5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη



Σχετικά έγγραφα
4.3. Γραµµικοί ταξινοµητές

4. Μέθοδοι αναγνώρισης ταξινοµητές µε επόπτη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

οµή δικτύου ΣΧΗΜΑ 8.1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

Αναγνώριση Προτύπων - Νευρωνικά ίκτυα

Θεωρία Αποφάσεων και Βελτιστοποίηση

/5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Κανόνες παραγώγισης ( )

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

11 Το ολοκλήρωµα Riemann

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

Αλγόριθµοι και Πολυπλοκότητα

Ομόλογα (bonds) Μετοχές (stocks) Αμοιβαία κεφάλαια (mutual funds)

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

Αλγόριθµοι και Πολυπλοκότητα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

4. ΔΙΚΤΥΑ

Γενικευµένη Simplex Γενικευµένη Simplex

Εισαγωγή στην Τοπολογία

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Η Ευκλείδεια διαίρεση

Μεθοδολογίες παρεµβολής σε DTM.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μαθηµατικά για Πληροφορική

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα

Αλγόριθµοι και Πολυπλοκότητα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

5 Παράγωγος συνάρτησης

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Ακέραιος Γραµµικός Προγραµµατισµός

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Σχεδιασµός Τροχιάς. Σχήµα Πορείες στον χώρο των αρθρώσεων και τον Καρτεσιανό χώρο.

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8


Θεωρία Αποφάσεων και Βελτιστοποίηση

ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Ο Αλγόριθµος της Simplex

Βασική Εφικτή Λύση. Βασική Εφικτή Λύση

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος"

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Ακέραιος Γραµµικός Προγραµµατισµός

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

(365)(364)(363)...(365 n + 1) (365) k

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

Άσκηση 1 (α) ============================================================== Έχουµε L = π, εποµένως η σειρά Fourier είναι: 1 2 a. cos. a n. b n.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΜΑΘΗΜΑ ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ xο

x k+1 = x k + α k (x k ) ώστε f(x k+1 ) < f(x k ),

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Physics by Chris Simopoulos

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

Κρυπτογραφία και Πολυπλοκότητα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Transcript:

5. Μέθοδοι αναγνώρισης εκπαίδευση χωρίς επόπτη Tο πρόβληµα του προσδιορισµού των συγκεντρώσεων των προτύπων, όταν δεν είναι γνωστό το πλήθος τους και η ταυτότητα των προτύπων, είναι δύσκολο και για την λύση του προτείνονται ενδιαφέρουσες αλλά και πολύπλοκες τεχνικές. Η µέτρηση πολλών χαρακτηριστικών και η ποικιλία των προτύπων είναι βασικοί παράγοντες που επιτείνουν την δυσκολία του προβλήµατος. Ακολούθως θα παρουσιάσουµε τρεις µεθόδους εκπαίδευσης χωρίς επόπτη. Οι δύο πρώτες είναι απλές διαδικασίες που µπορούν να δροµολογηθούν για την επίλυση απλών προβληµάτων µικρού µεγέθους δεδοµένων. Η τρίτη είναι µία ισχυρή µέθοδος που βασίζεται στην λειτουργία ενός νευρωνικού δικτύου. Η δεύτερη και τρίτη µέθοδος δίνουν την δυνατότητα εποπτείας σε πολυδιάστατους χώρους που η αναπαράστασή τους σε ένα σύστηµα αξόνων είναι ανέφικτη. 5.. Προσδιορισµός των συγκεντρώσεων µε την µέθοδο MAXIMIN Πρόκειται για µία µέθοδο προσδιορισµού του πλήθους και του περιεχοµένου των συγκεντρώσεων των προτύπων, επονοµαζόµενη µέθοδος MAXIMIN και βασίζεται στην χρήση των αποστάσεων µεταξύ των προτύπων. Η µέθοδος έχει ως εξής: Θεωρούµε Κ (Κ Ν) το πλήθος των προτύπων Π κ, κ=,,κ, του συνόλου εκπαίδευσης S και x κ τον πίνακα του προτύπου Π κ. Θεωρούµε τον µετρητή κλάσεων t (t N) µε αρχική τιµή ένα (t = ). Βήµα ο : Επιλέγουµε ένα τυχαίο πρότυπο ορίζουµε την πρώτη κλάση ω t =ω. Π = Π (τ t =,,Κ) και µε αυτό τt τ Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5- Τµήµα Πληροφορικής & Επικοινωνιών

Βήµα 2 ο : ηµιουργούµε το σύνολο D των αποστάσεων των προτύπων του S από το Π τ (5..) D { x x / Π S} = τ κ κ Βρίσκουµε το πρότυπο Π τ 2 (τ 2 =,,Κ) που απέχει την µέγιστη απόσταση Μ από το Π τ. (5..2) max(d ) τ 2 = κ (5..3) = x x = max(d ) D τ τ2 Βήµα 3 ο : Αυξάνουµε το t κατά ένα και ορίζουµε την κλάση ω t µε στοιχείο το, τ t Π ω { Π } t =. τ t Βήµα 4 ο : Ταξινοµούµε κάθε Π κ S στις τάξεις ω i, I=,,t µε το κριτήριο της ελάχιστης απόστασης. ηµιουργούµε τα σύνολα D i των αποστάσεων των προτύπων κάθε κλάσης ω i από το πρότυπο που όρισε την κλάση. (5..4) D = { x x / Π ω, i,...,k} i τi κ κ i = Βρίσκουµε την µέγιστη απόσταση Μ t µεταξύ όλων των αποστάσεων των D i και το αντίστοιχο πρότυπο Π κ το οποίο ονοµάζουµε. Π τ t + t (5..5) τ t max Di κ + = U i= Π τi (5..6) M = max U t t D i i= Βήµα 5 ο : Αν Μ t / Μ t+ ρ <<, όπου ρ θετικός προκαθορισµένος αριθµός σηµαντικά µικρότερος της µονάδας, η διαδικασία σταµατάει και το πλήθος των οµάδων είναι ο αριθµός t. Αλλιώς συνεχίζεται επαναληπτικά από το βήµα 3. Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5-2 Τµήµα Πληροφορικής & Επικοινωνιών

ΠΑΡΑ ΕΙΓΜΑ ΓΙΑ ΤΗΝ ΜΕΘΟ Ο MAXIMIN ίνονται οι παρακάτω πίνακες προτύπων: (5..7) x = [0, 8] T, x 2 = [9, 7] T, x 3 = [, 0] T, x 4 = [2, 8] T, x 5 = [4, ] T, x 6 = [8, 9] T Στο ρ δίνεται ι τιµή 0.4 (ρ=0.4) προς χάριν του παραδείγµατος διότι στις πραγµατικές εφαρµογές χρησιµοποιείται µικρότερη τιµή. Για απλούστευση της διαδικασίας υπολογίζουµε όλες τις αποστάσεις (π.χ. Ευκλείδειες) d κλ, κ,λ {,2,3,4,5,6,} µεταξύ των προτύπων. εδοµένου ότι d κλ = d λκ και d κκ =0 πρέπει να υπολογίσουµε για πλήθος προτύπων Κ = 6, Κ(Κ-)/2=5 αποστάσεις. Οι τιµές των αποστάσεων δίνονται από τον Πίν. 5.-: d 3= 85 d 4= d 2= 2 = d 5= 85 d 6= 5 [ (0-9) 2 +(8-7) 2 ] /2 64 d 23= 73 d 24= d 25= 6 d 26= 5 50 d 34= 5 d 35= 90 d 36= 50 d 45= 53 d 46= 37 d 56= 80 Πίνακας 5.- Το πλήθος προτύπων Κ=6 και ο µετρητής συγκεντρώσεων t=. Επιλέγουµε τυχαία το πρότυπο Π 4, άρα τ =4 και ω ={Π 4 }. = { d, d, d, d, d, d } { 64, 50, 5, 0, 53, 37} D 4 42 43 44 45 46 = Μ = max ( D ) = 64 = 8, άρα τ 2 =. t = 2, ω 2 = {Π }. Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5-3 Τµήµα Πληροφορικής & Επικοινωνιών

Όλα τα πρότυπα ταξινοµούνται στις κλάσεις ω, ω 2 µε βάση το κριτήριο της ελάχιστης απόστασης από τα Π 4 και Π. Για διευκόλυνση δηµιουργούµε τον ακόλουθο πίνακα. Π 2 Π 3 Π 5 Π 6 Π 4 ω 50 5 53 37 Π ω 2 2 85 85 5 Π 2 ω 2 Π 3 ω Π 5 ω Π 6 ω 2 Πίνακας 5.-2 Άρα ω ={Π 3, Π 4, Π 5 }, ω 2 ={Π, Π 2, Π 6 } ({ d, d } { d, d }) = max{ 5, 53, 2, 5, } = 53 = d τ 5 M 2 = max 43 45 U 2 6 45 3 = M 2 /M = 53 / 64 > p και συνεχίζουµε από το βήµα 3. t = 3, ω = { Π } = { Π } 3 τ3 5 Τα πρότυπα ταξινοµούνται στις κλάσεις ω, ω 2, ω 3 όπως φαίνεται στον ακόλουθο πίνακα. Π 2 Π 3 Π 6 Π 4 ω 50 5 37 Π ω 2 2 85 5 Π 5 ω 3 6 90 80 Π 2 ω 2 Π 3 ω Π 6 ω 2 Πίνακας 5.-3 Οι κλάσεις διαµορφώνονται ως εξής: ω ={Π 3, Π 4 }, ω 2 ={Π, Π 2, Π 6 }, ω 3 ={Π 5 }. Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5-4 Τµήµα Πληροφορικής & Επικοινωνιών

M 3 άρα τ ({ d } U { d,d } ) = max( { 5, 2, 5} ) = max U 4 43 = 3 ή 6. 2 6 = 5 = d 43 = d 6 Μ 3 /Μ 2 = 5 / 53 =0.307<ρ συνθήκη που οδηγεί στον τερµατισµό της διαδικασίας και στο αποτέλεσµα των τριών κλάσεων ω, ω 2,ω 3. Στο Σχ. 5.- - απεικονίζονται τα άκρα των ανυσµάτων των προτύπων, ο οπτικός προσδιορισµός των συγκεντρώσεων συµφωνεί µε τα αποτελέσµατα της διαδικασίας. x 3 + x 4 + x 6 + x 2 + x + x 5 + Σχήµα 5.- 5.2. Απεικόνιση αλυσίδας Η απεικόνιση αλυσίδας (chain map) είναι µία µέθοδος που παρέχει την εποπτεία της κατανοµής των προτύπων σε πολυδιάστατους χώρους και µπορεί να χρησιµοποιηθεί για την εύρεση του πλήθους και του περιεχοµένου των συγκεντρώσεων τους. Σύµφωνα µε αυτήν δηµιουργούµε µία κατανοµή της απόστασης κάθε προτύπου µε το γειτονικότερό του. Συγκεκριµένα διατρέχουµε όλα τα πρότυπα ξεκινώντας από κάποιο τυχαίο µεταβαίνοντας στο γειτονικότερό του εξαιρουµένου του προηγουµένου του. Θεωρούµε έναν δείκτη i, i Ν, που αριθµεί τις µεταβάσεις από πρότυπο σε πρότυπο αυξανόµενος κατά ένα ξεκινώντας µε αρχική τιµή την µονάδα που αντιστοιχεί στην απόσταση του αρχικού τυχαίου προτύπου µε το γειτονικότερό του. ηµιουργούµε την ακολουθία α i των αποστάσεων των προτύπων. Οι κορυφές Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5-5 Τµήµα Πληροφορικής & Επικοινωνιών

της κατανοµής που περιγράφει η ακολουθία α i, διαχωρίζουν το σύνολο των προτύπων σε υποσύνολα που καθορίζουν τις συγκεντρώσεις τους. ΠΑΡΑ ΕΙΓΜΑ Έστω τα πρότυπα x = [0, 8] T, x 2 = [9, 7] T, x 3 = [, 0] T, x 4 = [2, 8] T, x 5 = [4, ] T, x 6 = [8, 9] T που χρησιµοποιήσαµε και στο παράδειγµα της µεθόδου MAXIMIN. Επιλέγουµε τυχαία το πρότυπο Π 4 και θέτουµε i=. Υπολογίζουµε τις αποστάσεις των υπολοίπων προτύπων (δίνονται στον Πίν. ) και υπολογίζουµε την µικρότερή τους. min{d 4, d 42, d 43, d 45, d 46 } = min{ 64, 50, 5, 53, 37 }= 5 = α άρα γειρονικότερο του Π 4 είναι το πρότυπο Π 3. Υπολογίζουµε τις αποστάσεις των προτύπων πλην του Π 4, από το Π 3 και βρίσκουµε την µικρότερή τους min{ d 3, d 32, d 35, d 36 } = { 85, 73, 90, 50 } = 50 = α 2 και µεταβαίνουµε στο Π 6. min{d 6, d 62, d 65 } = { 5, 5, 32 } = 5 = α 3 και µεταβαίνουµε στο Π 2. min{d 2, d 25 } = { 2, 6 } = 2 = α 4 και µεταβαίνουµε στο Π. d 5 = 85 = α 5. d 54 = 90 = α 6. Οι τιµές της ακολουθίας α i, i=,...,6 φαίνονται στο Σχ.5.2-. Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5-6 Τµήµα Πληροφορικής & Επικοινωνιών

Οι υψηλές τιµές ορίζουν τις οµάδες χαµηλών τιµών α) d 43, β) d 62, d 2. Από την πρώτη συµπαιρένεται ότι ω ={Π 3, Π 4 }, από τήν δεύτερη ω 2 ={Π 6, Π 2, Π }. Το αποµένον Π 5 ω 3. 0 9 8 7 6 5 4 3 2 0 2 3 4 5 6 d 43 d 36 d 62 d 2 d 5 d 54 Σχήµα 5.2- Αναγνώριση Προτύπων-Νευρωνικά ίκτυα 5-7 Τµήµα Πληροφορικής & Επικοινωνιών