόσοφος σκέφτεται μόνο όταν δεν κρατάει κανένα πιρούνι. AG [ i{1,2,3} (think i (l i r i ) ] (η) Ανάμεσα σε οποιαδήποτε δύο γεύματα του φιλόσοφου 2 θα πρέπει να γευματίσει και ο φιλόσοφος 3. AG [ eat 2 A(eat 2 U (eat 2 Α(eat 2 U eat 3 ) ) ) ] Ασκήσεις Επανάληψης Λύσεις Χειμ. Εξ. 2016 Σελίδα 7