i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1.

Σχετικά έγγραφα
, της οποίας το µέτρο ικανοποιεί τη σχέση:

i) Nα βρεθεί η επιτάχυνση του κέντρου Κ της τροχαλίας την στιγµή t=0 αµέσως µετά την θραύση του νήµατος.

i) Nα δείξετε ότι, κάθε στιγµή οι ταχύτητες των δύο πιθήκων ως προς το ακίνητο έδαφος είναι ίσες.

. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!

Θεωρούµε στερεό σώµα που εκτελεί ως προς ένα αδρανειακό σύστηµα αναφοράς επίπεδη κίνηση.

ii) Nα υπολογιστεί η κινητική ενέργεια του συστήµατος σε συνάρτηση µε τον χρόνο. Δίνεται η επιτάχυνση! g της βαρύτητας.

(τρίτος νόµος του Νεύτωνα) και την πλάγια αντίδραση του οριζόντιου εδάφους, η οποία αναλύεται στην τριβή ολίσθησης T!

τα µοναδιαία διανύσµατα των αξόνων Οx, Oy, Oz αντιστοί χως. Η αντίστοιχη στροφορµή L!

Q του νήµατος που το συγκρατεί, συµφωνα δε µε τον δεύτερο νό µο κίνησης του Νεύτωνα θα ισχύει η σχέση: της τάσεως!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

Δίνεται η ροπή αδράνειας I=mL 2 /3 της ράβδου ως προς τον άξονα περιστροφής της, η επιτάχυνση! g της βαρύτητας και ότι π 2!10.

i) Να δείξετε ότι: F max = (m 1 + m 2 όπου! g η επιτάχυνση της βαρύτητας.

i) Nα βρείτε την ταχύτητα του κέντρου της στεφάνης αµέσως µετά την κρού ση, η οποία θεωρείται βραχείας διάρκειας.

ΜΕΡΟΣ Γ! 2η οµάδα λυµένων παραδειγµάτων

. Εάν η σφαίρα κυλίεται πάνω στο δοκάρι να βρείτε: i) την επιτάχυνση του δοκαριού και του κέντρου της σφαίρας, στο σύστηµα αναφοράς του δαπέδου και

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

Τροχός ακτίνας R κυλίεται χωρίς ολίσθηση κατά µήκος οριζόντιου αυλακιού, το δε κέντρο µάζας του C έχει σταθερή ταχύτητα v!

ii) ii) Nα καθορίσετε το είδος της ισορροπίας της ράβδου.

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΛΥΣΗ: Έστω O η θέση ισορροπίας του σφαιριδίου. Στη θέση αυτή το σφαι ρίδιο δέχεται το βάρος του w!, τη δύναµη F

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ii) Nα βρείτε την µέγιστη γωνιακή ταχύτητα της ράβδου.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

διέρχεται από το σηµείο τοµής Ο των φορέων του βάρους w! της ράβδου και της οριζόντιας αντίδρασης A!

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

όπου Μ η µάζα της Γης την οποία θεωρούµε σφαίρα οµογενή, G η παγκόσµια σταθερά της βαρύτητας και L!

των Α και Β αντιστοίχως είναι παράλληλες (σχ. 12) που σηµαί Σχήµα 11 Σχήµα 12

( ) ( ) 2 1 K = K = m 2. ! = v 2 + v 1 R + r (3) H (1) λόγω της (3) γράφεται: R - v 2. + v 1. v 2. r > 0 (4) ! v K. + v 1 )R - v 2. = v 2. - v.

ακτινικής διεύθυνσης και στην οριακή τριβή T!"

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

Eφαρµόζοντας στο τρίγωνο OAΣ το θεώρηµα του συνηµιτόνου παίρνουµε:

i) τον λόγο των µαζών των δύο σφαιριδίων, ώστε αυτά µετά την κρού ση τους να φθάνουν στις αρχικές τους θέσεις και

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

Ένα διαστηµόπλοιο µάζας M, κινείται στο διά στηµα µε σταθερή ταχύτητα V!

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

Οµογενής ράβδος µάζας m και µήκους L, κρατεί ται οριζόντια ακουµπώντας σε σταθερή ακίδα που απέχει απόσταση x από το κέντρο µάζας C της ράβδου.

ii) Να δείξετε ότι το σφαιρίδιο εκτελεί µια µη αρµονική περιοδική ταλάντωση, της οποίας να υπολογίσετε την περίοδο.

από την άρθρωση και της δύναµης επαφής από τον τοίχο που αναλύεται στην στατική τριβη T!

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ

! =A'B=C!! C! = R" (1)

i) Nα δείξετε ότι αν το σύστηµα αφεθεί ελεύθερο η τροχαλία τ 1 δεν µπορεί να κυλίεται, άλλά µόνο να ισσρροπεί ή να ολισθαίνει.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

που δέχεται από την παράπλευρη επιφάνεια του κώνου, της οποίας ο φορέας είναι κάθετος στην επιφάνεια αυτή, αφού θεωρείται λεία και των δυνάµεων T

Οµογενής σφαίρα µάζας m και ατίνας R, ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Κάποια στιγµή ενεργεί στην σφαίρα οριζόντια ώθηση!!

i) το πλάτος ταλάντωσης του καροτσιού µετά την ενσωµάτωση του σφαιριδίου σ' αυτό και

που δέχονται οι τροχοί αυτοί αποτελούν κινητήριες δυνάµεις για το αυτοκί νητο, δηλαδή είναι δυνάµεις οµόρροπες προς την κίνησή του, ένω οι τριβές T!

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

Ένα σώµα µε µεγάλη µάζα Μ, κινείται µε σταθερή

Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο

την αρχή Ο του ΟΧY, που είναι ένα αδρανειακό σύστηµα αναφοράς. Εάν

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

ΘΕΩΡΗΜΑ Α! του σώ µατος ισχύει η σχέση: η επιβατική ακτίνα ως προς το σηµείο P του τυχαίου υλικού σηµείου του στερεού µάζας m i και v!

περί το κέντρο της σφαίρας, ονοµάζεται δε τριβή κυλίσεως. Tο µέτρο της τρι βής κυλίσεως είναι προφανώς ανάλογο του µέτρου της N,!

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

, σταθερής κατεύθυνσης, της οποίας το µέτρο µεταβάλλεται µε τον χρόνο t, σύµφωνα µε την σχέση:

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

Διαγώνισμα Μηχανική Στερεού Σώματος

που περιγράφεται από την σχέση:! R = -mk! v

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

i) Το επίπεδο της τροχαλίας είναι οριζόντιο και το έδαφος λείο.

της οποίας ο φορέας σχηµατί ζει γωνία φ=π/6 µε την κατακόρυφη διεύθυνση και ανακλάται µε αντίστοιχη γωνία φ=π/4.

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

i) Xρησιµοποιώντας το θεώρηµα µηχανικής ενέργειας-έργου να δείξε τε ότι η διαφορική εξίσωση της κίνησής του έχει την µορφή:

(σχ. 1). Εφαρ µόζοντας για την µεταφορική συνιστώσα της κύλισης του δίσκου τον

i) Nα βρεθεί η επιτάχυνση του κέντρου του δακτυλιδιού. Σχήµα 1 Σχήµα 2 L C

. Εάν η κρούση της ράβ δου µε το οριζόντιο έδαφος είναι τελείως ελαστική, να βρείτε:

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

) ω ω. L λίγο πριν. . Nα βρεθούν:

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

7ο ιαγώνισµα - Μηχανική Στερεού Σώµατος ΙΙ

F r. 1

της µορφής:! F = -mk! r

3.3. Δυναμική στερεού.

i) την ενέργεια που πρέπει να προσφερθεί στο σφαιρίδιο,

Ασκήσεις στροφικής κίνησης στερεού σώµατος

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

µε φορά προς το κυρτό µέρος του σύρµατος (σχήµα α) η οποία µαζί µε την ακτινική συνιστώσα w!

το άκρο Β έχει γραμμική ταχύτητα μέτρου.

Nα δείξετε τις εξής προτάσεις:

i) Nα αποδείξετε ότι το σώµα τελικά θα ηρεµήσει ως προς το δοκάρι και να βρείτε την κοινή τους ταχύτητα στο σύστηµα αναφοράς του εδάφους.

όπου y το µήκος του σχοινιού στο κατακόρυφο σκέλος του σωλήνα, v το κοινό µέτρο των ταχυτήτων v!

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.

ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Transcript:

Στην διάταξη του σχήµατος 1) οι τροχαλίες τ 1 και τ έχουν την ίδια µάζα Μ που θεωρείται συγκεντρωµένη στην περι φέρειά τους και την ίδια ακτίνα R. Στο αυλάκι της σταθερής τροχα λίας τ έχει περιτυλιχθεί αβαρές και µη εκτατό νήµα, του οποίου το ελεύθερο άκρο έχει δεθεί στο κέντρο της ελεύθερης τροχαλίας τ 1, από το αυλάκι της οποίας διέρχεται αβαρές και µη εκτατό νήµα. Στα άκρα του νήµατος αυτού είναι στερεωµένα τα σώµατα Σ 1 και Σ, που έχουν τη ίδια µάζα m. To σύστηµα κρατείται ακίνητο και κάποια στιγµή αφήνεται ελευθερο. i) Nα βρείτε την επιτάχυνση του κέντρου της τροχαλίας τ 1. ii) Nα βρείτε σε συνάρτηση µε τον χρόνο την κινητική ενέργεια του συστήµατος και την στροφορµή του περί το κέντρο της τροχαλίας τ. Δίνεται η επιτάχυνση g της βαρύτητας και ότι τα νήµατα δεν ολισθαί νουν στα αυλάκια των τροχαλιών. ΛΥΣΗ: i) Η τροχαλία τ εκτελεί περιστροφική κίνηση που επηρεάζεται από την ροπή της τάσεως T του νήµατος που είναι περιτυλιγµένο στο αυλάκι της. Εάν είναι η γωνιακή επιτάχυνση της τροχαλίας αυτής θα ισχύει, συµφωνα µε τον θεµελιώδη νόµο της στροφικής κίνησης, η σχέση: TR = MR T = MR 1) Η τροχαλία τ 1 ενδέχεται να εκτελεί περιστροφική και µεταφορική κίνηση, υπό την επίδραση του βάρους της M g, των τάσεων T 1, T του νήµατος που περι βάλλει το αυλάκι της και της τάσεως T του νήµατος που είναι στερεωµένο στο κέντρο της, η οποία είναι αντίθετη της T. Εάν 1 είναι η γωνιακή επιτάχυνση της τροχαλίας τ 1, θα ισχύει σύµφωνα µε τον θεµελιώδη νόµο της στροφικής κί νησης, η σχέση: T 1 R - T R = MR 1 T 1 -T = MR 1 ) Eξάλλου εάν a C είναι η επιτάχυνση του κέντρου της τροχαλίας τ 1, θα ισχύει σύµφωνα µε τον δεύτερο νόµο κίνησης του Νεύτωνα η σχέση: Mg + T 1 +T -T= Ma C Mg + T 1 +T -T = Ma C 3) Όµως η επιτάχυνση a C είναι κάθε στιγµή ίση µε την επιτρόχια επιτάχυνση του σηµείου επαφής του νήµατος µε την τροχαλία τ, µε αποτέλεσµα η σχέση 1) να γράφεται Τ=Μa C, οπότε η 3) παίρνει την µορφή:

Mg + T 1 +T -Ma C = Ma C Mg + T 1 +T = Ma C 4) Aκόµη, εάν a 1, a είναι οι επιταχύνσεις των σωµάτων Σ 1 και Σ αντιστοίχως, θα έχουµε για τις αλγεβρικές τους τιµές, συµφωνα µε τον δεύτερο νόµο κίνη σης του Νεύτωνα, τις σχέσεις: mg - T 1 = ma 1 mg - T = ma # mg - T 1 = ma 1 mg - T = ma # T 1 = mg - a 1 ) T = mg - a )# 5) Σχήµα 1 διότι οι τάσεις T 1, T των νηµάτων που δέχονται τα σώµατα Σ 1 και Σ αντιστοί χως είναι αντίθετες των τάσεων T 1, T. Aκόµη ισχύουν οι σχέσεις a 1 =a C +ω 1 R και a =a C -ω 1 R, οπότε οι 5) γράφονται: T 1 = mg - a C - 1 R) # T = mg - a C + 1 R) 6) Συνδυάζοντας τις σχέσεις ) και 6) παίρνουµε: mg - a C - 1 R) - mg - a C + 1 R) = MR 1 -m 1 R = MR 1 m + M)R 1 = 0 1 = 0 δηλαδή η τροχαλία τ 1 δεν περιστρέφεται. Συνδυάζοντας εξάλλου τις σχέσεις 4) και 6) παίρνουµε: Mg + mg - a C - 1 R) + mg - a C + 1 R) = Ma C Mg + mg - ma C - m 1 R + m 1 R = Ma C

M + m)g = M + m)a C a C = M + m)g M + m) 7) δηλαδή η τροχαλία τ 1 εκτελεί οµαλά επιταχυνόµενη µεταφορική κίνηση κατά την εξέλιξη της οποίας το κέντρο της µετατοπίζεται κατακόρυφα προς τα κάτω. Οι παραπάνω υπολογισµοί οδηγούν στα εξής συµπεράσµατα για την κινητική κατάσταση του συστήµατος: a. H τροχαλία τ εκτελεί οµαλά επιταχυνοµενη περιστροφική κίνηση µε γωνιακή επιτάχυνση, της οποίας το µέτρο είναι: = a C R 7) = M + m)g M + m)r b. H τροχαλία τ 1 και τα σώµατα Σ 1, Σ εκτελούν κατακόρυφη προς τα κάτω µεταφορική κίνηση µε την ίδια σταθερή επιτάχυνση a C, δηλαδή αποτελούν ένα σώµα µάζας m+m που κινείται µεταφορικά µε επιτά χυνση a C. ii) H κινητική ενέργεια Κ του συστήµατος είναι κάθε στιγµή t ίση µε το αλγεβ ρικό άθροισµα των κινητικών ενεργειών των σωµάτων που το αποτελούν, δηλα δή ισχύει η σχέση: K = K + K 1 + K + K 1 = MR # + Mv C + mv + mv 1 K = MR t + Ma Ct + ma Ct + ma t C K = Ma Ct + ma t C 7) = M + m)a C t K = M + m) M + m) g t = M + m) g t 8) 4M + m) 4M + m) H στροφορµή L του συστήµατος περί το κέντρο της τροχαλίας τ είναι κάθε στιγµή t ίση µε το διανυσµατικό άθροισµα των αντιστοίχων στροφορµών των σωµάτων που το αποτελούν, δηλαδή ισχύει: L = L + L 1 + L + L 1 = MR # k + Mv C R k + 0 + mv 1 R) k L = Mv C R k + mv 1 R k = RMa C t + ma C t) k L = M + m)ra C t k 7) L = M + m)r k M + m)g M + m) t k L = M + m)rgt k 9)

όπου k το µοναδιαίο κάθετο διάνυσµα στο επίπεδο των τροχαλιών, του οποίου η φορά θεωρήθηκε αυθαίρετα ίδια µε την φορά του. P.M. fysikos Στην διάταξη του σχήµατος ) η ράβδος ΑΒ είναι οµογενής, έχει µήκος L και µάζα 3m µπορεί δε να στρέφεται περί οριζόντιο άξονα, που διέρχεται από το µέσον της Ο. Το σφαιρίδιο που είναι στερεωµένο στο άκρο Α της ράβδου έχει µάζα m, η τροχαλία επίσης έχει µάζα m το δε νήµα που περιβάλλει το αυλάκι της είναι µη εκτατό και δεν ολισθαίνει πάνω σ αυτό, ενώ στις άκρες του είναι στερεωµένα τα σώµατα Σ 1 και Σ µε αντίστοιχες µάζες m και m. Το συστηµα κρατείται ακίνητο µε την ράβδο στην οριζόντια θέση και το νήµα ΒC κατακόρυφο, κάποια δε στιγµή που λαµβάνεται ως αρχή µέτρησης του χρόνου αφήνεται ελεύθερο. Nα βρεθούν οι γωνιακές επιταχύνσεις της ράβδου και της τροχαλίας κατά την εκκίνηση του συστήµατος. Δίνεται η επιτάχυνση g της βαρύτητας, η ροπή αδράνει ας Ι Ρ =3mL /1 της ράβδου ως προς άξονα που διέρχεται από το µέσον της και είναι κάθετος σ αυτήν και η ροπή αδράνειας Ι Τ =mr / της τροχαλίας ως προς άξονα που διέρχεται από το κέντρο της και είναι κάθετος στο επίπεδό της. ΛΥΣΗ: Αµέσως µετά την στιγµή t=0 η ράβδος ΑΒ είναι οριζόντια και το νήµα ΒC κατακόρυφο το δε σύστηµα ράβδος-σφαιρίδιο δέχεται το βάρος 3m g της ράβδου, το βάρος m g του σφαιριδίου την τάση T του νήµατος ΒC και την αντί δραση Q του άξονα περιστροφής της ράβδου. Εάν είναι η γωνιακή επιτά χυνση περιστροφής του συστήµατος περί το Ο, θα ισχύει σύµφωνα µε τον θεµε λιώδη νόµο της στροφικής κίνησης η σχέση: T L - mg L = 3mL 1 + m L # 4 & % T = mg + ml 1) όπου η γωνιακή επιτάχυνση της ράβδου. Την ίδια στιγµή η τροχαλία δέχε ται το βάρος της m g, την τάση T του κατακόρυφου νήµατος ΒC που είναι αντίθετη της T και τις τάσεις T 1, T των δύο κλάδων του νήµατος που περι βάλλει το αυλάκι της. Εάν a C είναι η επιτάχυνση του κέντρου µάζας της τροχα λίας, τότε σύµφωνα µε τον δεύτερο νόµο κίνησης του Νεύτωνα θα ισχύει: 1) T 1 +T +mg - T= ma C T 1 +T +mg - T = ma C T 1 +T +mg - mg - ml = ma C T 1 +T - ml = ma C ) Όµως ισχύει και η σχέση a C =ω Ρ L/, οπότε η ) γράφεται: T 1 +T - ml = ml / T 1 +T = 3mL / 3)

Εξάλλου ο θεµελιώδης νόµος της στροφικής κίνησης δίνει για την τροχαλία την σχέση: Σχήµα T 1 R - T R = mr T 1 - T = mr 4) Eξετάζοντας την ίδια στιγµή τα σώµατα Σ 1 και Σ, µπορούµε, συµφωνα µε τον δεύτερο νόµο του Νεύτωνα, να γράψουµε τις σχέσεις: mg - T 1 = ma 1 mg - T = ma # mg - T = ma 1 1 mg - T = ma # T = mg - a ) 1 1 T = mg - a ) # όπου T 1, T οι τάσεις των νηµάτων εξάρτησης των σωµάτων, αντίθετες των T 1, T και a 1, a οι επιταχύνσεις τους. Όµως για τις αλγεβρικές τιµές των επιταχύνσεων a 1 και a έχουµε a 1 =a C +ω τ R και a 1 =a C -ω τ R, οπότε οι σχέσεις 5) γράφονται: 5) T 1 = mg - a C - R) # T = mg - a C + R) % T = mg - R / - R) # 1 T = mg - R / + R) % T 1 = mg - 3 R / ) # T = mg + R / ) % 6) H σχέση 4) λόγω των 6) γράφεται: mg - 3 R / )- mg + R / ) = mr /

g - 3 R- g - R / = R / = g/r 7) H σχέση 3) λόγω των 6) γράφεται: mg - 3 R / )+mg + R / ) = 3mL # / 7) g - 3 R +g + R / = 3L # / 7g = 6L = 7g / 6L 3g - 3g/+ g/4 = 3L / P.M. fysikos To σώµα Σ του σχήµατος 3) έχει µάζα Μ και ισορ ροπεί πάνω σε λείο οριζόντιο έδαφος. Κάποια στιγµή αφήνουµε στην κεκλιµένη επιφάνεια του σώµατος µια οµογενή σφαίρα µάζας m, η οποία αρχίζει να κυλίεται χωρίς ολίσθηση. Να µελετήσετε την κίνηση του σώµατος Σ στο σύστηµα αναφοράς του εδάφους και να εκφράσετε την µετατόπισή του σε συνάρτηση µε τον χρόνο. Δίνεται η γωνία κλί σεως φ της κεκλιµένης επιφάνειας του σώµατος ως προς το οριζόντιο επίπεδο η ροπή αδράνειας Ι C =mr /5 της σφαίρας ως προς άξονα που διέρχεται από το κέντρο µάζας της C και η επιτάχυνση g της βαρύ τητας. ΛΥΣΗ: Το σώµα Σ υπό την επίδραση της δύναµης επαφής που δέχεται από την σφαίρα τίθεται σε κίνηση πάνω στο λείο οριζόντιο έδαφος. Οι εξωτερικές δυνάµεις που δέχεται το σύστηµα σφαίρα-σώµα Σ βάρος της σφαίρας, βάρος σώµατος, αντίδραση οριζόντιου εδάφους), είναι κατακόρυφες που σηµαίνει ότι η ορµή του συστήµατος κατά την οριζόνια διεύθυνση δεν µεταβάλλεται στην διάρκεια της κίνησής του. Έτσι εάν V είναι η ταχύτητα του σώµατος Σ στο σύστηµα αναφοράς του εδάφους κατά µια τυχαία στιγµή t και v x η οριζόντια συνιστώσα της αντίστοιχης ταχύτητας v του κέντρου µάζας C της σφαίρας, θα ισχύει η σχέση: M V + m v x = 0 V = - m v M x 1) Παραγωγίζοντας την 1) ως προς τον χρόνο t παίρνουµε: d V dt = - m M d v x dt a = - m M a x ) όπου a η επιτάχυνση του Σ και a x η οριζόντια συνιστώσα της επιτάχυνσης του κέντρου µάζας της σφαίρας στο σύστηµα αναφοράς του εδάφους. Εξάλλου στο σύστηµα αναφοράς του σώµατος Σ η σφαίρα κυλίεται χωρίς ολίσθηση υπό την επίδραση του βάρους της w, της δύναµης επαφής από την κεκλιµένη επιφάνεια του σώµατος, η οποία αναλύεται στην στατική τριβή T και την κάθε τη αντίδραση N και τέλος της αδρανειακής ψευδοδύναµης = -m a, η οποία

είναι οριζόντια και αντίρροπη προς την φορά κίνησης του σώµατος Σ. Η T παρουσιάζει ροπή περι το κέντρο της σφαίρας, που της προσδίδει γωνιακή επι τάχυνση για την οποία ισχύει ο θεµελιώδης νόµος της στροφικής κίνησης, δηλαδή έχουµε την σχέση: TR = I C TR = mr /5 T = mr/5 3) Σχήµα 3 Εάν v x είναι η σχετική ταχύτητα της σφαίρας ως προς το σώµα Σ και η γωνιακή της ταχύτητα, θα ισχύει λόγω της κυλίσεώς της η σχέση: v x = R dv x dt = d dt R a x = R 4) όπου a x η σχετική επιτάχυνση του κέντρου της σφαίρας ως προς το σώµα Σ. Έτσι η σχέση 3) γράφεται: T = ma x /5 5) Eφαρµόζοντας για την σχετική κίνηση του κέντρου µάζας της σφαίρας ως προς το σώµα Σ τον δέυτερο νόµο κίνησης του Νευτωνα, παίρνουµε την σχέση: 5) x + w x - T = ma x #% + w&µ% - ma x /5 = ma x ma #% + mg&µ% = 7ma x / 5 a = 5a # %& + gµ&)/ 7 6) Όµως η αλγεβρική τιµή της επιτάχυνσης a x ικανοποιεί την σχέση: ) a x = a ) x - a # = a %& - a # 6) m/m + 1)a = a # %& [ 7m + M) - 5M# ] a % = 5Mg&µ# a = 5Mgµ#%&# 7m + M) - 5M%& # 7) Aπό την 7) προκύπτει ότι η επιτάχυνση του σώµατος Σ στο σύστηµα αναφοράς

του εδάφους είναι σταθερή, δηλαδή το σώµα εκτελεί ως προς το έδαφος οµαλά επιταχυνόµενη µεταφορική κίνηση καθώς η σφαίρα κυλίεται στην κεκλιµένη επιφάνειά του. Έτσι η µετατόπισή του S Σ ως προς το έδαφος σε χρόνο t, δίνεται από την σχέση: S = a t 7) S = 5 14 Mgµ#%&# * ) m + M - 5M%&, t # / 7+ P.M. fysikos Mία οµογενής αλυσίδα µήκους L, κινείται πάνω σε λείο οριζόντιο επίπεδο µε σταθερή ταχύτητα και κάποια στιγµή αρχί ζει να ανέρχεται σε λείο κεκλιµένο επίπεδο, γωνίας κλίσεως φ ως πρός τον ορίζοντα. H ταχύτητα της αλυσίδας µηδενίζεται στιγµιαία, όταν βρίσκεται η µισή πάνω στο κεκλιµένο επίπεδο. i) Eάν x είναι το µήκος της αλυσίδας που βρίσκεται κάποια στιγµή σε επαφή µε το κεκλιµένο επίπεδο, να βρεθεί το µήκος αυτό σε συνάρτη ση µε τον χρόνο t. ii) Nα βρείτε τον χρόνο ανόδου της αλυσίδας στο κεκλιµένο επίπεδο. iii) Eάν v είναι το µέτρο της ταχύτητας της αλυσίδας, όταν το µήκος της πάνω στό κεκλιµένο επίπεδο είναι x, µε 0 x L/, να δείξετε την σχέση: v = gµ L # L 4 - & % x Δίνεται η επιτάχυνση g της βαρύτητας. ΛYΣH: i) Eστω x το τµήµα της αλυσίδας που βρίσκεται πάνω στο κεκλιµένο επίπεδο, ύστερα από χρόνο t αφότου αυτή άρχισε να ανέρχεται στο επίπεδο. Eάν w x είναι το βάρος του τµήµατος αυτού, τότε η συνολική δύναµη που αντι στέκεται στην ανοδική κίνηση της αλυσίδας είναι η συνιστώσα w x της w x η παράλληλη πρός το κεκλιµένο επίπεδο. Έτσι, σύµφωνα µε τον δευτερο νόµο κίνησης του Nεύτωνα, θα ισχύει η σχέση: ma = -w x m d x dt = -m x gµ m * L d x dt = -m * xgµ d x dt + gµ L x = 0 d x dt + x = 0 µε = gµ# / L 1) όπου m * η µάζα που παρουσιάζει η µονάδα µήκους της αλυσίδας και a η αλγεβ ρική τιµή της επιτάχυνσης της αλυσίδας κατά την θεωρούµενη χρονική στιγµή t. H σχέση 1) είναι µια οµογενής διαφορική εξίσωση δεύτερης τάξεως µε σταθερούς συντελεστές, η οποία δέχεται λύση της µορφής:

x = C 1 µt + C #%t ) όπου C 1, C σταθερές ποσότητες, που οι τιµές τους θα βρεθούν από τις αρχικές συνθήκες κίνησης της αλυσίδας. Για t=0 έχουµε x=0, οπότε η σχέση ) δίνει: 0 = C 1 0 + C C = 0 οπότε x = C 1 ηµωt 3) Σχήµα 4 Eξάλλου η αλγεβρική τιµή της ταχύτητας της αλυσίδας κατά την χρονική στιγ µή t είναι: 3) v = dx/dt v = C 1 #t 4) Oι σχέσεις 3) καί 4) εφαρµοζόµενες τη χρονική στιγµή t * που µηδενίζεται η ταχύτητα της αλυσίδας δίνουν αντιστοίχως: L/ = C 1 µt * 0 = C 1 #%t * # L/ = C 1 µt * t * =#/ # # L/ = C 1 µt * 0 = #%t * C 1 = L/ # # Έτσι η σχέση 3) παίρνει την µορφή: x = L # µ % gµ L & t 5) ii) Aπό την σχέση 3) έχουµε: µt = x C 1 = x L/ µ t = 4x L 6) Από την σχέση 4) έχουµε:

#t = v C 1 = v L/ # t = 4v L 7) Προσθέτοντας κατά µέλη τις σχέσεις 6) και 7) παίρνουµε την σχέση: 1 = 4v L + 4x L L = 4x + 4v L v = 4 + L x = 4 + % # x & v = gµ L # L 4 - & % x P.M. fysikos Mια εύκαµπτη λεπτή αλυσίδα διέρχεται από το αυλάκι µικρής τροχαλίας, η οποία είναι στερεωµένη µε το επίπεδό της κατακόρυφο, χωρίς να µπορεί να περιστρέφεται. Η αλυσίδα κρα τείται ακίνητη και τα εκατέρωθεν της τροχαλίας τµήµατά της είναι κατακόρυφα µε µήκη α και β, όπου β<α. Κάποια στιγµή η αλυσίδα αφήνεται ελεύθερη και αρχίζει να κινείται ολισθαίνουσα χωρίς τριβή στο αυλάκι της τροχαλίας. i) Nα δείξετε ότι η µετατόπιση x του κατερχόµενου τµήµατος της αλυ σίδας ικανοποιεί την διαφορική εξίσωση: d x dt - gx + = g - ) + όπου g η επιτάχυνση της βαρύτητας. ii) Να δείξετε ότι ο χρόνος t * που χρείάζεται η αλυσίδα για να εγκα ταλείψει την τροχαλία, δίνεται από την σχέση: t * = + g ln # + & % - ΛΥΣΗ: i) Eξετάζουµε την αλυσίδα την τυχαία χρονική στιγµή t που η µετα τόπιση του κατερχόµενου τµήµατός της είναι x. Eφαρµόζοντας για την αλυσίδα το θεώρηµα διατήρησης της µηχανικής ενέργειας, θεωρώντας ως επίπεδο µηδε νικής βαρυτικής δυναµικής ενέργειας το οριζόντιο επίπεδο που διέρχεται από το κέντρο της τροχαλίας, παίρνουµε την σχέση: - gm * - gm -x) * +0=- -x)gm * - +x) +x)gm * + +)m * v - g- g = - -x) gm * - +x) g+ +)v 1)

όπου v η ταχύτητα του κατερχόµενου τµήµατος της αλυσίδας την χρονική στιγµή t η αντίστοιχη ταχύτητα του ανερχόµενου τµήµατος είναι - v ) και m * η ανά µονάδα µήκους µάζα της αλυσίδας. Διαφορίζοντας την σχέση 1) παίρνου µε: Σχήµα 5 0 = -x)gdx- +x)gdx + +)vdv +)v dv dx =- -x)g + +x)gdx dt dt dt +)v d x =- -x)gv+ +x)gv dt +) d x dt =- -x)g+ +x)g +) d x =gx+ -)g dt d x dt - gx + = # - & % g ) + ii) H ) αποτελεί µια µη οµογενή γραµµική διαφορική εξίσωση µε σταθερούς συντελεστες, η οποία δέχεται ως µερική λύση την x 1 t)=-α-β)/. Η αντίστοιχη οµογενής της ) έχει ως χαρακτηριστική εξίσωση την: - g +# = 0 = µε = g +# της οποίας οι ρίζες είναι ρ 1 =ω και ρ =-ω. Άρα η οµογενής της ) έχει λύση της µορφής: x t) = C 1 e t + C e -t 3) όπου C 1, C σταθερές των οποίων οι τιµές καθορίζονται από τις αρχικές συνθή κες κίνησης της αλυσίδας. H γενική λύση της ) είναι: ) xt) = x 1 t) + x t) xt) = - - ) + C 1 e #t + C e -#t 4)

Παραγωγίζοντας την 4) ως προς τον χρόνο t παίρνουµε την αλγεβρική τιµή της ταχύτητας v, δήλαδη θα έχουµε την σχέση: vt) = C 1 e t - C e -t 5) Oι σχέσεις 4) και 5) για t=0 δίνουν: 0 = - - )/ + C 1 + C % 0 = #C 1 - #C & Έτσι η 4) παίρνει την µορφή: C 1 + C = - )/# C 1 = C % C 1 = C = - 4 xt) = - - ) + - 4 e #t + e ) -#t xt) = - 4 - + e #t + e ) -#t 6) Tην χρονική στιγµή t * που η αλυσίδα εγκαταλείπει την τροχαλία είναι xt * )=β, οπότε η 6) δίνει: = - 4 - + e #t * + e -#t * ) 4 - + = e#t * + e -#t * Θέτοντας e t * = y η προηγούµενη σχέση γράφεται: 4 - + = y + 1 y - )y - = y + 1 y - ky + 1 = 0 7) µε k=α-β)/α+β). Οι ρίζες της 7) είναι: y 1 = k + k - 1 και y = k - k - 1 οπότε θα έχουµε: e t * = k ± k - 1 t * = ln k ± k - 1 Από τις σχέσεις 8) δεκτή είναι η: ) 8) t * = ln k + k - 1) t * = 1 ln k + k - 1) + t * = g ln k + k - 1 Εξάλλου θα έχουµε: ) 9) k + k - 1 = + - + # + & % - - 1 = + - + 1 - + ) - -)

k + k - 1 = + - + 4 - = + + - = + ) ) - ) k + k - 1 = + - οπότε η 9) γράφεται: t * = + g ln # + & % - P.M. fysikos Oµογενής ράβδος AΓ µήκους L, δένεται στο κέντρο µάζας της C µε µή εκτατό νήµα µήκους L, το άλλο άκρο του οποίου στερεώνεται σε κατακόρυφο τοίχο όπως φαίνεται στο σχήµα 6). Tο άκρο A της ράβδου µπορεί να ολισθαίνει χωρίς τριβή πάνω στον τοίχο, ώστε η ράβδος να µένει συνεχώς στο ίδιο κατακόρυφο επίπεδο. Eάν την χρονική στιγµή t=0 η ράβδος αφήνεται ελεύθερη στην θέση φ=φ 0, να εκφράσετε την γωνιακή ταχύτητα περιστροφής της ράβδου περί το κέντρο µάζας της, σε συνάρτηση µε την γωνία φ. Δίνεται η επιτάχυνση g της βαρύτητας. ΛΥΣΗ: Εξετάζουµε τη ράβδο ΑΓ τη στιγµή που σχηµατίζει µε τον κατα κόρυφο τοίχο γωνία φ. Επί της ράβδου ενεργεί το βάρος της w, η τάση T του νήµατος, που αναλύεται στην οριζόντια συνιστώσα T x και στην κατακόρυφη συνιστώσα T y και η αντίδραση K του τοίχου, της οποίας ο φορέας είναι κάθε τος στον τοίχο, δηλαδή οριζόντιος. Σύµφωνα µε τον δεύτερο νόµο κίνησης του Νεύτωνα οι διαφορικές εξισώσεις που καθορίζουν την κίνηση του κέντρου µάζας C της ράβδου έχουν την µορφή: md x /dt = K - T x md y /dt = mg - T y # md x /dt = K - Tµ & md y /dt = mg - T#% 1) όπου x, y οι συντεταγµένες του κέντρου C κατά την θεωρούµενη χρονική στιγµή. Όµως για τις συντεταγµένες αυτές ισχύουν οι σχέσεις: x = Lµ y = L#% & dx/dt = L# d/dt) dy/dt = -L%µd/dt) & d x/dt = -Lµ d/dt) + L#% d /dt d y/dt = -L#%d/dt) - Lµ d /dt ) &

[ ] d y/dt = -L[#%d/dt) + µ d /dt )] d x/dt = L -µ d/dt) + #% d /dt ) ) Σχήµα 6 Συνδυάζοντας τις σχέσεις 1) και ) παίρνουµε: [ ] = K - Tµ [ ] = mg - T#% ml -µ d/dt) + #% d /dt ) -ml #%d/dt) + µ d /dt ) & ) 3) Εξάλλου για την κίνηση της ράβδου περί άξονα διερχόµενο από το C και κάθε το στην ράβδο ισχύει, συµφωνα µε τον θεµελιώδη νόµο της στροφικής κίνησης, η σχέση: I C d dt ml 3 ml) = -LK# 1 d dt = -LK# d = -K# 4) dt όπου ως θετική φορά περιστροφής εληφθη η φορά κατά την οποία η γωνία φ αυξάνεται. Πολλαπλασιάζουµε τα δύο µέλη της πρώτης εκ των σχέσεων 1) µε συνφ και της δεύτερης µε ηµφ και τις προσθέτουµε κατά µέλη, οπότε θα έχου µε: ml µ#% d & ) & + - #% d ) dt * dt + - µ#% d, & ) & + - µ d ) /. * dt * dt + 1 -. * 0 1 = = -K# + T%µ# + mg%µ - T#%µ ml d dt = K# - mg%µ ml d dt = - ml 3 d dt - mgµ 4mL 3 d dt = -mgµ d dt = - 3g µ 5) 4L Όµως ισχύει:

d dt = d dt = d d οπότε η 5) γράφεται: d dt = d d d = - 3g 4L µ#d# d) = - 3g 4L #µd) 0 0 ) = = - 3g 4L -#% + #% 0 3g L #% - #% 0 ) P.M. fysikos