21/11/2016. Στατιστική Ι. 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα)

Σχετικά έγγραφα
Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα

3. Κατανομές πιθανότητας

Εισαγωγή στην Εκτιμητική

Δειγματικές Κατανομές

Στατιστικός έλεγχος υποθέσεων (Μέρος 2 ο ) 3/3/2017

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

X = = 81 9 = 9

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Ορισμός και Ιδιότητες

Πανεπιστήμιο Πελοποννήσου

14/11/2016. Στατιστική Ι. 7 η Διάλεξη (Βασικές συνεχείς κατανομές)

Θεωρητικές Κατανομές Πιθανότητας


1 x-μ - 2 σ. e σ 2π. f(x) =

ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Στατιστική Ι-Θεωρητικές Κατανομές Ι

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

Στατιστική Επιχειρήσεων Ι. Βασικές συνεχείς κατανομές

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Στατιστικός έλεγχος υποθέσεων (Μέρος 3 ο ) 10/3/2017

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.

Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Συμπερασματολογία

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

3. Κατανομές πιθανότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Εισαγωγή στην Ανάλυση Δεδομένων

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Στατιστική Επιχειρήσεων ΙΙ

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,,

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Στατιστική. Εκτιμητική

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

Θεωρία Πιθανοτήτων & Στατιστική

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)

ιωνυµική Κατανοµή(Binomial)

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Είδη Μεταβλητών. κλίµακα µέτρησης

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

Εισαγωγή στη Στατιστική

Transcript:

21/11/2016 Στατιστική Ι 8 η Διάλεξη (Κεντρικό Οριακό Θεώρημα) 1

2 Κεντρικό Οριακό Θεώρημα Αν Χ 1, Χ 2,, Χ Ν ανεξάρτητες τ.μ. που ακολουθούν την ίδια κατανομή με E X i = μ και Var X i = σ 2, τότε για μεγάλα N, κατά προσέγγιση, ισχύει: Χ = ή ισοδύναμα S N = N i=1 Ν N i=1 X i X i σ2 ~N μ, Ν ~N Nμ, Νσ 2

3 Παράδειγμα 1 ο Μας είναι γνωστό ότι τα μήλα στάρκιν που παράγονται στο οροπέδιο της Τεγέας έχουν μέσο βάρος μ=220 gr με τυπική απόκλιση σ=80 gr Στο συσκευαστήριο του τοπικού συνεταιρισμού τα μήλα συσκευάζονται σε κιβώτια των 60 μήλων και προωθούνται στα ψυγεία και την αγορά Μπορούμε να υπολογίσουμε ποιο ποσοστό (κατά προσέγγιση) των κιβωτίων περιέχει μήλα με μέσο βάρος μεταξύ 200 και 250 gr;

4 Παράδειγμα 2 ο Η ποσότητα ραδιενέργειας που δέχεται κάθε μέρα ένας ερευνητής είναι τ.μ. με μέση τιμή μ=0.1 μονάδες και τυπική απόκλιση σ=0.01 μονάδες Ποια είναι η πιθανότητα το συνολικό ποσό ραδιενέργειας που θα δεχθεί ο ερευνητής σε 100 ημέρες να ξεπερνάει τις 10.02 μονάδες;

Προσέγγιση Διωνυμικής κατανομής από την κανονική (Θεώρημα De Moivre Laplace) Αν X B(N, p), τότε για μεγάλα Ν (θεωρητικά Ν + ), κατά προσέγγιση, X~N Np, Np 1 p 5 Η προσέγγιση είναι ικανοποιητική αν Np 5 και Ν(1-p) 5

6 Παράδειγμα 3 ο Ο ιδανικός αριθμός πρωτοετών φοιτητών σε ένα πανεπιστημιακό τμήμα είναι 150 Το τμήμα, γνωρίζοντας από προηγούμενη εμπειρία ότι από τους φοιτητές που γίνονται δεκτοί για εγγραφή μόνο το 30% παρακολουθεί τα μαθήματα, κάνει δεκτούς 450 φοιτητές Ποια είναι η πιθανότητα από τους 450 πρωτοετείς φοιτητές να παρακολουθούν τελικά τα μαθήματα περισσότεροι από 150;

7 Παράδειγμα 4 ο Προκειμένου να εκτιμήσουμε το ποσοστό p των ατόμων που έχουν μια συγκεκριμένη ιδιότητα (π.χ. καπνίζουν, είναι άνεργοι, ψηφίζουν ένα συγκεκριμένο κόμμα, κλπ.) χρησιμοποιούμε ένα δείγμα μεγέθους n Πόσο πρέπει να είναι το n έτσι ώστε το ποσοστό των ατόμων του δείγματος που έχουν την ιδιότητα να διαφέρει, κατ απόλυτη τιμή, από το (άγνωστο) πραγματικό ποσοστό p λιγότερο από 1% με πιθανότητα τουλάχιστον 95%;

8 Παράδειγμα 5 ο (1) Ένας αστρονόμος θέλει να μετρήσει (σε έτη φωτός) την απόσταση μεταξύ του αστεροσκοπείου που εργάζεται και ενός άστρου Αν και εφαρμόζει μια αναγνωρισμένη μέθοδο μέτρησης, γνωρίζει ότι κάθε φορά που μετράει την απόσταση δεν παίρνει την πραγματική τιμή της αλλά μόνο μια εκτίμησή της Γι αυτό σχεδιάζει να κάνει έναν αριθμό μετρήσεων n, να υπολογίζει τη μέση τιμή τους και να τη χρησιμοποιήσει ως εκτίμηση της άγνωστης πραγματικής απόστασης d

9 Παράδειγμα 5 ο (2) Αν οι n μετρήσεις Χ 1, Χ 2,, Χ n, είναι ανεξάρτητες τ.μ. που ακολουθούν την ίδια (άγνωστη) κατανομή με μέση τιμή d (την άγνωστη πραγματική απόσταση) και διακύμανση 4 έτη φωτός, πόσες μετρήσεις πρέπει να κάνει ο αστρονόμος ώστε η μέση τιμή τους να διαφέρει κατ απόλυτη τιμή, από την άγνωστη πραγματική απόσταση d, λιγότερο από 0.5 έτη φωτός με πιθανότητα 95%;

10 Προσέγγιση της κατανομής Poisson από την κανονική Αν X P(λ), τότε για μεγάλα λ, κατά προσέγγιση, X~N λ, λ Η προσέγγιση είναι ικανοποιητική αν λ 10

11 Παράδειγμα 6 ο Σε μια καλλιέργεια κηπευτικών, έχει παρατηρηθεί ότι ο αριθμός των φυτών που δεν αναπτύσσονται (ξεραίνονται) είναι τ.μ. Που ακολουθεί την κατανομή Poisson με μέση τιμή λ=100 φυτά / καλλιεργητική περίοδο Ποια είναι η πιθανότητα σε μια καλλιεργητική περίοδο ο αριθμός των φυτών που δε θα αναπτυχθούν να είναι τουλάχιστον 120;

12 Κατανομή χ 2 με n βαθμούς ελευθερίας Αν Ζ i, i = 1, 2,..., n ανεξάρτητες τυποποιημένες κανονικές τ.μ., τότε η κατανομή Z 1 2 + Z 2 2 + Z n 2 ονομάζεται κατανομή «χι-τετράγωνο» με n βαθμούς ελευθερίας και συμβολίζεται με χ n 2 Για μεγάλα n προσεγγίζεται ικανοποιητικά από την Ν(n, 2n)

13 Κατανομή χ 2 με n βαθμούς ελευθερίας καμπύλη P(X>χ 2 n;a)=a

14 Η κατανομή t (ή Student) με n βαθμούς ελευθερίας Αν Z, S n ανεξάρτητες τ.μ. με Z N(0,1) και S n χ n2, τότε η κατανομή της τ.μ. Z S n n ονομάζεται κατανομή t (ή κατανομή Student) με n βαθμούς ελευθερίας και συμβολίζεται με t n Για μεγάλα n προσεγγίζεται ικανοποιητικά n από τη Ν 0, n 2

15 Η κατανομή t (ή Student) με n βαθμούς ελευθερίας καμπύλη

16 Η κατανομή F με n και m βαθμούς ελευθερίας Αν S m, S n δύο ανεξάρτητες τ.μ. με S n χ n 2 και S m χ m2, τότε η κατανομή της τ.μ. S n n S mm = m n S n S m ονομάζεται κατανομή F με n και m βαθμούς ελευθερίας και συμβολίζεται με F n;m

17 Η κατανομή F με n και m βαθμούς ελευθερίας καμπύλη