A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

Σχετικά έγγραφα
A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ. y > x + (y - 1) = 1 + y x + (y - 1) = (y + 1) = y + 2y + 1. B2. w(w + 3i) = i(3w + i) ww + 3wi = 3wi - 1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

G(x) = G(x) = ΘΕΜΑ 1o

y > x + (y - 1) = 1 + y x + (y - 1) = (y + 1) = y + 2y + 1 w(w + 3i) = i(3w + i) ww + 3wi = 3wi - 1

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

β. Αν f (x) 0 σε κάθε εσωτερικό σημείο x του Δ, τι συμπεραίνετε για τη μονοτονία της συνάρτησης f ; Μονάδες 4,5

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

A ένα σημείο της C. Τι

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

= 1-3 i, να γράψετε στο τετράδιό

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

α,β,γ και α 0 στο σύνολο των μιγαδικών

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ,

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ( t) f dt = G(β) G(α) A2. Πότε η γραφική παράσταση μιας συνάρτησης f λέμε ότι έχει:

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( )

f(x ) 0 O) = 0, τότε το x

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

f(x ) 0 O) = 0, τότε το x

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

z - 3i + z + 3i = 2 z - 3i + z - 3i = 2 2 z - 3i = 2 z - 3i = 1 άρα ο γ.τ. των εικόνων του z είναι

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Transcript:

ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) A. Να αποδείξετε ότι η συνάρτηση f()=συν είναι παραγωγίσιμη στο και για κάθε ισχύει ( συν) = ημ Μονάδες A. Έστω μία συνάρτηση f, ορισμένη σε ένα διάστημα. Να διατυπώσετε τον ορισμό της αρχικής συνάρτησης ή παράγουσας της f στο. Μονάδες 5 Α3. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για κάθε μιγαδικό αριθμό z=α+βi, α,β ισχύει z z =β β) Μία συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι παρουσιάζει στο A (ολικό) μέγιστο το f( ), όταν f() f() για κάθε A γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα, τότε είναι και - στο διάστημα αυτό. ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ δ) Αν lim f () = και f()> κοντά στο, τότε lim = + f () ε) Κάθε συνάρτηση f που είναι συνεχής σε ένα σημείο του πεδίου ορισμού της είναι και παραγωγίσιμη στο σημείο αυτό. Μονάδες ΘΕΜΑ Β ίνονται οι μιγαδικοί αριθμοί z, w, οι οποίοι ικανοποιούν αντίστοιχα τις σχέσεις: z i =+Im(z) () w(w +3i)=i(3w +i) () B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών z είναι η παραβολή με εξίσωση y= Μονάδες 7 B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των μιγαδικών αριθμών w είναι ο κύκλος με κέντρο το σημείο Κ(,3) και ακτίνα ρ=. Μονάδες 7 B3. Να βρείτε τα σημεία Α και Β του μιγαδικού επιπέδου, τα οποία είναι εικόνες των μιγαδικών αριθμών z, w με z =w. Μονάδες 5 B. Nα αποδείξετε ότι το τρίγωνο ΚΑΒ είναι ορθογώνιο και ισοσκελές και, στη συνέχεια, να βρείτε τον μιγαδικό αριθμό u με εικόνα στο μιγαδικό επίπεδο το σημείο Λ, ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ έτσι ώστε το τετράπλευρο με κορυφές τα σημεία Κ,Α,Λ,Β να είναι τετράγωνο. Μονάδες 6 ΘΕΜΑ Γ Ένα κινητό Μ κινείται κατά μήκος της καμπύλης y=,. Ένας παρατηρητής βρίσκεται στη θέση Π(,) ενός συστήματος συντεταγμένων Οy και παρατηρεί το κινητό από την αρχή Ο, όπως φαίνεται στο παρακάτω σχήμα. y Α(,) y= Π(,) Μ O ίνεται ότι ο ρυθμός μεταβολής της τετμημένης του κινητού για κάθε χρονική στιγμή t, t είναι (t) = 6m/min Γ. Να αποδείξετε ότι η τετμημένη του κινητού, για κάθε χρονική στιγμή t, t δίνεται από τον τύπο: (t)=6t Μονάδες 5 Γ. Να αποδείξετε ότι το σημείο της καμπύλης μέχρι το οποίο ο παρατηρητής έχει οπτική επαφή με το κινητό είναι το Α(,) και, στη συνέχεια, να υπολογίσετε πόσο χρόνο διαρκεί η οπτική επαφή. Μονάδες 6 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Γ3. Να υπολογίσετε το εμβαδόν του χωρίου Ω που διαγράφει η οπτική ακτίνα ΠΜ του παρατηρητή από το σημείο Ο μέχρι το σημείο Α. Μονάδες 6 Γ. Να αποδείξετε ότι υπάρχει χρονική στιγμή t (, ), κατά την οποία η απόσταση d=(πμ) του παρατηρητή από το κινητό γίνεται ελάχιστη. Μονάδες 8 Να θεωρήσετε ότι το κινητό Μ και ο παρατηρητής Π είναι σημεία του συστήματος συντεταγμένων Οy. ΘΕΜΑ ίνεται η συνάρτηση f:, η οποία είναι 3 φορές παραγωγίσιμη και τέτοια, ώστε: f () i) lim = + f () ii) f () < f()-f() και iii) f () για κάθε. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης f στο σημείο της με τετμημένη =. Μονάδες 3. Να αποδείξετε ότι η συνάρτηση f είναι κυρτή στο. Μονάδες 5 Αν επιπλέον g()=f(),, τότε: 3. Να αποδείξετε ότι η g παρουσιάζει ολικό ελάχιστο και να βρείτε το lim ημ g() Μονάδες 6 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ. Να αποδείξετε ότι f ()d > Μονάδες 5 5. Αν το εμβαδόν του χωρίου Ω που περικλείεται από τη γραφική παράσταση της συνάρτησης g, τον άξονα και τις ευθείες με εξισώσεις = και = είναι Ε(Ω)=e 5, τότε να υπολογίσετε το ολοκλήρωμα f ()d και στη συνέχεια να αποδείξετε ότι υπάρχει ξ (,) τέτοιο, ώστε ξ f (t)dt = ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ Μονάδες 6 Ο ΗΓΙΕΣ (για τους εξεταζομένους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα.. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ. 6. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 7. ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: 8. KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδα 5 Α. Σχολικό βιβλίο σελίδα 33 Α3. α. Λάθος, β. Σωστό, γ. Σωστό, δ. Σωστό, ε. Λάθος. ΘΕΜΑ Β z = + yi B. z - i = + Im(z) + yi - i = + y B. y > - + (y - ) = + y + (y - ) = (y + ) + y - y + = y + y + = y w(w + 3i) = i(3w + i) ww + 3wi = 3wi - z = + yi w + 3(w - w)i + = + y + 3 yi i + = + y - 6y + 9 = 8 + (y - 3) = 8 άρα ο γ.τ. των εικόνων του z είναι y = κύκλος με κέντρο Κ (, 3) και ακτίνα ρ = 8 = Β3. Αναζητούμε τα κοινά σημεία των δύο γεωμετρικών τόπων = y () + y - 6y + = () () () y + y - 6y + = y - y + = y = y= () = = Άρα Α (, ) και Β (-, ). B. (ΚΑ) = (ΚΒ) = ρ = ΚΑΒ ισοσκελές (ΑΒ) = ( + ) + ( - ) = 6 Π.Θ. ΚΑΒ ορθογώνιο (ΚΑ) + (ΚΒ) = 8 + 8 = 6 Μ μέσο του ΑΒ Μ (, ) Μ μέσο του ΚΛ Λ (, -) u = - i

ΘΕΜΑ Γ Γ. (t) = 6 (t) = (6t), t Aπό συνέπειες Θ.Μ.Τ. (t) = 6t + c, t Για = είναι () = c =, άρα (t) = 6t, t Γ. Παρατήρηση : Έπρεπε να εξηγηθεί γιατί ο παρατηρητής χάνει την οπτική επαφή με το κινητό στο Α. Έστω f () =, με f () =, > Αναζητούμε την εφαπτομένη (ε) της C που διέρχεται από το σημείο Π (, ). (ε) : y - f ( ) = f ( ) ( - ) (ε) : y - = ( - ) Π C f - = (- ) - = - = = = ή = Για = y = (t ) = 6t = t = min ή t = 5sec Άρα η οπτική επαφή διαρκεί 5sec Γ3. ος τρόπος Η εφαπτομένη της C f στο Α (, ) (ε) είναι η (ε) : y = + A (, ) Άρα το ζητούμενο εμβαδόν είναι : E = + - d = d + d + d 6 3 3 = + - = + - = f m 3 ος τρόπος Το ζητούμενο εμβαδόν είναι : (ΟΠ)+(ΑΒ) 6 E = (OΠΑΒ) - d = (ΟΒ) - = 6 - = 3 3 Β m 3

Γ. Μ (, y) M (, ) M (6t, t ) d (t) = (ΠΜ) = (6t - ) + ( t - ) = 56t + 6t - 8 t + d (t) = 56t + 6t - 8 t + = 56t + 8-56t + 6t - 8 t + Θεωρούμε συνάρτηση g, με g (t) = 56t + 8 -,t > t g (t) = 56 + >, άρα η g είναι γν.αύξουσα στο (, + ) t t ος τρόπος H g είναι συνεχής στο, 6 ως πράξεις συνεχών g = + 8-6 = - < 6 g = 6 + 8 - = 68 > Από Θ. Bolzano η g έχει μια τουλάχιστον ρίζα t στο,, 6 και επειδή g γνησίως αύξουσα η ρίζα αυτή είναι μοναδική. ος τρόπος H g είναι συνεχής και γνησίως αύξουσα στο Δ =, im g (t) = im 56t + 8 - = - + + t t t g = 6 + 8 - = 68 Άρα g (Δ) = -, 68. Είναι -, 68, άρα η g έχει μια τουλάχιστον ρίζα t, και επειδή g γνησίως αύξουσα η ρίζα αυτή είναι μοναδική. t

d () > g () > g () > g (t ) > t g t + d () - + d () Η d είναι γν.φθίνουσα στο (, t ] και γν.αύξουσα στο [t, +). Η απόσταση d γίνεται ελάχιστη τη χρονική στιγμή t, ΘΕΜΑ Δ f συνεχής f () f () Δ. f () = im f () = im = im im = + f () =, f () - f () f () f () = im = im = + f () = - (ε) : y - f () = f () ( - ) (ε) : y = Δ. Θ.Μ.Τ. με τη συνάρτηση f στο διάστημα [, ] Υπάρχει ένα τουλάχιστον ξ (, ), τέτοιο ώστε f () - f () f (ξ) = f (ξ) = f () - f () - Είναι f () < f () - f () () f () < f (ξ) Επίσης f (), για κάθε IR και επειδή η f είναι συνεχής ως παραγωγίσιμη, από συνέπειες Θ. Bolzano η oς τρόπ f διατηρεί σταθερό πρόσημο στο IR. ος oς τρόπος () () Η f είναι γνησίως μονότονη στο IR. Είναι < ξ και f () < f (ξ) από () Επομένως η f είναι γνησίως αύξουσα στο ΙR, Θ.Μ.Τ. με τη συνάρτηση f στο διάστημα [, ξ] Υπάρχει ένα τουλάχιστον ξ f (ξ) - f () f (ξ ) = >, από () ξ - (, ξ), τέτοιο ώστε Επομένως είναι f () >, για κάθε IR, Άρα η f είναι κυρτή στο IR.

Δ3. Είναι g () = f () -, IR. g () = f () -, IR. g () > f () - > f () > f () > f () και επειδή η f είναι γνησίως αύξουσα > Η g παρουσιάζει ολικό ελάχιστο την τιμή g () = f () =. ημ ημ im = im = +, διότι g () g () ημ im = και im g () =, με g (). Δ. Eίναι g () και το "=" ισχύει μόνο για =, άρα Δ5. - + g () - + g () g () d > f () - d > f () d - d > Eίναι g (), άρα Ε = g () d = e - f () d > 5 f () - d = e - 5 f () d - = e - f () d > 5 5 f () d - d = e - Θεωρούμε συνάρτηση h, με h () = f (t) dt -, [, ] H h είναι συνεχής στο [, ] ως πράξεις συνεχών () f () d = e - () h () = f (t) dt - = e - - = e - < h () = f (t) dt - > από Δ Από Θ. Bolzano υπάρχει ένα τουλάχιστον ξ (, ) τέτοιο ώστε h (ξ) = ξ f (t) dt =