Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων

Σχετικά έγγραφα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ

5. ΚΕΝΤΡΟ ΒΑΡΟΥΣ 5.1 Η

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M)

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)

Ειδικά θέματα στη ροπή αδράνειας του στερεού.

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ

Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4

Παράδειγμα 1 P 1 P 4 P 2 P 3 A B Γ Δ. Παράδειγμα 2

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)

ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

14/2/2008 1/5 ΑΝΤΟΧΗ ΠΛΟΙΟΥ - ΤΥΠΟΛΟΓΙΟ ΓΙΑ ΕΞΕΤΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΠΕΡΙΟΔΟΥ

: συντελεστής που λαμβάνει υπόψη την θέση των ράβδων κατά τη σκυροδέτηση [=1 για ευνοϊκές συνθήκες, =0.7 για μη ευνοϊκές συνθήκες]

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Στοιχεία Μηχανών ΙΙ. Α. Ασκήσεις άλυτες. Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση

Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΙΙ

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

10,2. 1,24 Τυπική απόκλιση, s 42

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

Σιδηρές Κατασκευές ΙΙ

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

Ενότητα: Υπολογισμός διατμητικών τάσεων

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών

TEXNIKH MHXANIKH 7. ΚΑΜΨΗ, ΔΙΑΤΜΗΣΗ, ΣΤΡΕΨΗ, ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Λυγισμός Ευστάθεια (Euler και Johnson)

Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης ΘΕΜΑ: ΣΧΕΔΙΑΣΜΟΣ, ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΔΥΟ ΒΑΣΕΩΝ ΣΤΗΡΙΞΗΣ ΚΙΝΗΤΗΡΩΝ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ Μ.Ε.Κ.

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή

Ευστάθεια μελών μεταλλικών κατασκευών

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Proceedings of Machine Design Training

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:..

ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

Σχήμα 12-7: Σκαρίφημα άξονα με τις φορτίσεις του

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ

ΔΟΚΙΜΗ ΣΤΡΕΨΗΣ. Σχήμα 1 : Στρέψη ράβδου από ζεύγος δυνάμεων. Σχήμα 2 :

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

ΤΥΠΟΛΟΓΙΟ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

Νέα έκδοση προγράμματος STeel CONnections

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

Η τεχνική οδηγία 1 παρέχει βασικές πληροφορίες για τον έλεγχο εύκαµπτων ορθογωνικών πεδίλων επί των οποίων εδράζεται µοναδικό ορθογωνικό υποστύλωµα.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Π A N E Π I Σ T H M I O Θ E Σ Σ A Λ I A Σ TMHMA MHXANOΛOΓΩN MHXANIKΩN

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Δυνάμεις στήριξης και καμπτικές ροπές σε άτρακτο που δέχεται φόρτιση στον χώρο T Ε T Ε. A z. A y

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.

Transcript:

1 Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων Πρόβλημα 3.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η επιτρεπόμενη τάση σε όλες τις περιπτώσεις είναι σ επ =160 N/mm 2 ). Σε ποιό σημείο της διατομής πρέπει να ασκείται κάθε φορά η δύναμη Ν; Λύση: α) Η ράβδος (α) έχει κυκλική διατομή, με εμβαδό Α = (π/4) d 2 = (π/4) x 10 2 mm 2 = 78,5mm 2 Η εφελκυστική τάση που αναπτύσσεται στη ράβδο είναι N 5000N σ z = ----- = --------- = 63,7 N/mm 2 A 78,5mm 2 Ισχύει σ z < σ επ, άρα η ράβδος αντέχει. Η εφελκυστική δύναμη Ν πρέπει να ασκείται στο γεωμετρικό κέντρο της κυκλικής διατομής, γιατί αυτό είναι το κέντρο βάρους της. β) Η ράβδος (β) έχει ορθογώνια διατομή, για την οποία ισχύει Α = 5mm x 7mm = 35mm 2 N 5000N σ z = ---- = -------- = 142,9 N/mm 2 A 35mm 2 Ισχύει σ z < σ επ, άρα η ράβδος αντέχει. Η εφελκυστική δύναμη πρέπει να ασκείται στο γεωμετρικό κέντρο της ορθογώνιας διατομής. γ) Η ράβδος (γ) έχει σύνθετη διατομή σχήματος Τ. Χωρίζουμε τη διατομή σε δύο μέρη (1) και (2), με διαστάσεις α 1, β 1 και α 2, β2 αντίστοιχα, και εμβαδά Α 1 και Α 2. Tα κέντρα των δύο μερών συμβολίζονται στο σχήμα με K 1 και Κ 2, αλλά αυτός ο συμβολισμός δεν μπορεί να χρησιμοποιηθεί για τον υπολογισμό του γενικού κέντρου βάρους G. Πρέπει πρώτα να διαλέξουμε ένα βολικό σύστημα αξόνων (εδώ το x-y) και να βρούμε τις συντεταγμένες των Κ 1, Κ 2 (βλ. σχήμα). Tα εμβαδά των μερών είναι: Κάθετη τομή σε μεγέθυνση

2 A 1 = α 1 β 1 = 8mm x 3mm = 24mm 2 A 2 = α 2 β 2 = 3mm x 10mm = 30mm 2 Το ολικό εμβαδό είναι Α=Α 1 +A 2 = 24mm 2 +30mm 2 = 54mm 2 Η εφελκυστική τάση είναι: N 5000N σ z = ----- = ------- = 92,6 N/mm 2 A 54mm 2 Iσχύει σ z < σ επ, άρα η ράβδος αντέχει. Συντεταγμένη του Κ1: y 1 =OK 1 =β 1 /2=1,5mm Συντεταγμένη του Κ2: y 2 =OK 2 =β 1 +(β 2 /2)= =8mm Η εφελκυστική δύναμη πρέπει να εφαρμόζεται πάνω στο κέντρο βάρους G. Η θεωρία διδάσκει ότι οι συντεταγμένες του G δίνονται απ' τους τύπους z 1 A 1 +z 2 A 2 y 1 A 1+y 2 A 2 z G = ------------ y G = ------------ (3-2) A 1 +A 2 A 1 +A 2 Στην περίπτωσή μας ισχύει z 1 = z 2 = 0 άρα z G = 0 Για τη συντεταγμένη y G ισχύει y 1 A 1 +y 2 A 2 1,5mm x 24mm 2 + 8mm x 30mm 2 y G = ----------- = ------------------------------ = 5,11mm A 1 +A 2 54mm 2 Επομένως η αξονική δύναμη Ν πρέπει να ασκείται στο ΚΒ, που απέχει 5,11mm από το σημείο 0. Πρόβλημα 3.2 Να βρεθεί η διατμητική τάση για τις διατομές του σχήματος. Η διατμητική δύναμη σε όλες τις περιπτώσεις, είναι Q = 5000Ν. Στις περιπτώσεις α, β, η διατομή είναι του δοκαριού, ενώ στην γ η διατομή είναι αυτή της συγκόλλησης Σ. Επίσης να βρεθεί από ποιό σημείο πρέπει να περνά η δύναμη Q έτσι ώστε να μην αναπτύσσεται στρέψη στη διατομή. Λύση: α) Για την κυκλική διατομή της περίπτωσης α, το εμβαδό διάτμησης είναι Α = (π/4) d 2 = (π/4) x 10 2 mm 2 = 78,5mm 2 άρα η μέση διατμητική τάση είναι Q 5000N τ δ = ---- = --------- = 63,7 N/mm 2 A' 78,5mm 2 Το κέντρο διάτμησης απ' όπου πρέπει να περνάει η Q είναι το κέντρο του κύκλου της διατομής Σχ. 3.2.α β) Για τη διατομή σχήματος Ι του παρακάτω σχήματος, το εμβαδό διάτμησης είναι το εμβαδό του κατακόρυφου κορμού ΕΖ:

3 Α' = 5mm x 100mm = 500mm 2 άρα η μέση διατμητική τάση είναι Q 5000N τ δ = --- = --------- = 10N/mm 2 A' 500mm 2 Το κέντρο διάτμησης απ'όπου πρέπει να περνάει η Q είναι το γεωμετρικό κέντρο του I. γ) To σύστημα των δύο συγκολλήσεων Σ που στερεώνουν το δοκάρι I αποτελεί ειδική περίπτωση, γιατί ταυτίζεται μεν με τη διατομή με λεπτά τοιχώματα, αλλά κανένα από τα τοιχώματα δεν είναι παράλληλο προς τη διατμητική δύναμη Q. Σ'αυτή την περίπτωση η θεωρία δίνει για το εμβαδό διάτμησης τον τύπο Α' = 0,67 Α όπου Α = το πραγματικό εμβαδό των τοιχωμάτων. Άρα ισχύει Α' = 0,67 (2 x 3mm x 50mm) = 200mm 2 και η διατμητική τάση είναι Q 5000N τ δ = ----- = -------- = 25N/mm 2 A' 200mm 2 Το κέντρο διάτμησης απ' όπου πρέπει να περνάει η Q είναι το γεωμετρικό κέντρο του συστήματος των δύο συγκολλήσεων. Πρόβλημα 3.3 Να βρεθούν τα μεγέθη Μ b, Ι, y μεγ, W, σ bμεγ για τα δοκάρια στα παρακάτω σχήματα (έχουν όλα την ίδια κάθετη δύναμη Q=500N και το ίδιο μήκος L=200mm, αλλά διαφορετικές διατομές). Οι υπολογισμοί να γίνουν για μιά διατομή κοντά στην πάκτωση Α.

4 Λύση: α) Στο σημείο Α η καμπτική ροπή ισούται με Μ b = Q L = 500N x 200mm = 100.000 Nmm Με τον τύπο της ροπής αδράνειας για κυκλική διατομή (πίν. 3.1) έχουμε π I x = ---- d 4 0,05 x 10 4 mm 4 = 500mm 4 64 Παρατηρώντας το σχήμα καταλαβαίνουμε ότι το μέγιστο ύψος είναι y μεγ = d/2 = 10mm / 2 = 5mm Είτε από τον πίνακα 3.1 είτε από τον ορισμό W x =I x /y μεγ παίρνουμε για τη ροπή αντίστασης π W x = ---- d 3 ~ 0,1 x 10 3 mm 3 = 100mm 3 32 Η καμπτική τάση είναι M b 100.000 N mm σ bμεγ = ---- = -------------- = 1000 N/mm 2 W x 100mm 3 Παρατηρούμε ότι αυτή η τάση είναι πάρα πολύ μεγάλη (οι επιτρεπόμενες τάσεις κυμαίνονται στην περιοχή 60..200Ν/mm 2 δηλαδή η διάμετρος Φ10 είναι πολύ μικρή για τη δύναμη Q = 500Ν που φορτίζει τη δοκό). β) Για το δοκάρι του σχήματος 3.3.β, με ορθογώνια διατομή, ισχύει η ίδια τιμή της καμπτικής ροπής: Μ b = Q L =... = 100.000 Nmm Στον υπολογισμό των I x, y μεγ, W x, όμως, αυτό το πρόβλημα είναι λίγο δυσκολότερο από εκείνο της κάμψης κυλινδρικής δοκού. Ο πίνακας 3.1 δίνει βέβαια τους τύπους Ι=bh 3 /12, W=bh 2 /6, αλλά δημιουργείται το πρόβλημα: «Ποιά από τις διαστάσεις α=5mm και β=7mm θα βάλουμε να παίξει το ρόλο του h; Το y μεγ θα είναι το μισό του α ή το μισό του β;» Το σχηματάκι του πίνακα 3.1 είναι εφοδιασμένο με μια δύναμη Q που δημιουργεί την κάμψη, και έτσι καταλαβαίνουμε ότι ισχύουν οι

5 κανόνες: H διάσταση που εμφανίζεται στους τύπους των I x, W x να είναι υψωμένη στο τετράγωνο ή στον κύβο, πρέπει να είναι παράλληλη στην εγκάρσια δύναμη Q που προκαλεί την κάμψη. Το μέγιστο ύψος y μεγ ξεκινάει από το κέντρο βάρους της διατομής, καταλήγει στο πιο απομακρυσμένο σημείο της, και είναι παράλληλο στην εγκάρσια δύναμη Q που προκαλεί την κάμψη. Συμπεραίνουμε λοιπόν ότι το ρόλο του h θα τον παίξει το β, και το ρόλο του y μεγ θα τον παίξει το β/2. Η ροπή αδράνειας είναι I x =bh 3 /12=αβ 3 /12= 5mm x 7 3 mm 3 / 12 = 142,9mm 4 Το μέγιστο ύψος είναι y μεγ = β/2 =3,5mm Η ροπή αντίστασης είναι W x = I/y μεγ = 142,9mm 4 / 3,5mm = 40,8mm 3 Η καμπτική τάση είναι M b 100.000 Nmm σ b,μεγ = ---- = ------------- 2450 N/mm 2 W x 40,8mm 3 που και πάλι είναι υπερβολικά μεγάλη. γ) Έστω ότι ζητείται να γίνουν οι ίδιοι υπολογισμοί για τη συγκόλληση Σ 1 του δοκαριού με το κατακόρυφο τοίχωμα. Η συγκόλληση Σ 1 αποτελείται απο δύο μέρη α, β. Τα κέντρα βάρους των μερών Κ α, K β βρίσκονται στο ίδιο ύψος, άρα έχουμε το δικαίωμα να προσθέσουμε τις ροπές αδράνειας των μερών: I ολ = I α + I β Επειδή τα μέρη α,β είναι ορθογώνια, άρα Ι α = I β = bh 3 /12 = 3mm x 50 3 mm 3 / 12 = 31.250mm 4 και Ι ολ =... = 2 x 31.250mm 4 = 62.500mm 4 Για το μέγιστο ύψος ισχύει y μεγ = h / 2 =... = 25mm Για τη ροπή αντίστασης σε κάμψη ισχύει W ολ = I ολ / y μεγ = 62.500mm 4 / 25mm = 2.500mm 3 Η καμπτική ροπή είναι Μ b = Q L =... = 100.000 Nmm Η καμπτική τάση είναι M b 100.000 Nmm σ bμεγ = ---- = ------------- = 40 N/mm 2 W ολ 2500mm 3 Aυτή η ροπή είναι μικρότερη από τις επιτρεπόμενες (σ επ 150 N/mm 2 για συγκολλήσεις), άρα η συγκόλληση αντέχει.

δ) Η συγκόλληση Σ 2 αποτελείται επίσης από δύο μέρη α,β, των οποίων όμως τα κέντρα βάρους Κ α, K β δεν βρίσκονται στο ίδιο ύψος. Παρατηρούμε ότι τη συγκόλληση Σ 2 μπορούμε να τη θεωρήσουμε ως διαφορά των δύο ορθογωνίων ΑΒΓΔ και Α'Β'Γ'Δ', που τα κέντρα τους συμπίπτουν και τα δύο με το G, άρα έχουμε το δικαίωμα να αφαιρέσουμε τις ροπές αδράνειάς τους: Ι ολ = I εξ - I εσ = bh 3 /12 - bh 3 /12 = =(25mm x 56 3 mm 3-25mm x 50 3 mm 3 ) / 12 = = 105.450mm 4 6 Το y μεγ πρέπει να υπολογισθεί με βάση το εξωτερικό ορθογώνιο, γιατί συμβολίζει την απόσταση του πιό απομακρυσμένου σημείου απ'το κέντρο βάρους: y μεγ = H/2 = 56mm/2 =28mm Η ροπή αντίστασης σε κάμψη είναι ίση με W ολ = I ολ /y μεγ = 105.450mm 4 / 28mm = 3.766mm 3 Η καμπτική τάση είναι M b 100.000 Nmm σ bμεγ = ----- = ------------------ = W ολ 3.766 mm 3 = 26,5 N/mm 2 Και αυτή η συγκόλληση αντέχει. Σχήμα: Στοιχεία για τον υπολογισμό των Ι χ, W x στο πρόβλ. 3.3.δ Πρόβλημα 3.4 Να βρεθεί η τάση λόγω στρέψης σε δοκάρι με στρεπτική ροπή Μt= =100 Nm, αν η διατομή του δοκαριού είναι μία απ' αυτές των παρακάτω σχημάτων. (Στο σχ. 3.4.α φαίνεται η πρώτη περίπτωση, στην οποία η διατομή είναι κυκλική). Λύση : α) Η ροπή αντίστασης σε στρέψη για κυκλική διατομή είναι W t 0,2 d 3 = 0,2 x 20 3 mm 3 = 1.600mm 3 και η τάση λόγω στρέψης είναι M t 100.000 Nmm τ t = ------ = ------------- = 62,5 N/mm2 W t 1.600mm 3 Σχήμα 3.4.α β) Αν η διατομή είναι δακτυλιοειδής όπως στο σχ. 3.4.β, τότε το

7 δοκάρι έχει το μισό βάρος απ' ό,τι το συμπαγές στρογγυλό του σχ. 3.4.α. (Πόσο εμβαδόν έχει το συμπαγές του σχημ. 3.4.α και πόσο το κούφιο του σχημ. 3.4.β;) Η ροπή αντίστασης σε στρέψη είναι (20 4-14 4 )mm 4 W t 0,2 ---------------- = 1.216mm 3 20mm (δηλαδή το δοκάρι έχει χάσει μόνο το 25% της αντοχής του, εν σχέσει με το Wt = 1.600mm 3 του συμπαγούς) Η τάση λόγω στρέψης είναι M t 100.000 Nmm τ t = ---- = ------------- = 82,2 N/mm 2 W t 1.216mm 3 Σχήμα 3.4.β Πρόβλημα 3.5 Να ελεγχθεί αν ο στύλος του σχήματος αντέχει σε λυγισμό, σε δύο περιπτώσεις: α) όταν L=400mm, β) όταν L=800mm. Το υλικό κατασκευής του δοκαριού είναι χάλυβας St37. Λύση: Λόγω του τρόπου στήριξης, το ελεύθερο μήκος λυγισμού είναι L κ =2L (βλ. σχ. 3.5.3, περίπτωση Ι (πρόβολος)) Άρα L κ =2L=...=800mm ή 1600mm αντίστοιχα. U30 F=5.000 N L Από τον πίνακα τυποποιημένων διαστάσεων των δοκών σχήματος U (πίν. Τ6 τυπολογίου εργαστηρίου) βλέπουμε ότι η δοκός U30 έχει: - εμβαδό διατομής Α=5,44cm 2 =544mm 2 - μικρότερη ακτίνα αδράνειας i min =i y =0,99cm=9,9mm Ο βαθμός λυγηρότητας είναι λ=l κ /i min =...=80 ή 160 αντίστοιχα. Το όριο μεταξύ των περιοχών ισχύος των τύπων Euler και Tetmajer είναι λ ε =100 (βλ. πίν. 3.3). Η θλιπτική τάση είναι σ = F/A = 5000N / 544mm 2 = 9,2 N/mm 2 Στην πρώτη περίπτωση ισχύει λ=80, άρα λ<λ ε =100, άρα η κρίσιμη τάση λυγισμού πρέπει να υπολογισθεί από τον τύπο του Tetmajer (βλ. τύπο (3-11) και πίν. 3.3 για St37): σκ = (310 1,14 λ) N/mm² = (310 1,14*80) N/mm² = 218,8 N/mm² Σύμφωνα με τον τύπο (3-12) λαμβάνεται επιθυμητός συντελεστής ασφάλειας σε λυγισμό ίσος με Sκ = 2,0 Πρέπει να ισχύει (βλ. τύπο (3-13)): σz < (σκ/sκ) => 9,2 N/mm² < (218,8 / 2,0) N/mm² => 9,2 < 109,4 Η ανισότητα ισχύει, άρα η δοκός αντέχει σε λυγισμό.

8 Στη δεύτερη περίπτωση ισχύει λ=160, άρα λ>λ ε =100, άρα η κρίσιμη τάση λυγισμού πρέπει να υπολογισθεί από τον τύπο του Euler (βλ. τύπο (3-11) και πίν. 3.3 για St37): σκ = π 2 Ε / λ 2 = 3,14 2 * 210.000 N/mm 2 / 160 2 = 81 N/mm² Σύμφωνα με τον τύπο (3-12) λαμβάνεται επιθυμητός συντελεστής ασφάλειας σε λυγισμό ίσος με Sκ = 6,0 (στους μεγαλύτερους βαθμούς λυγηρότητας πρέπει να εκλέγεται μεγάλη τιμή του επιθυμητού συντελεστή ασφάλειας) Πρέπει να ισχύει (βλ. τύπο (3-13)): σz < (σκ/sκ) => 9,2 N/mm² < (81 / 6) N/mm² => 9,2 < 13,5 Η ανισότητα ισχύει, άρα και σ' αυτή την περίπτωση η δοκός αντέχει σε λυγισμό.