ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ



Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

(f(x)+g(x)) =f (x)+g (x), x R

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

P A B P(A) P(B) P(A. , όπου l 1

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

P(A ) = 1 P(A). Μονάδες 7

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

,,, και τα ενδεχόμενα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

x. Αν ισχύει ( ) ( )

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι:

(f(x) + g(x)) = f (x) + g (x).

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

μιας παρατήρησης όπου λ. Αν για το πλήθος Ν(Ω) των σφαιρών που υπάρχουν στο κουτί ισχύει 64<Ν(Ω)<72, τότε λ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Transcript:

ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή κύμανση. Α. Τι ονομάζεται παράγωγος μιας συνάρτησης f στο σημείο x 0 του πεδίου ορισμού της; Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) lim (συνx) = συνx x x0 β) (cf (x))' = c f '(x) 0 (μονάδες ) (μονάδες ) γ) Σε μια ποσοτική μεταβλητή αντί του ραβδογράμματος χρησιμοποιείται το διάγραμμα συχνοτήτων. (μονάδες ) δ) Ένα δείγμα τιμών μιας μεταβλητής Χ χαρακτηρίζεται ομοιογενές, όταν ο συντελεστής μεταβολής ξεπερνά το 0%. (μονάδες ) ε) Δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω λέγονται ασυμβίβαστα, όταν Α Β (μονάδες ) Μονάδες 0 ΘΕΜΑ Β Δίνεται η συνάρτηση f(x)=e x (x-), x R Θεωρούμε επίσης δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω με f(x ) Ρ(Α) = x και Ρ(Β) = e όπου η f παρουσιάζει ελάχιστο στο x

ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Β. Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα. Μονάδες Β. Να αποδείξετε ότι Ρ(Α) = και Ρ(Β) = Μονάδες Β. Να αποδείξετε ότι τα ενδεχόμενα Α και Β δεν είναι ασυμβίβαστα και Μονάδες 5 Β4. Να αποδείξετε ότι Ρ(Α ' Β') Μονάδες 8 ΘΕΜΑ Γ Εξετάζουμε ένα δείγμα μεγέθους ν ως προς μία ποσοτική μεταβλητή Χ και ομαδοποιούμε τις παρατηρήσεις του δείγματος σε 5 ισοπλατείς κλάσεις πλάτους c, όπως φαίνεται στον παρακάτω πίνακα: Κλάσεις Κεντρικές fi% Fi Fi% τιμές xi [α,.) λ [.,.) λ+0 [.,.) [.,.) κλ -λ+0 [.,.) κλ -λ+0 Σύνολα Δίνεται ότι οι αθροιστικές σχετικές συχνότητες F και F5 είναι οι ρίζες της εξίσωσης: 5x -8x+κ, όπου x R και κ R Γ. Να αποδείξετε ότι κ= και λ=0 Μονάδες 8 Γ. Να αποδείξετε ότι f %=0, f %=0, f %=0, f 4 %=0 και f 5 %=0 Μονάδες 5

ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Γ. Αν το 5% των παρατηρήσεων είναι μικρότερες του και το 5% των παρατηρήσεων είναι μεγαλύτερες ή ίσες του 4, τότε να αποδείξετε ότι α=0 και c=4 (μονάδες 4) Στη συνέχεια να μεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα κατάλληλα συμπληρωμένο. (μονάδες 4) Μονάδες 8 Γ4. Αν το πλήθος των παρατηρήσεων που είναι μεγαλύτερες η ίσες του είναι 800, τότε να υπολογίσετε το μέγεθος του δείγματος. ΘΕΜΑ Δ Δίνεται η συνάρτηση x f(x) = +,x R x + και ο δειγματικός χώρος Ω={ω, ω, ω, ω 4 }, όπου ω = -, ω =0 και <ω <ω 4 Δίνονται, επίσης, οι πιθανότητες Ρ(ω i )=f(ω i ) -, όπου i=, f '(x) Ρ(ω ) = lim x x και Δ. Θεωρούμε τα ενδεχόμενα Α, Β και Γ του δειγματικού χώρου Ω με Α = {ω Ω/f'(ω) 0}, Α = {ω Ω/f(ω) > } και Γ {ω Ω/x ωx = + για κάθε x R 4 } α) Να βρείτε τις πιθανότητες Ρ(ω ), Ρ(ω ), Ρ(ω ) και Ρ(ω 4 ) β) Να βρείτε τις πιθανότητες Ρ(Α), Ρ(Β), Ρ(Γ) και Ρ(Α-Β) (μονάδες 8) (μονάδες 8) Μονάδες Δ. Να βρείτε την εξίσωση της εφαπτομένης (ε) της γραφικής παράστασης της f, η οποία σχηματίζει με τον άξονα x x γωνία 45 ο Δ. Αν Μ κ (ω κ, y κ ), κ=,,, 4 είναι σημεία της εφαπτομένης (ε): y=x+ με = δy δω κ και R κ y κ = 5 τότε να υπολογίσετε τα ω και ω 4 του δειγματικού χώρου Ω, όπου δ : η διάμεσος των τετμημένων των σημείων Μ κ, ω κ

δ y κ R y κ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 : η διάμεσος των τεταγμένων των σημείων Μ κ και : το εύρος των τεταγμένων των σημείων Μ κ ΘΕΜΑ Α Α. Θεωρία σχολικού βιβλίου. Α. Θεωρία σχολικού βιβλίου. Α. Θεωρία σχολικού βιβλίου. Α4. α) Σ, β) Σ, γ) Σ, δ) Λ, ε) Λ. ΑΠΑΝΤΗΣΕΙΣ Μονάδες 5 ΘΕΜΑ Β Β. Η f είναι παραγωγίσιμη στο R με f (x)=[e x (x-)] =e x (x-) x e > 0 x Είναι f'(x) 0 e (x ) 0 x 0 x Οπότε η f είναι γνησίως αύξουσα στο [, + ), η f είναι γνησίως φθίνουσα στο (, ]. Στο / f( ) = e ( ) = 4 e. x = η f παρουσιάζει ελάχιστη τιμή την Β. P(A) = και ( 4 e) 4 P(B) = = =. e Β. Έστω ότι Α, Β είναι ασυμβίβαστα τότε 7 P(A B) = P(A) + P(B) = + = > ΑΤΟΠΟ. Οπότε Α, Β δεν είναι ασυμβίβαστα. Β4. Αρκεί P(A' B') δηλαδή P(A' B') και Ισχύει Α' Β' Α' οπότε P(A' B') P(A') ή P(A' B') P(A) P(A' B') = < άρα P(A' B'). P(A' B')

ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Θα δείξουμε P(A' B') ή P[(A ' (B')]' ή P(A' B') ή P(B A) ή P(B) P(A B) ή P(A B) ή P(A B) ή P(A B) ή P(A B) P(A) ισχύει αφού A B A. ΘΕΜΑ Γ Γ. Είναι F 5 = και F 5 %=00. Από τους τύπους VIETA 8 F + F5 = F5 5 = F = 5 k F F 5 = k = 5 Επειδή F 5 %=00 λ -λ-70=0 Άρα λ=0. λ = 0 η ' λ = 7 Απορ. Γ. Οπότε f %=λ=0, f %=0, f %=0, f 4 %=0, f 5 %=0. f% Γ. Έχουμε f% + = 5% οπότε x = f% 4 f% 5 + = 5οπότε x 4 =4 Είναι x + c= x4 c=4. η κλάση [α, α+4) η κλάση [α+4, α+8) α + 4 + α + 8 Οπότε x = ή α + = α = 0 άρα α=0.

ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Κλάσεις Κεντρικές fi% Fi Fi% τιμές xi [0, 4) 0 0, 0 [4, 8) 0 0,4 40 [8, ) 0 0 0, 0 [, ) 4 0 0,9 90 [, 0) 8 0 00 Σύνολα 00 Γ4. Έχουμε 40 800 = οπότε ω=000. 00 ν ΘΕΜΑ Δ Δ. α) Ρ(ω ) = Ρ( ) = f( ) = + = Ρ(ω ) = Ρ(0) = f (0) = 0 + = x x f'(x) = ( + )' = x (x + ) f'(x) (x+ ) lim = lim = οπότε x x x (x + ) f'(x) Ρ(ω ) = lim = ( ) = οπότε x x Ρ(ω 4) = Ρ(ω ) Ρ(ω ) Ρ(ω ) = = ω β) f'(ω) 0 0 ω 0 ω (ω + ) ω ή ω. Άρα Α{-, ω, ω 4 } και 4 Ρ(Α) = Ρ( ) + Ρ(ω ) + Ρ(ω 4) = + + = = ω ω f(ω) > + > > 0 ω > 0 άρα ω + ω +

ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Β={ω, ω 4 } οπότε Ρ(Β) = Ρ(ω ) + Ρ(ω 4) = + = Για κάθε x R είναι x + ωx+ 0 οπότε Δ 0 4 Δηλαδή ω 0 ω άρα Γ={-, 0} 5 Οπότε Ρ(Γ) = Ρ( ) + Ρ(0) = + = Είναι Α-Β={-} οπότε Ρ(Α Β) = Ρ( ) =. Δ. Έστω Μ (x 0, f(x 0 )) το σημείο επαφής. x0 λεφ = εφ45 = οπότε f'(x 0) = = (x0 + ) 4 x0 + x0 = 0 x 0(x0 + ) = 0 x0 = 0 x0 = 0 f(0)= και f (0)= άρα η εξίσωση της εφαπτομένης της cf στο Μ είναι y = x y= x+. Δ. Μ (ω, y ) όπου ω = - και y = -+=0 Μ (ω, y ) όπου ω =0 και y =0+= Μ (ω, y ) όπου y =ω + Μ 4 (ω 4, y 4 ) όπου y 4 =ω 4 + και αφού <ω <ω 4. Είναι y <y <y <y 4 Ry = y y 5 = ω + ω = 4 4 4 4 0 + ω ω δ ω = = y + y + ω + + ω δ y = = = ω + ω Είναι δω=δy = ω = ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΗΘΗΚΕ Ο ΤΟΜΕΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ ΚΟΥΣΗΣ Π. ΣΙΦΝΑΙΟΣ Δ. ΤΖΩΡΤΖΙΝΗΣ Ι. ΦΙΛΙΟΓΛΟΥ Ε. ΦΛΩΡΟΠΟΥΛΟΣ Α.