ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

Σχετικά έγγραφα
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

Προσομοίωση βαρύτητας

Ενέργεια στην περιστροφική κίνηση

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

Αγώνες αυτοκινήτου σε πίστα

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Υπολογισμός ροπής αδράνειας. Για συνεχή κατανομή μάζας έχουμε:

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Ειδικά θέματα στη ροπή αδράνειας του στερεού.

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

Διαγώνισμα Μηχανική Στερεού Σώματος

Ροπή αδράνειας σύνθετων και λειψών στερεών

Σύστημα σωμάτων vs Στερεό σώμα

Κίνηση στερεών σωμάτων - περιστροφική

Κεφάλαιο 7. Στροφορμη Δυναμικη Στερεου Σωματος {Στροφική και Μεταφορική Κίνηση Στερεού Σώματος, Αρχή Διατήρησης Στροφορμής}

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μηχανική Στερεού Σώματος

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

mu R mu = = =. R Γενική περίπτωση ανακύκλωσης

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Μερικοί υπολογισμοί ροπής αδράνειας.

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( ( videos/bulletproof-balloons) n=0

w w w.k z a c h a r i a d i s.g r

β) Από τον νόμο του Νεύτωνα για την μεταφορική κίνηση του κέντρου μάζας έχουμε: Επομένως το κέντρο μάζας αποκτάει αρνητική επιτάχυνση σταθερού μέτρου

4Q m 2c Δθ 2m = 4= Q m c Δθ m. m =2m ΘΕΡΜΙΔΟΜΕΤΡΙΑ

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Physics by Chris Simopoulos

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Τα θέματα συνεχίζονται στην πίσω σελίδα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

Θεωρητική μηχανική ΙΙ

w w w.k z a c h a r i a d i s.g r

ΦΥΣΙΚΗ Ι. ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΩΜΑΤΟΣ Ισορροπία Σωματιδίου Στατική Ισορροπία Στερεού Σώματος

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

Λύσεις 1ης σειράς ασκήσεων

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

Μηχανική του στερεού σώματος

F r. 1

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/05) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Παρατηρήσεις στην μηχανική στερεού σώματος

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

3.3. Δυναμική στερεού.

Διαγώνισμα: Μηχανική Στερεού Σώματος

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

10 ο Μάθημα Δυναμική Περιστροφικής κίνησης. Δυναμική περιστροφής γύρω από ακλόνητο άξονα Περιστροφή γύρω από κινούμενο άξονα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Εφαρμοσμένα Μαθηματικά ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

Θεωρητική μηχανική ΙΙ

Όταν ο άξονας περιστροφής δεν είναι κάθετος στην ράβδο

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

Transcript:

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής κίνησης. Για σύστημα σωματιδίων με μάζες m σε αποστάσεις r από άξονα που περνά από ένα σημείο P, η κινητική τους ενέργεια δίνεται από: 1 1 K = mυ + mυ +... = mr ω + m r ω +... = ω mr = Iω 1 1 11 Για σύστημα σωματιδίων με μάζες m σε αποστάσεις r από άξονα που περνά από ένα σημείο P, η ροπή αδράνειας του συστήματος γύρω από αυτόν τον άξονα δίνεται από: I = + + = Ορισμός ροπής m1 r1 mr... m r αδράνειας Μονάδα SI σύστημα kg m Για στερεά σώματα η ροπή αδράνειας υπολογίζεται με ένα ολοκλήρωμα (αντί του αθροίσματος) Σε ένα στερεό οι αποστάσεις r είναι σταθερές, και η I είναι ανεξάρτητη από τον τρόπο περιστροφής του γύρω από δεδομένο άξονα.

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ ΡΟΠΕΣ ΑΔΡΑΝΕΙΑΣ ΟΜΟΓΕΝΩΝ ΣΩΜΑΤΩΝ

ΘΕΩΡΗΜΑ ΠΑΡΑΛΛΗΛΩΝ ΑΞΟΝΩΝ Για να βρούμε την ροπή αδράνειας σώματος ως προς άξονα που είναι διαφορετικός από άλλον άξονα ως προς τον οποίο είναι γνωστή, μπορούμε να χρησιμοποιήσουμε το θεώρημα των παραλλήλων αξόνων. Θεώρημα: Η ροπή αδράνειας σώματος μάζας M ως προς άξονα, P, που είναι παράλληλος προς και σε απόσταση d από άξονα που περνά από κέντρο μάζας του σώματος είναι: I Θεώρημα παραλλήλων p = Icm + Md αξόνων Απόδειξη: Θεωρούμε ότι ο άξονας περιστροφής είναι στην διεύθυνση z και θεωρούμε άξονες παράλληλους προς τον άξονα z, ο ένας περνά από το κέντρο μάζας και ο άλλος από το σημείο P.

ΘΕΩΡΗΜΑ ΠΑΡΑΛΛΗΛΩΝ ΑΞΟΝΩΝ Σημείο Ο είναι το κέντρο μάζας, και το (x, y) επίπεδο είναι κάθετο στον άξονα περιστροφής που περνά από το Ο. Στοιχείο μάζας m με συντεταγμένες (x, y ) ως προς το Ο και (x -a, y -b) ως προς τον άξονα που είναι παράλληλος ως προς τον πρώτο και περνά από το P (συντεταγμένες (a,b). Αρχή συστήματος αναφοράς στο CM: x cm = y cm = z cm =0 Παράλληλος άξονας που περνά από το P έχει συντεταγμένες (a, b). Απόσταση αξόνων d: d =a +b Ροπή αδράνειας I cm ως προς άξονα δια του O: = = + I mr m( x y ) cm

ΘΕΩΡΗΜΑ ΠΑΡΑΛΛΗΛΩΝ ΑΞΟΝΩΝ Ροπή αδράνειας I P ως προς άξονα δια του P: I = m x a + y b P [( ) ( ) )] Αυτές οι εκφράσεις δεν περιλαμβάνουν τις συντεταγμένες z των σημείων που βρίσκονται σε μια παράλληλη προς τον άξονα περιστροφής λωρίδα. Σε αυτή την λωρίδα όλα τα σημεία έχουν την ίδια απόσταση από τον άξονα περιστροφής, άρα η ροπή αδράνειας τους δεν εξαρτάται από το z. Επεκτείνουμε την άθροιση σε όλα τα σημεία της λωρίδας και σε όλες τις λωρίδες οπότε έχουμε την ροπή αδράνειας για όλο το σώμα I p ως προς τον άξονα δια του P: IP = m x y a mx b my a + b m ( + ) + ( ) I x cm = 0 y = 0 d cm P cm cm I = I + Md M

Για σώματα που έχουμε συνεχή κατανομή μάζας το άθροισμα των γινομένων μάζας επί τετράγωνο απόστασης από τον άξονα περιστροφής μετατρέπεται σε ολοκλήρωμα. Διαχωρισμός του σώματος σε στοιχειώδεις μάζες dm (σε απόσταση r), οπότε η στοιχειώδης ροπή αδράνειας δίνετε από: di = r dm οπότε η ροπή θα δίνεται: I = r dm Για τον υπολογισμό του ολοκληρώματος χρειάζεται να εκφραστούν τόσο το r όσο και το dm συναρτήσει της ίδιας μεταβλητής ολοκλήρωσης. Σε αυτό παίζει το σπουδαιότατο ρόλο η συμμετρία του σώματος και ο βαθμός ομογένειας στην κατανομή της μάζας του στο χώρο. Π.χ. 1-D σώμα: χρήση της μεταβλητής x για το μήκος και σχέση του dm με το dx. -D σώμα: εκφράζουμε το dm συναρτήσει του στοιχειώδους όγκου dv και της πυκνότητας ρ. Καρτεσιανές συντεταγμένες dv = dx dy dz dm ρ =, I για = r ρ( V ) dv dv ρ = στ. I = ρ r dv

Παράδειγμα: Ομογενής λεπτή ράβδος, άξονας στη ράβδο Μάζα M και μήκος L. Υπολογίστε την ροπή αδράνειας ως προς άξονα που περνά από το O, σε τυχαία απόσταση h από το άκρο της Γραμμική πυκνότητα μάζας λ=μ/l dm=λdx Επιλέγουμε το dx σε απόσταση x από το O. L L h h x λ I = x dm = λx dx = λ x dx = λ = ( L L h + Lh ) h h λ M ML IA = L = L = L λ 1 L L λ I = L L + L = L = ML 4 1 Άκρο της ράβδου h=0: Μέσο της ράβδου h=l/:

Παράδειγμα: Κοίλος στερεός ομογενής κύλινδρος ως προς τον άξονα συμμετρίας του Μήκος L, εσωτερική διάμετρος R 1, εξωτερική διάμετρος R. Επιλογή στοιχειώδους όγκου: Κυλινδρικός φλοιός ακτίνας r, πάχους dr, και μήκους (ύψους) L. Όλα τα τμήματα του φλοιού αυτού απέχουν την ίδια απόσταση από τον άξονα. M Κύλινδρος: όγκος V= πlr ( R1 ), πυκνότητα ρ= π LR ( R1 ) Φλοιός: όγκος dv = πrldr, μάζα dm = ρdv = ρ( πrldr) R R πρl 4 4 ρ π πρ 1 4 R R I = r dm = r ( rldr) = L r dr = ( R R ) = 1 1 πρl 1 = ( R R 1 )( R + R 1 ) I = M ( R + R 1 )

Κοίλος στερεός ομογενής κύλινδρος ως προς τον άξονα συμμετρίας του 1 I = M( R + R1 ) Στερεός κύλινδρος, R 1 =0, R =R: Στερεός λεπτός κυλινδρικός φλοιός, R 1 και R σχεδόν ίσες: I = MR Σημ.: Η ροπή αδράνεια κυλίνδρου ως προς τον άξονα συμμετρίας του εξαρτάται από τη μάζα και την ακτίνα αλλά όχι από το μήκος του! I = 1 MR

Παράδειγμα: Ομογενής σφαίρα, άξονας μέσω του κέντρου της. Ακτίνα σφαίρας R. Όγκος σφαίρας: Μάζα Μ. Πυκνότητα: ρ = M π 4 R / V = 4π R Διαιρούμε τη σφαίρα σε λεπτούς δίσκους πάχους dx, Ακτίνα: = Όγκος: = π = π( ) r R x dv r dx R x dx Μάζα: = ρ = ρπ = πρ( ) dm dv r dx R x dx Η ροπή αδράνειας δίσκου ακτίνας r και μάζας dm είναι 1 1 = = ( ) = πρ di r dm R x [ πρ( R x ) dx] ( R x ) dx

Ομογενής σφαίρα, άξονας μέσω του κέντρου της. Ολοκληρώνουμε από x=-r έως x=r : R R 4 4 16 5 8 5 πρ πρ πρ πρ I = ( R x ) dx ( R R x x ) dx R R = + = = 15 15 R Επειδή η μάζα M της σφαίρας R Ομογενής σφαίρα : 4πρ M = ρv = R I = MR 5