4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

Σχετικά έγγραφα
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Μη γράφετε στο πίσω μέρος της σελίδας

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο )

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Μη γράφετε στο πίσω μέρος της σελίδας

Επανάληψη. ΗΥ-180 Spring 2019

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Σημειώσεις Μαθηματικής Λογικής. Χειμερινό Εξάμηνο Δ. Ζώρος, Ν. Καρβέλας Σύμφωνα με παραδόσεις του Λ. Κυρούση

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Στοιχεία Κατηγορηματικής Λογικής

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

, για κάθε n N. και P είναι αριθμήσιμα.

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Προτασιακή Λογική. Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΙ Ηπείρου Γκόγκος Χρήστος

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1

p p p q p q p q p q

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε

Ασκήσεις μελέτης της 8 ης διάλεξης

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας

Μαθηματική Λογική (προπτυχιακό) Εξέταση Ιανουαρίου 2018 Σελ. 1 από 5

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.

HY118-Διακριτά Μαθηματικά

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

Κανονικές μορφές - Ορισμοί

Στοιχεία Προτασιακής Λογικής

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΛΟΓΙΚΗΣ

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

Στοιχεία Προτασιακής Λογικής

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Στοιχεία προτασιακής λογικής

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Στοιχεία Προτασιακής Λογικής

Μη γράφετε στο πίσω μέρος της σελίδας

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

Υποθετικές προτάσεις και λογική αλήθεια

Υπολογιστικά & Διακριτά Μαθηματικά

ΑΣΚΗΣΕΙΣ. 1. Εξετάστε αν οι παρακάτω εξαγωγές συμπερασμάτων στον προτασιακό λογισμό είναι έγκυρες.

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

Λογικός Προγραμματισμός

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

f(t) = (1 t)a + tb. f(n) =

Λύσεις Σειράς Ασκήσεων 1

Σειρά Προβλημάτων 1 Λύσεις

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

Προτάσεις. Εισαγωγή στις βασικές έννοιες των Μαθηματικών. Ποιες είναι προτάσεις; Προτάσεις 6/11/ ο Μάθημα Μαθηματική Λογική (επανάληψη)

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Αναπαράσταση Γνώσης και Συλλογιστικές

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική

Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF

Κατηγορηµατική Λογική

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

HY118-Διακριτά Μαθηματικά

Πληρότητα της μεθόδου επίλυσης

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.


Αναπαράσταση Γνώσης και Συλλογιστικές


. (iii) Μόνο οι εκφράσεις που σχηµατίζονται από τα i,ii είναι προτασιακοί τύποι.

Πρόταση. Αληθείς Προτάσεις

HY118- ιακριτά Μαθηµατικά

Κεφάλαιο 4 : Λογική και Κυκλώματα

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

HY118- ιακριτά Μαθηµατικά

Σειρά Προβλημάτων 1 Λύσεις

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

HY118- ιακριτά Μαθηµατικά

Ask seic Majhmatik c Logik c 2

Υπολογίσιμες Συναρτήσεις

\5. Κατηγορηματικός Λογισμός (Predicate Calculus)

Μαθηματική Λογική και Λογικός Προγραμματισμός

ΑΡΙΘΜΗΤΙΚΗ ΟΡΙΣΙΜΟΤΗΤΑ

Μαθηματική Λογική και Λογικός Προγραμματισμός

1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Transcript:

Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός από τα σύμβολα προτασιακών μεταβλητών, τα λογικά σημάδια ζεύξης: (and), (or), (not), (implies), (equivalent), Στον προτασιακό λογισμό ονομάζουμε ατομικούς τύπους τις σταθερές TRUE και FALSE καθώς και τις προτασιακές μεταβλητές π.χ. x 1, x 2,... Οι προτασιακοί τύποι ορίζονται επαγωγικά: 1. Οι ατομικοί τύποι είναι τύποι. 2. Αν Φ είναι τύπος τότε και ο Φ είναι τύπος. 3. Αν οι Φ και Ψ είναι τύποι τότε και οι (Φ Ψ) και (Φ Ψ) είναι τύποι. 4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Παρατηρήσεις: Μερικές φορές παραλείπουμε παρενθέσεις και υποθέτουμε αριστερό προσεταιρισμό π.χ. x 1 x 2 x 3 Μπορούμε να ορίσουμε νέους τύπους ως συντομογραφία άλλων γνωστών π.χ.: (Φ Ψ) : ( Φ Ψ) (Φ Ψ) : (Φ Ψ) (Ψ Φ) Οι προτασιακοί τύποι είναι συντακτικές συμβολοσειρές που όμως έχουν κάποια σημασία (σημασιολογία) δηλαδή είναι αληθείς ή ψευδείς ανάλογα με τις αληθοτιμές που έχουν απονεμηθεί στις προτασιακές μεταβλητές. Πιο συγκεκριμένα αληθοτιμές των τυπών Φ, (Φ Ψ) και (Φ Ψ) ορίζονται από τις αληθοτιμές των Φ, Ψ όπως φαίνεται στον παρακάτω πίνακα αληθείας (truth table): 153

154 Κεφάλαιο 10. Μαθηματική Λογική Φ Ψ Φ (Φ Ψ) (Φ Ψ) TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE Ένας τύπος λέγεται έγκυρος (valid) ή ταυτολογία αν είναι αληθής για κάθε απονομή αληθοτιμών στις μεταβλητές. Ένας τύπος λέγεται ικανοποιήσιμος (satisfiable) αν υπάρχει απονομή αληθοτιμών που τον καθιστά αληθή. Αρα Φ είναι ικανοποιήσιμος εάν και μόνο εάν ο Φ δεν είναι ταυτολογία. Μια προτασιακή μεταβλητή ή άρνηση προτασιακής μεταβλητής ονομάζεται λέκτημα (literal). Μια φράση (clause) είναι μια διάζευξη από literals (π.χ. x 1 x 2 x 3 x 4 ). Κάθε τύπος της προτασιακής λογικής είναι ισοδύναμος με κάποιον που βρίσκεται σε συζευκτική κανονική μορφή (conjunctive normal form) δηλαδή είναι μια σύζευξη από διαζευκτικές φράσεις. Αντίστοιχα είναι επίσης ισοδύναμoς με τύπο που βρίσκεται σε διαζευκτική κανονική μορφή (disjunctive normal form) δηλαδή είναι μια διάζευξη από συζευκτικές φράσεις. Μια φράση λέγεται φράση Horn αν έχει το πολύ ένα θετικό literal δηλαδή είναι της μορφής: που γράφεται ισοδύναμα: αντίστοιχα. (x 0 x 1 x 2... x n ) ή (x 0 ) ή ( x 1 x 2... x n ) (x 1 x 2 x n x 0 ), (TRUE x 0 ), (x 1 x 2... x n FALSE), 10.2 Κατηγορηματικός Λογισμός Ο κατηγορηματικός λογισμός έχει επί πλέον σύμβολα γιά μεταβλητές, σταθερές, κατηγορήματα, συναρτήσεις και τους ποσοδείκτες: (υπαρξιακός) και (καθολικός). Για να ορίσουμε συντακτικά τις προτάσεις είναι αναγκαίο πρώτα να ορίσουμε τους όρους (οι οποίοι όταν τους αποδοθεί σημασία θα ερμηνεύονται σαν αντικείμενα από κάποιο σύνολο). Οι όροι ορίζονται επαγωγικά: 1. Οι μεταβλητές και οι σταθερές είναι όροι. 2. Αν t 1, t 2,..., t n είναι όροι και f είναι σύμβολο συνάρτησης n θέσεων τότε f(t 1, t 2,..., t n ) είναι επίσης όρος. 3. Τίποτε άλλο δεν είναι όρος. Οι προτάσεις του κατηγορηματικού λογισμού ορίζονται επαγωγικά:

10.3 Πρωτοβάθμια Λογική 155 1. Αν t 1, t 2,..., t n είναι όροι και P είναι σύμβολο κατηγορήματος n θέσεων τότε P (t 1, t 2,..., t n ) είναι πρόταση (ατομική πρόταση). 2. Αν οι Φ και Ψ είναι προτάσεις και x είναι μεταβλητή τότε και οι Φ, (Φ Ψ), (Φ Ψ), xφ, xφ είναι προτάσεις. 3. Τίποτε άλλο δεν είναι πρόταση. Οι σταθερές και οι μεταβλητές ερμηνεύονται σαν στοιχεία ενός συνόλου A. Τα συναρτησιακά σύμβολα ερμηνεύονται σαν συναρτήσεις: A n A. Έτσι κάθε όρος ερμηνεύεται σαν ένα στοιχείο του A. Τα κατηγορήματα ερμηνεύονται σαν υποσύνολα του A n. Η πρόταση P (t 1, t 2,..., t n ) είναι αληθής ανν (s 1, s 2,..., s n ) R όπου s 1, s 2,..., s n είναι τα στοιχεία του Α με τα οποία ερμηνεύονται οι όροι t 1, t 2,..., t n και R το υποσύνολο με το οποίο ερμηνεύεται το P. Οι αληθοτιμές των Φ, (Φ Ψ)(Φ Ψ) ορίζονται από τις αληθοτιμές των Φ και Ψ όπως και στην προτασιακή λογική. Η πρόταση xφ είναι αληθής αν η πρόταση Φ είναι αληθής για οποιαδήποτε ερμηνεία της μεταβλητής x, ενώ η πρόταση xφ είναι αληθής αν η Φ αληθεύει για κάποια ερμηνεία της x. Οι φράσεις Horn για τον κατηγορηματικό λογισμό ορίζονται όπως και στην προτασιακή λογική αν αντί για προτασιακές μεταβλητές χρησιμοποιούμε ατομικές προτάσεις. Ένα πρόγραμμα P rolog είναι βασικά μία σύξευξη από φράσεις Ηοrn. 10.3 Πρωτοβάθμια Λογική Όπως είπαμε και προηγουμένως η γλώσσα της πρωτοβάθμιας λογικής (ή αλλιώς κατηγορηματικού λογισμού) περιέχει: όλα τα σύμβολα που περιέχει ο προτασιακός λογισμός επιπλέον σύμβολα για συναρτήσεις και σταθερές, π.χ. f, g, h, c 1, c 2,..., σύμβολα για κατηγορήματα π.χ. P, Q, =,... και τους ποσοδείκτες : καθολικό και υπαρξιακό. Οι μεταβλητές εδώ ερμηνεύονται σαν στοιχεία κάποιου συνόλου, όχι σαν αληθοτιμές. Θα ορίσουμε επαγωγικά τους όρους και τους τύπους της πρωτοβάθμιας λογικής. Όροι:

156 Κεφάλαιο 10. Μαθηματική Λογική 1. Οι μεταβλητές και οι σταθερές είναι όροι. 2. Αν f είναι σύμβολο συνάρτησης n θέσεων και t 1,..., t n είναι όροι τότε όρος είναι και ο f(t 1,..., t n ). 3. Τίποτα άλλο. Τύποι: 1. Αν P είναι σύμβολο κατηγορήματος n θέσεων και t 1,..., t n είναι όροι τότε P (t 1,..., t n ) και t 1 = t 2 είναι ατομικοί τύποι. 2. Αν οι Φ και Ψ είναι τύποι και x μεταβλητή τότε τύποι είναι και οι: Φ, (Φ Ψ), (Φ Ψ), xφ, xφ. 3. Τίποτα άλλο. Σημειώση: μια σταθερά c μπορεί να θεωρηθεί συνάρτηση 0 θέσεων. H εμβέλεια του x (ή x) στον τύπο xφ (ή αντίστοιχα xφ ) είναι ο υποτύπος Φ. Ελεύθερη εμφάνιση της μεταβλητής x στον τύπο Φ λέγεται μια εμφάνιση της μεταβλητής x που δεν είναι μέσα στην εμβέλεια ενός ποσοδείκτη x ή x. Δεσμευμένη εμφάνιση της x είναι μέσα στην εμβέλεια ενός ποσοδείκτη ή και ακριβώς δεξιά του συμβόλου (ή ). Ένας τύπος λέγεται κλειστός αν δεν περιέχει ελεύθερες εμφανίσεις μεταβλητών. Η σημασιολογία τύπων του κατηγορηματικού λογισμού δίνεται με την βοήθεια των αλγεβρικών δομών A που ονομάζουμε μοντέλα. Στην περίπτωση του προτασιακού λογισμού το πεδίο A είναι {True, False}, εδώ όμως μπορεί να είναι οποιοδήποτε μή κενό, πεπερασμένο ή και άπειρο, σύνολο. Εδώ λοιπόν δεν έχουμε απονομή αληθοτιμών αλλά ερμηνεία (interpretation) των μεν σταθερών και μεταβλητών με στοιχεία του πεδίου A, των δε συναρτησιακών και κατηγορηματικών συμβόλων με πραγματικές απεικονίσεις και σχέσεις μεταξύ των στοιχείων του πεδίου A. Με τέτοια σημασιολογία κάθε όρος ερμηνεύεται με στοιχείο του A και κάθε κλειστός τύπος αληθεύει (ή όχι) στο μοντέλο A. Συμβολίζουμε Γ Φ το γεγονός ότι ο τύπος Φ αποδεικνύεται συντακτικά από τους τύπους του συνόλου Γ. Συμβολίζουμε Γ = Φ το γεγονός ότι ο τύπος Φ αληθεύει σε όλα τα μοντέλα όπου αληθεύουν και οι τύποι του συνόλου Γ. Το περίφημο θεώρημα πληρότητας του Gödel λέει: Γ Φ ανν Γ = Φ

10.4 Διαδραστικό υλικό - Σύνδεσμοι 157 Αφ ετέρου το θεώρημα μη πληρότητας του Gödel λέει: Δεν μπορεί να υπάρξει συνεπής και πλήρης αξιωματικοποίηση όλων των αληθών τύπων της Αριθμητικής. 10.4 Διαδραστικό υλικό - Σύνδεσμοι Στις σελίδες http://world.logic.at/ και http://settheory.net/world θα βρείτε σύνδεσμους για βιβλιογραφικές πηγές και συνέδρια Λογικής. Εδώ θα βρείτε ένα κομπιουτεράκι λογικής. Στην σελίδα http://www.ee.umd.edu/ yavuz/logiccalc.html θα βρείτε μια γεννήτρια πινάκων αλήθειας για λογικούς τύπους. 10.5 Ασκήσεις 1. Χρησιμοποιώντας πίνακες αληθείας ελέξτε αν είναι ισοδύναμες οι A και B. A: Θα βρέξει ή ο ήλιος θα λάμπει. B: Το εξής είναι λάθος: Δε θα βρέξει και ο ήλιος δε θα λάμπει. 2. Χρησιμοποιήστε πίνακες αλήθειας για να ελέγξετε τις ισοδυναμίες: (α) ϕ ψ ψ ϕ (β) (ϕ 1 ϕ 2 ) ϕ 3 ϕ 1 (ϕ 2 ϕ 3 ) 3. Ποιοι από τους παρακάτω είναι σωστά σχηματισμένοι προτασιακοί τύποι; Εξηγήστε. (α) (ϕ ψ) ( ϕ) (β) ϕ ( ϕ ψ) (γ) p (p q) (δ) ( (A B) C) 4. Θα ορίσουμε τον λογικό σύνδεσμο NAND: Η πρόταση ϕ NAND ψ είναι αληθής αν τουλάχιστον ένας από τους ϕ, ψ είναι ψευδής, και είναι ψευδής όταν οι ϕ και ψ είναι αληθείς. (α) Κατασκευάστε έναν πίνακα αλήθειας για τον σύνδεσμο NAND. (β) Δείξτε ότι η πρόταση ϕ NAND ψ είναι λογικά ισοδύναμη με την (ϕ ψ). 5. Υποθέστε ότι η εξής πρόταση είναι αληθής: Αν διαβάζω πολύ, θα πάρω 10. Προσδιορίστε για καθεμία από τις παρακάτω προτάσεις αν είναι αληθής, ψευδής, ή δεν ξέρουμε. p: Αν πάρω 20, τότε διαβάζω πολύ. q: Αν δεν διαβάζω πολύ, δεν θα πάρω 10. r: Αν δεν πάρω 10, τότε δεν διαβάζω πολύ.

.

Βιβλιογραφία [1] Martin Davis. Μηχανές της Λογικής: Οι Μαθηματικοί και οι Απαρχές του Υπολογιστή. Μετάφραση: Στάθης Ζάχος. Εκδόσεις Εκκρεμμές, 2007. [2] Herbert Enderton. A Mathematical Introduction to Logic. Academic Press; 2 edition (January 5, 2001) 159

.