Βιομαθηματικά BIO-156. Συνεχή στο χρόνο δυναμικά συστήματα. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Σχετικά έγγραφα
Συνεχή στο χρόνο δυναμικά συστήματα Διαφορικές εξισώσεις

Βιομαθηματικά BIO-156

4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156. Όρια και συνέχεια συναρτήσεων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Όρια και συνέχεια συναρτήσεων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2019

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγικές έννοιες. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Ντίνα Λύκα. Εισαγωγή. Εαρινό Εξάμηνο, 2018

Βιομαθηματικά BIO-156. Παραγώγιση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

ΔΙΑΚΡΙΤΑ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΑΣΚΗΣΕΙΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Μαθηματικά Και Στατιστική Στη Βιολογία

Βιομαθηματικά BIO-156

1.1. Διαφορική Εξίσωση και λύση αυτής

Διαφορικές Εξισώσεις.

Βιομαθηματικά BIO-156

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

ΚΕΦ. 1. ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Εισαγωγή.

Κεφάλαιο 4: Διαφορικός Λογισμός

ΜΑΣ 203: Συνήθεις Διαφορικές Εξισώσεις, Εαρινό Εξάμηνο 2017 ΑΣΚΗΣΕΙΣ

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

Διαφορικές Εξισώσεις.

Κεφάλαιο 4 ΜΟΝΟΔΙΑΣΤΑΤΑ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. 4.1 Η ροή μιας διαφορικής εξίσωσης. Θεωρούμε πάλι το πρόβλημα αρχικών τιμών. x (0) = x 0, (4.1.

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Μαθηματική Εισαγωγή Συναρτήσεις

website:

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Μαθηματική Εισαγωγή Συναρτήσεις

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Βασικές ασκήσεις Βασική θεωρία. του πεδίου ορισμού της; β) Έστω η συνάρτηση: ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x

«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία. Πληθυσµιακά Μοντέλα

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

x(t) 2 = e 2 t = e 2t, t > 0

Βιοµαθηµατικά BIO-156

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Διαφορικές Εξισώσεις.

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΔΙΑΓΩΝΙΣΜΑ 12., στο ίδιο σύστημα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ. Το Θεώρημα και το Πόρισμα ισχύουν σε διαστήματα και όχι σε ένωση διαστημάτων.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Μαθηματικά Και Στατιστική Στη Βιολογία

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ - ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΝΟΣ ΠΕΡΙΕΧΟΜΕΝΑ. Τίτλος Θεματικές Ενότητες Σελίδες. Δυο λόγια προς τους μαθητές.

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ - ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ - ΠΑΡΑΓΩΓΟΣ ΣΥΝΘΕΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

Μ Α Θ Η Μ Α Τ Ι Κ Η Π Ρ Ο Τ Υ Π Ο Π Ο Ι Η Σ Η Ε Ρ Γ Α Σ Ι Α 1 Η

Ακαδημαϊκό έτος ΘΕΜΑ 1. Η κινητική εξίσωση της αντίδρασης Α + Β = Γ είναι: r = k[a] α [B] β

Διαφορικές Εξισώσεις Πρώτης Τάξης

Κεφάλαιο 8 Διαφορικές Εξισώσεις

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

2 Περιεχόμενα. Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

IV. Συνέχεια Συνάρτησης. math-gr

Κάθε εξίσωση, η οποία περιλαµβάνει παραγώγους, είναι διαφορική εξίσωση. Έτσι οι εξισώσεις

4. 1 Η ΣΥΝΑΡΤΗΣΗ Y=AX 2 ME A 0

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1

Μερικές Διαφορικές Εξισώσεις

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

κι επιβάλλοντας τις συνοριακές συνθήκες παίρνουμε ότι θα πρέπει

V. Διαφορικός Λογισμός. math-gr

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Transcript:

Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Ντίνα Λύκα Εαρινό Εξάμηνο, 2017 lika@biology.uoc.gr

Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα που μεταβάλλονται συνεχώς στο χρόνο. Η μαθηματική περιγραφή τέτοιων συστημάτων γίνεται με διαφορικές εξισώσεις οι οποίες περιγράφουν το ρυθμό μεταβολής των μεταβλητών κατάστασης.

Παραδείγματα Αν το μέγεθος ενός πληθυσμού τη χρονική στιγμή t είναι Ν (, και ο ρυθμός μεταβολής του είναι ίσος με το διπλάσιο της τρέχουσας τιμής του Ν, τότε γράφουμε dn 2N Έστω ότι η ταχύτητα ενός αντικειμένου είναι μια συνάρτηση του χρόνου t, ν(, τότε η θέση του αντικειμένου, p(, θα πρέπει να ικανοποιεί την εξίσωση dp v( οι ποσότητες Ν και p είναι άγνωστες και είναι οι εξαρτημένες μεταβλητές ενώ ο χρόνος t είναι η ανεξάρτητη μεταβλητή

Ορισμοί Διαφορική εξίσωση Κάθε εξίσωση που περιέχει μια άγνωστη συνάρτηση, κάποιες από τις παραγώγους της και την ανεξάρτητη μεταβλητή. Τάξη μιας διαφορικής εξίσωσης η μεγαλύτερη από τις τάξεις των παραγώγων της άγνωστης συνάρτησης που εμφανίζονται στην εξίσωση. Γραμμική διαφορική εξίσωση περιλαμβάνει μόνο πρωτοβάθμιους όρους της εξαρτημένης μεταβλητής και των παραγώγων της και δεν περιλαμβάνει γινόμενα της εξαρτημένης μεταβλητής και των παραγώγων της. Μη αυτόνομη διαφορική εξίσωση περιλαμβάνει την ανεξάρτητη μεταβλητή ως όρο. Αυτόνομη διαφορική εξίσωση δεν περιλαμβάνει στη διατύπωσή της άμεσα την ανεξάρτητη μεταβλητή.

Διαφορικές εξισώσεις πρώτης τάξης Θεωρούμε τη διαφορική εξίσωση Το πρόβλημα που θα μας απασχολήσει είναι να βρούμε όλες τις συναρτήσεις οι οποίες ικανοποιούν τη διαφορική εξίσωση. f ( y, t (1) Θα λέμε ότι η οικογένεια των συναρτήσεων ) y ( t, c), c R (2) είναι η γενική λύση της διαφορικής εξίσωσης (1) όταν για κάθε c η (2) επαληθεύει τη διαφορική εξίσωση. Η λύση που παίρνουμε για κάποια συγκεκριμένη τιμή της c, ονομάζεται μερική λύση.

Πρόβλημα αρχικών τιμών f ( y, t ) y ( t y 0 ) 0 Ζητάμε τη μερική λύση που περνά από κάποιο συγκεκριμένο σημείο (t 0, y 0 ) Η σταθερά c προσδιορίζεται από την αρχική συνθήκη y(t 0 )= y 0..

Διαφορικές εξισώσεις της μορφής f ( Η συνάρτηση f είναι μια γνωστή συνάρτηση και εξαρτάται μόνο από την ανεξάρτητη μεταβλητή t. Η γενική λύση της διαφορικής εξίσωσης είναι y ( f ( c, c R Αν επιπλέον ζητάμε η λύση να ικανοποιεί την αρχική συνθήκη y(t 0 )=y 0 μπορούμε να προσδιορίσουμε την αυθαίρετη σταθερά c. Διαφορετικά για προβλήματα αρχικών τιμών: y( t y f ( s) ds 0 t 0 Αρχική τιμή Μεταβολή της y στο διάστημα [t 0,t]

Παράδειγμα Να λυθεί η δ.ε. sin t με y(0) 3 Λύση: y( y(0) t sin udu 0 3 ( cosu) t 0 4 cost ή y( cost c, cr (γενική λύση) Η σταθερά c προσδιορίζεται από την αρχική συνθήκη: 3 1 c y ( cost 4

Διαφορικές εξισώσεις χωριζόμενων μεταβλητών Αν μια διαφορική εξίσωση μπορεί να γραφτεί στη μορφή τότε ονομάζονται δ.ε. χωριζόμενων μεταβλητών. f ( y, h( y) g( Παραδείγματα: t, y 2 y 0 k( y a)

Επίλυση της h(y) y =g( Έστω H μια αντιπαράγωγος της h (δηλαδή H (y)=h(y)) και G μια αντιπαράγωγος της g (δηλαδή G (=g() Από τον κανόνα της αλυσίδας έχουμε dh dh h( y) Επομένως, η διαφορική εξίσωση h(y) y =g( γράφεται d d [ H ( y( ] [ G( ] H(y() = G(+c (Γενική λύση) Αν λύσουμε ως προς y παίρνουμε την y σαν συνάρτηση του t και της σταθεράς c.

Στην πράξη γράφουμε τη διαφορική εξίσωση h(y) y = g( στη μορφή h(y) = g( και ολοκληρώνουμε και τα δύο μέρη h( y) g( H( y) G( c όπου H και G αντιπαράγωγοι, αντίστοιχα, των h και g

Παράδειγμα Να λυθεί η διαφορική εξίσωση Για y 1, γράφουμε: Ολοκληρώνοντας y 1 y 1 y 1 ln 1 1 1 1 y 1 t c c t y e e t y c e, c e 2 2 c 1, c 2 R {0} y=1 είναι λύση της δ.ε.. Άρα, η γενική λύση της είναι y 1 ce t, c R

Γραμμικές διαφορικές εξισώσεις πρώτης τάξης p και g δοσμένες συνεχείς συναρτήσεις σε ένα διάστημα (α,β) p(=a και g(=0 : p( y g( ay 0 Λύση : y( ce at p(=0 και g( 0 : g( Λύση : y( g( c p(=α 0 και g( 0 : ay g( Λύση :?

Γραμμικές διαφορικές εξισώσεις πρώτης τάξης ay g( d (?) g( p(=α 0 και g( 0 : (*) πολλαπλασιάζουμε και τα δύο μέλη της εξίσωσης (*) με e at e at d ae at y at e y g( Ολοκληρώνοντας παίρνουμε τη γενική λύση της (*) e at y e at at e g( ce at

Γραμμικές διαφορικές εξισώσεις πρώτης τάξης p( y g( (*) πολλαπλασιάζουμε και τα δύο μέλη της εξίσωσης (*) με p( ( e d ( y ( g( Ολοκληρώνοντας παίρνουμε τη γενική λύση της (*) 1 y ( g( ( c

Γενική λύση της γραμμικής διαφορικής εξίσωσης p( y g( y 1 ( ( g( c, ( e p( Ολοκληρωτικός παράγοντας Η αρχική συνθήκη μπορεί να χρησιμοποιηθεί για τον προσδιορισμό της αυθαίρετης σταθεράς c.

Παράδειγμα Να λυθεί η διαφορική εξίσωση y t te πολλαπλασιάζουμε και τα δύο μέλη της t δ.ε. με ( e Ολοκληρώνοντας παίρνουμε y Γενική λύση: t t e y te d 2 e te t 2t c y t 1 1 te 2 4 e t ce t

Ποιοτική ανάλυση αυτόνομων διαφορικών εξισώσεων ( y) Υποθετικό διάγραμμα φάσης Γραφική παράσταση της f(y) (δηλαδή παράγωγος τη y ως προς ως προς y. f f(y)

Συμπεράσματα που προκύπτουν από το διάγραμμα φάσης Αν y=y 1 ή y=y 2 ο ρυθμός μεταβολής του y είναι μηδέν, δηλαδή το y δεν μεταβάλλεται. Αν y<y 1 ο ρυθμός μεταβολής του y είναι αρνητικός και το y μειώνεται συνεχώς. Αν y>y 2 ο ρυθμός μεταβολής του y είναι αρνητικός και το y μειώνεται συνεχώς έως ότου φτάσει στο y 2. Αν y 1 <y<y 2 ο ρυθμός μεταβολής του y είναι θετικός και το y αυξάνει συνεχώς έως ότου φτάσει στο y 2. ασταθές y1 ευσταθές y2 y Τα σημεία y 1 και y 2 είναι σημεία ισορροπίας

Σημεία ισορροπίας Έστω ότι ένα βιολογικό σύστημα περιγράφεται από την αυτόνομη διαφορική εξίσωση Η τιμή y* της μεταβλητής κατάστασης ονομάζεται σημείο ισορροπίας (ή σταθερό σημείο) της αυτόνομης διαφορικής εξίσωσης αν f f ( y * ) (y) 0 Ένα σημείο ισορροπίας λέμε ότι είναι τοπικά ευσταθές αν οι λύσεις που ξεκινάνε αρκετά κοντά στο σημείο ισορροπίας τελικά (t ) το πλησιάζουν. Ένα σημείο ισορροπίας λέμε ότι είναι ασταθές αν οι λύσεις που ξεκινάνε αρκετά κοντά στο σημείο ισορροπίας απομακρύνονται από αυτό.

Τοπική ανάλυση ισορροπίας (1) Έστω y( κοντά στο y * (σημείο ισορροπίας). Γράφουμε, y( = y * + x( ή x( = y( - y *, όπου x( μια μικρή διαταραχή από το σημείο ισορροπίας. Μας ενδιαφέρει να εξετάσουμε αν η διαταραχή μικραίνει ή μεγαλώνει με το χρόνο. dx Για τη διαταραχή ισχύει: f ( y * x) f ( y x) f ( y ) f ( y ) x

Τοπική ανάλυση ισορροπίας (2) dx Άρα x, όπου f ( y ) (1) Λύση: x(=ce λt Αν λ<0, η λύση της εξίσωσης (1) πάει στο 0, δηλαδή η διαταραχή μειώνεται και εξαφανίζεται. Επομένως, η y πλησιάζει το y *. Αν λ>0, η λύση της εξίσωσης (1) πάει στο άπειρο, δηλαδή η διαταραχή μεγαλώνει. Επομένως, η y απομακρύνεται από το y *.

Κριτήριο τοπικής ευστάθειας Αν y* είναι σημείο ισορροπίας της αυτόνομης διαφορικής εξίσωσης f (y) τότε το σημείο ισορροπίας y* είναι τοπικά ευσταθές αν f (y *)<0 και ασταθές αν f (y *)>0

Πληθυσμιακά μοντέλα Μεταβολές στο μέγεθος του πληθυσμού ΔΝ = (γεννήσεις-θάνατοι) + (εποικισμός-μετανάστευση)

Εκθετική αύξηση πληθυσμών Μεταβολές ενός πληθυσμού σε ιδεατό περιβάλλον (χωρίς εποικισμό/μετανάστευση) Υπόθεση: δεν υπάρχουν περιορισμοί στην αύξηση του πληθυσμού dn B D b (σταθερά): κατά κεφαλή ρυθμός γεννήσεων d (σταθερά): κατά κεφαλή ρυθμός θανάτων Β=bN (συνολικός αριθμός γεννήσεων) D=dN (συνολικός αριθμός θανάτων) 1 N dn r b d ή dn rν

Ανάλυση ισορροπίας της εξίσωσης dn rn rt Λύση: N ( N0e f ( N) rn και f '( N) r Σημείο ισορροπίας : Ν*=0 Στο Σ.Ι. : f (N * )= r Ν*=0 είναι ασταθές για r>0 (f (N * )>0) και ευσταθές για r<0 (f (N * )<0). Εκθετική αύξηση Εκθετική μείωση

Λογιστική αύξηση πληθυσμών Μεταβολές ενός πληθυσμού σε συνθήκες ενδοπληθυσμιακού ανταγωνισμού Υπόθεση: ο κατά κεφαλή ρυθμός μεταβολής μειώνεται γραμμικά με το μέγεθος του πληθυσμού 1 dn N r(1 ) N K r (ενδογενής ρυθμός αύξησης) και Κ (φέρουσα ικανότητα) θετικές σταθερές. dn rn(1 N K Λογιστική Εξίσωση )

Ανάλυση ισορροπίας της Λογιστική εξίσωση f ( N ) dn rn(1 N K ) rn(1 Τα σημεία ισορροπίας της λογιστικής εξίσωσης είναι οι λύσεις της εξίσωσης f (N * )=0 f N K ) ' ( N ) r 2r K N Σημεία ισορροπίας : Ν 1 *=0, Ν 2 *=Κ Στα Σ.Ι. : f (N 1* )= r και f (N 2* )= -r Επομένως, Ν 1 *=0 είναι ασταθές (f (N 1* )>0) και το σημείο ισορροπίας Ν 2 *=Κ είναι τοπικά ευσταθές (f (N 2* )<0).

Διάγραμμα φάσης της λογιστικής εξίσωσης f(n) Μονοτονία της Ν Ν =f (N) Καμπυλότητα της Ν Ν =f (N) f (Ν) 0 K/2 K f (N) + + - f (N) + - -

Λύσεις της λογιστικής εξίσωσης N( 1 K N 0 K 1 e rt lim t N( K Το Σ. Ι. N 2* =K είναι και ολικά ευσταθές

Προτεινόμενη Βιβλιογραφία C. Neuhauser Calculus for biology and medicine Pearson/Prentice Hall, 2004 Chapter 8: όχι 8.3 F. R. Adler. Modeling the namics of life: calculus and probability for life scientists. Brooks/Cole, 1998. Chapter 5: 5.1-5.3 M. R. Cullen Mathematics for the biosciences. Techbooks, 1983 Sections: 33-37