Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Σχετικά έγγραφα
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Έλεγχος Ανεξαρτησίας x2 του Pearson x2 του Pearson

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

5. Έλεγχοι Υποθέσεων

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

3. Κατανομές πιθανότητας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική. Εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Συμπερασματολογία

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Στατιστικοί έλεγχοι του Χ 2

Πανεπιστήμιο Πελοποννήσου

Στατιστική Ι. Ενότητα 7: Κανονική Κατανομή. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Στατιστική Συμπερασματολογία

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Στατιστική Συμπερασματολογία

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Κεφάλαιο 9. Έλεγχοι υποθέσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

Έλεγχοι Χ 2 (Μέρος 1 ο ) 28/4/2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική Συμπερασματολογία

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

Τυχαία μεταβλητή (τ.μ.)

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

Εισαγωγή στη Μη Παραμετρική Στατιστική

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Εξαρτημένα δείγματα (εξαρτημένες μετρήσεις)

5.1 Ο ΕΛΕΓΧΟΣ SMIRNOV

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Γ. Πειραματισμός Βιομετρία

Θεωρητικές Κατανομές Πιθανότητας

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

Ορισμός και Ιδιότητες

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 24/2/2017

Στατιστική Συμπερασματολογία

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Δειγματικές Κατανομές

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

ΠΛΗ 12 - Ιδιοτιμές και ιδιοδιανύσματα

Θεωρία Πιθανοτήτων & Στατιστική

X = = 81 9 = 9

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Γ. Πειραματισμός - Βιομετρία

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

Transcript:

Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον τρόπο της δειγματοληψίας που επιλέξαμε το δείγμα μας με βάση την διάταξη και την δυνατότητα συνδυασμών των κελιών. Επομένως μπορούμε να έχουμε. Μοναδιαίους πίνακες (μόνο γραμμές) E. Πίνακες συνάφειας (συνδυαζόμενες γραμμές και στήλες) 3. Ανεξάρτητους μονοδιάστατους πίνακες (ανεξάρτητες γραμμές) Ανάλογα με τα παραπάνω σχήματα δειγματοληψίας έχουμε και τα αντίστοιχα μοντέλα

Δειγματοληψία Posso Παρατηρούμε ανεξάρτητες τ.μ. με κατανομή Posso και οι τιμές που παίρνουν οι τ.μ. Επομένως έχουμε μοντελοποίηση μονοδιάστατου πίνακα με μορφή Μεταβλητές Υ Υ Χ Μεταβλητή Χ Χ Χ3 3 3 : : k συχνότητες Μεταβλητή Χ 3 Μετατροπή δισδιάστατου σε μονοδιάστατο πίνακα 3

Πολυωνυμική Δειγματοληψία Παίρνουμε τυχαία άτομα και για το καθένα καταγράφουμε σε ποια κατηγορία Χ, Χ,, Χ I, και Υ, Υ,, Υ J, ανήκουν. Έτσι είναι το πλήθος των ατόμων στο κελί (Χ I, Υ J ) Επομένως έχουμε μοντελοποίηση πίνακα διπλής εισόδου με μορφή Συνδιασμός (Χ I, Υ J ) Μεταβλητές Υ Υ Χ Χ Χ3 3 3

Ανεξάρτητη Πολυωνυμική Παίρνουμε τ.δ. μεγέθους. από την κατηγορία Χ, τ.δ. μεγέθους. από την κατηγορία Χ,, και μετράμε σε κάθε κατηγορία πόσα άτομα ανήκουν στην Υ, Υ,, Υ J, και έτσι έχουμε πίνακα συνάφειας (ΙxJ). Επομένως έχουμε μοντελοποίηση ανεξάρτητων μονοδιάστατων πινάκων με μορφή Μεταβλητές Υ Υ ανεξάρτητα Χ Χ Χ3 3 3

Σχέση Πολυωνυμικής και Posso Δειγματοληψίας Ένα Posso μοντέλο δειγματοληψίας θεωρεί τις μετρήσεις Υ, ανεξάρτητες τ.μ. με μέσο μ. Η από κοινού σ.π.π. των πιθανών αποτελεσμάτων ισούται με το γινόμενο των πιθανοτήτων P(Υ = ) για τα κελιά (I,J) που ακολουθούν κατανομή Posso με P Y e j!

Σχέση Πολυωνυμικής και Posso Δειγματοληψίας Όταν το μέγεθος του δείγματος είναι γνωστό αλλά τα αθροίσματα (γραμμών ή στηλών) άγνωστα τότε πολυωνυμικό μοντέλο δειγματοληψίας εφαρμόζεται. Τα κελιά (I,J) είναι τα πιθανά αποτελέσματα με σ.π.π. να ισούται με..! j

Σχέση Πολυωνυμικής και Posso Δειγματοληψίας Ας υποθέσουμε ότι σε κάθε επίπεδο της Χ, έστω Χ =, διαθέτουμε, παρατηρήσεις. Έστω επίσης ότι οι μετρήσεις της Υ σε ένα επίπεδο της Χ είναι ανεξάρτητες από αυτές σε ένα άλλο επίπεδο της Χ, έχοντας συνάρτηση πυκνότητας πιθανότητας (π,..., π J ). Τότε για κάθε γραμμή έχουμε ένα διαφορετικό πολυωνυμικό πείραμα. Οι μετρήσεις, j =,..., J έχουν την πολυωνυμική κατανομή:.! j! j Όταν τα δείγματα σε διαφορετικές τιμές της Χ είναι ανεξάρτητα τότε η από κοινού κατανομή για ολόκληρο το δείγμα είναι το γινόμενο των πολυωνυμικών κατανομών. Η δειγματοληψία αναφέρεται σαν ανεξάρτητη πολυωνυμική ή και γινόμενο πολυωνυμικής δειγματοληψίας. j

Πρόταση Αν έχουμε δειγματοληψία Posso με e f! τότε η δεσμευμένη κατανομή των όταν πολυωνυμική με f!! E και σ.π.π. είναι

Απόδειξη Γνωρίζουμε ότι e e f f f!!!!

Με τελική μορφή Απόδειξη f αφού άθροισμα ανεξάρτητων Posso είναι Posso με!! f ~ Pos Pos Οι πιθανότητες π της πολυωνυμικής είναι

Πρόταση Αν το τυχαίο δείγμα =(,,, k ) ακολουθεί πολυωνυμική κατανομή με παραμέτρους, p, p,, p k τότε η στατιστική συνάρτηση X k * k E E ή ή E ή ακολουθεί ασυμπτωτικά ( ) την x κατανομή με κ- βαθμούς ελευθερίας E

Θεώρημα Έστω τυχαίο δείγμα =(,,, k ) ακολουθεί πολυωνυμική κατανομή με παραμέτρους, π, π,, π k. Έστω η μηδενική υπόθεση ότι σε μια πολυωνυμική κατανομή με κ- κελιά οι παράμετροι π παίρνουν συγκεκριμένες τιμές αλλά άγνωστες. Αν η Η 0 είναι αληθής τότε οι αναμενόμενες τιμές σε κάθε ένα κελί από τα κ θα ισούται με e. Τότε η στατιστική συνάρτηση X k k * ~ xk ακολουθεί ασυμπτωτικά ( ) την x κατανομή με κ- βαθμούς ελευθερίας Τεστ καλής προσαρμογής

Δοκιμασίες καλής προσαρμογής Στην μελέτη των παραμετρικών διαδικασιών για την εκτίμηση και έλεγχο υποθέσεων, οι κατανομές θεωρούνται γνωστές και η προσοχή μας στέφεται στην εκτίμηση μιας ή περισσοτέρων παραμέτρων της κατανομής ή στον έλεγχο της υποθέσεως που αφορά σύνολο τιμών της υπό-εξέτασης παραμέτρου. Σύμφωνα με το πρόβλημα, θεωρούμε σύνολο ανεξάρτητων παρατηρήσεων X, X,., X, τ.μ. με συνάρτηση κατανομής F(x; θ), όπου θ=(θ, θ,., θ s ) και μορφή της F άγνωστη. Θεωρούμε την δοκιμασία H x; F ; 0 : F 0 x

Δοκιμασίες καλής προσαρμογής όπου F 0 έχει συγκεκριμένη μορφή και θ διάνυσμα παραμέτρων μη καθορισμένο. Ένας απλός τρόπος κατασκευής δοκιμασιών καλής προσαρμογής είναι η ομαδοποίηση δεδομένων κατά τέτοιο τρόπο ώστε η υπόθεση προσαρμογής να ισοδυναμεί με υπόθεση που αφορά πολυωνυμικές πιθανότητες. Αυτό επιτυγχάνεται με διαίρεση του εύρους των δυνατών κλάσεων της τ.μ. Χ σε κ-πλήθος αμοιβαίως αποκλειόμενες κλάσεις.

Δοκιμασίες καλής προσαρμογής Υποθέτουμε ότι τυχαίο δείγμα -παρατηρήσεων X, X,., X, εξήφθη από την τ.μ. Χ και ότι η είναι τ.μ. που παριστάνει τον αριθμό των κ-παρατηρήσεων που κατατάσσονται στην -οστη κλάση. Θεωρούμε την υπόθεση προσαρμογής Η 0 απλή, επομένως η συνάρτηση κατανομής είναι πλήρως ορισμένη. Άρα η συνάρτηση κατανομής δεν εξαρτάται από παραμέτρους αφού είναι γνωστές κάτω από την Η 0 οπότε F 0 (x;θ)= F 0 (x). Κάτω από την υπόθεση Η 0 μπορούμε να υπολογίσουμε την πιθανότητα μιας παρατήρησης να καταταγεί σε κάθε μια από τις κλάσεις και να σημειώσουμε τις πιθανότητες αυτές ως p 0, p 0,, p k0.

Δοκιμασίες καλής προσαρμογής Από την ανεξαρτησία των παρατηρήσεων προκύπτει ότι κάτω από την H 0 οι έχουν από κοινού την πολυωνυμική κατανομή που δίνεται από την έκφραση..,,..., k H0! p p 0 Έστω F(x) η αληθής συνάρτηση κατανομής της τ.μ. Χ με εναλλακτική στην υπόθεση προσαρμογής την F(x) F 0 (x) για κάθε x. Αν p η αληθής πιθανότητα μιας παρατήρησης να καταταγεί στην -οστή κλάση, η δοκιμασία προσαρμογής με βάση τις συχνότητες ισοδυναμεί με δοκιμασία απλής υπόθεσης που αφορά πολυωνυμικές πιθανότητες.!

Δοκιμασίες καλής προσαρμογής με δοκιμασία H 0 : p = p 0 έναντι H : p p 0 (=,,,κ) Κάτω από την μηδενική υπόθεση H 0 η τ.μ. έχει αναμενόμενη τιμή p 0 και συνεπώς αν οι απόλυτες διαφορές -p 0 είναι μεγάλες τότε παράγει μαρτυρία κατά της υπόθεσης H 0 Για την διαδικασία αυτή κατάλληλο τεστ προτείνεται το x με εκφραση X p k 0 * ~ xk p 0

Άσκηση Ζάρι το ρίχνουμε 60 φορές και παίρνουμε τα παρακάτω αποτελέσματα Αποτελέσματα 3 4 5 6 Η 0 είναι,,...,6 6 Αναμενόμενες συχνότητες e Έλεγχος συχνότητα 3 9 8 5 4 60 0 6 Αποτελέσματα 3 4 5 6 συχνότητα 3 9 8 5 4 Αναμενόμενες 0 0 0 0 0 0

Άσκηση 30 9 0 4 0 X*... 5.5 0 0 0 Από τους πίνακες της x κατανομή με κ- β.ε (κ-=5) έχουμε x 5,0.05. αποδέχομαι 5.5>. άρα απορρίπτω την Η 0 απορρίπτω. 5.5

Θεώρημα Έστω τυχαίο δείγμα =(,,, k ). Για μεγάλο ( ) εφόσον ισχύει η αρχική υπόθεση Η 0 η στατιστική συνάρτηση όπου m= από εκθετική ή m= από κανονική * ~ m k k k x X

Απόδειξη k k k k k k k k X *

Άσκηση Έχουμε Ώρες λειτουργίας 0-5 5-30 30-45 45-50 τρανζίστορ 50 55 3 Τα δεδομένα προέρχονται από εκθετική κατανομή? Εκθετική κατανομή: f x e x, 0

Απάντηση Η παράμετρος λ της εκθετικής είναι άγνωστη. Θα πρέπει να υπολογισθεί από τον υπολογισμό του μέσου: 0 xe x dx x f x 50*7.5.5*35 37.5* 3 0 0 50* Μέσος διαστήματος 0.0457 x

Απάντηση Η αθροιστική συνάρτηση F(x) δίνεται από τον τύπο: Άρα έχουμε F x F x e e x x e 0.0457x Οι θεωρητικές πιθανότητες εκτιμούνται από: p p p p 3 4 P P P 0 X 5 F5 5 X 30 F30 F5 30 X 45 F45 F30 p p p 3 0.8 e 0.0457*5 0.49 0.496 0.6

Απάντηση Επομένως οι θεωρητικές παρατηρήσεις δίνονται από την σχέση: x p 0*0.496 59.5 Ώρες λειτουργίας 0-5 5-30 30-45 45-50 τρανζίστορ 50 55 3 Θεωρητικές 59.5 9.98 5. 5.37 50 59.5 5.37 X*... 0 0 7. Με βάση την διαπίστωση ότι η εκθετική κατανομή έχει μια παράμετρο, οι βαθμοί ελευθερίας γίνονται κ--m=4--= x 0.59 7.<0.59 άρα αποδέχομαι την Η 0,0.05

Άσκηση Το πλήθος των οχημάτων που θέλει να στρίψει αριστερά σε φανάρι καταμετριέται 0 φορές με Πλήθος οχημάτων 0 3 4 συχνότητες 30 3 46 0 Μπορούμε να ισχυριστούμε ότι η παραπάνω εμπειρική κατανομή προέρχεται από πληθυσμό που ακολουθεί την Posso?

Απάντηση Έχουμε Η 0 : πληθυσμός ~ Posso Η : πληθυσμός διάφορη από Posso Η σ.π.π. της Posso κατανομής δίνεται από την σχέση Πλήθος οχημάτων P X x e x x! 0 3 4 συχνότητες 30 3 46 0 Πιθανότητες 0.5 0.35 0.3 0.55

Απάντηση 35. 4*... 0*30 0 x x X E 0.55 0.36.35 0.35* 0.35.35 0.59* 0.59 0!! 0 3 3 0.35 0 p p p p X P p X P p e x e X P p x x x X P x X P Αναγωγική σχέση

Απάντηση X * Πλήθος οχημάτων 0 3 4 συχνότητες 30 3 46 0 Πιθανότητες 0.59 0.35 0.36 0.55 Εκτιμήσεις 3 4 9 8 p 0*0.59 k Πλήθος οχημάτων 3 0 3 4 συχνότητες 30 3 46 0 Πιθανότητες 0.59 0.35 0.36 0.55 Εκτιμήσεις 3 4 9 8 /p 9 4.4 73 8

Απάντηση k * X 34.4 0 4.4 x4,0.05 5.99 4.4>5.99 άρα απορρίπτω την Η 0

Άσκηση Ένα τυχαίο δείγμα 500 επιχειρήσεων έδειξε ότι 0 έχουν έντονη δραστηριότητα στο εξωτερικό, 00 μερική και 80 ελάχιστη. Μπορούμε να ισχυριστούμε ότι τα πραγματικά ποσοστά είναι 8%, 37% και 35% αντίστοιχα (α=0.05)

Απάντηση Για να ελέγξουμε αν οι παρατηρούμενες αναλογίες 0 500 00 500 80, 500 συμπίπτουν με τις θεωρητικές 0.8, 0.37, 0.35 εφαρμόζουμε το τέστ καλής προσαρμογής x Έχουμε Η 0 : p =0.8, p =0.37, p 3 =0.35,, Η : κάποιο p διάφορο της θεωρητικής

Απάντηση θεωρητικές δραστηριότητα έντονη μερική Ελάχιστη Συχνότητες (f ) 0 00 80 Πιθανότητες (p ) 0.8 0.37 0.35 Εκτιμήσεις 40 85 75 μ =p =500*p k 0 00 80 * X 500 40 85 75 4. x3,0.05 5.99 4.<5.99 άρα αποδέχομαι την Η 0

Απάντηση Μπορούμε να ισχυριστούμε ότι η πραγματική αναλογία των επιχειρήσεων με έντονη δραστηριότητα είναι 30% (α=0.0)? Η 0 : p=0.30 Η : p 0.30 δίπλευρο τεστ z a z a / z 0.005 z0.995 p 0 500 0.4 0.3* 0.7 / 0.3.575* 500.575 [0.79,3.05] Το 0.4 δεν ανήκει στο διάστημα άρα απορρίπτεται η Η 0

Απάντηση Μπορούμε να ισχυριστούμε ότι τα ποσοστά δεν διαφέρουν μεταξύ τους (α=0.05)? Αν δεν διαφέρουν τότε p =p =p 3 =/3. Επομένως έχουμε Η 0 : p =p =p 3 =/3 Η : κάποιο p /3 δραστηριότητα έντονη μερική Ελάχιστη Συχνότητες (f ) 0 00 80 Πιθανότητες (p ) /3 /3 /3 Εκτιμήσεις 500/3 500/3 500/3

Απάντηση X k * 0.8 x3,0.05 5.99 0.8>5.99 άρα απορρίπτω την Η 0