ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Σχετικά έγγραφα
Ιστορία των Μαθηματικών

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Μαθηματικά Α Τάξης Γυμνασίου

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

1 ΘΕΩΡΙΑΣ...με απάντηση

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

Ιστορία των Μαθηματικών

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

4/11/2018 ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ. ΘΕΜΑ 1 ο

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΙΙ

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

1ο Κεφάλαιο: Συστήματα

Μαθηματικά Γ Γυμνασίου

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής)

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Εφαρμοσμένα Μαθηματικά ΙΙ

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Two projects Η συμβολή της Αστρονομίας στην ανάπτυξη των επιστημών: A) Το Ηλιακό μας Σύστημα και B) 2 ος Νόμος του Kepler!

Ολοκλήρωμα πραγματικής συνάρτησης

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Ολοκλήρωμα πραγματικής συνάρτησης

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

Νόμοι της κίνησης ΙΙΙ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Μαθηματική Εισαγωγή Συναρτήσεις

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος:

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

Κίνηση πλανητών Νόµοι του Kepler

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ

papost/

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Μαθηματική Εισαγωγή Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-1-)

Σφαιρικά σώµατα και βαρύτητα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

Transcript:

Εαρινό εξάμηνο 2012 6.05.14 Χ. Χαραλάμπους

François Viète (επάγγελμα: δικηγόρος) (1540 1603) Γάλλος Σύμβουλος του Ερρίκου ΙΙΙ και του Ερρίκου IV. H πιο παραγωγική μαθηματικά περίοδος της ζωής του ήταν όταν έπεσε σε δυσμένεια!(1584-1589).

υπό την επιμέλεια του F. Van In artem analyticam isagoge (1591) Schooten (1646)

A cubus + Β quad. in A æquetur B quad. in Z. Ο Viete εισαγάγει και χρησιμοποιεί φωνήεντα για το άγνωστο μέγεθος και σύμφωνα για το γνωστό. Έτσι κάνει τον διαχωρισμό ανάμεσα στην έννοια της παραμέτρου και της άγνωστης ποσότητας.

«Εισαγωγή στην Αναλυτική Τέχνη» Θέτει την άλγεβρα ως την επιστήμη για την ανακάλυψη στα μαθηματικά. Πιστεύει ότι ο «φορμαλισμός» της άλγεβρας θα μπορεί να λύσει όλα τα μαθηματικά προβλήματα. Η χρήση παραμέτρων και μεταβλητών μετέτρεψε την άλγεβρα από μελέτη συγκεκριμένων προβλημάτων στη μελέτη γενικών προβλημάτων. Με τον ίδιο τρόπο η «αναλυτική του τέχνη» επηρέασε και τους άλλους τομείς, στην ανακάλυψη και στην απόδειξη των αποτελεσμάτων.

1593 van Roomen (Βέλγος) δημοσίευσε την εξίσωση Ο Viete έδωσε μία λύση αμέσως μόλις του τέθηκε το πρόβλημα από τον βασιλιά και έδωσε 22 λύσεις μία μέρα αργότερα!

Λύση τριτοβάθμιων εξισώσεων χρησιμοποιώντας ιδιότητες του συν θ. Θα χρησιμοποιήσει τον τύπο για το cos 3θ Η αντικατάσταση του x με ky όπου k η ποσότητα που περιγράφεται παρακάτω θα οδηγήσει σε μία μορφή που μοιάζει με αυτήν της ταυτότητας: Έτσι θέλει να βρει θ που να ικανοποιεί

Nicolaus Copernicus Πολωνία (1473 1543) Βιβλία που τον σημάδεψαν (1492): «Στοιχεία» Alfonsine Tables (θεωρία πλανητών) Tabulae directionum του Regiomontanus (στην Σφαιρική αστρονομία) Η γη γυρίζει ρζ γύρω από τον ήλιο (1514)

Stevin (1548-1620) 1620) εκαδικοί αριθμοί στη ύση (1585)

Johannes Kepler Γερμανία 1571-1630 Γη και πλανήτες σε ελλειπτική τροχιά γύρω από τον ήλιο. Τρεις Θεμελιώδεις νόμοι (1609 και 1619)

1ος Νόμος: Η τροχιά των πλανητών είναι ελλειπτική με τον Ήλιο να βρίσκεται στη μία εστία της έλλειψης. 2ος Νόμος: Η ακτίνα που ενώνει τον Ήλιο και τον κάθε πλανήτη ήηδιαγράφει σε ίσους χρόνους ίσα εμβαδά. 3ος Νόμος: Το τετράγωνο της περιόδου περιφοράς του κάθε πλανήτη είναι ανάλογο με τον κύβο του μήκους του μεγάλου ημιάξονα της έλλειψης που διαγράφει. (πως μπορεί να κάνει κανείς μετρήσεις και υπολογισμούς με τόσο μεγάλους αριθμούς? )

Λογάριθμοι (λόγος+ αριθμοί) Οι πρόδρομοι: Αρχιμήδης και αρίθμηση με εκθέτες (Ψαμμίτη) Πίνακες με δυνάμεις του 2 Κινητήρια δύναμη: υπολογισμοί στην Αστρονομία και Ναυσιπλοία

0 1 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 16 * 32 αντίστοιχοι εκθέτες 4, 5 άθροισμα εκθετών 9, αντίστοιχη δύναμη 512 Ο Stifel (1544) συνέκρινε τις δύο σειρές (στήλες): το άθροισμα όρων στην αριθμητική σειρά αντιστοιχεί σε γινόμενο όρων της γεωμετρικής σειράς. Ένας τέτοιος έοοςπίνακας ααςμε δυνάμεις του 2 δε μπορεί να χρησιμοποιηθεί ο ηθε αποτελεσματικά για πολλαπλασιασμούς αφού οι δυνάμεις του 2 έχουν μεγάλη απόσταση μεταξύ τους.

Αστρονομία: το 1593 ανοί μαθηματικοί πρότειναν να χρησιμοποιούνται τριγωνομετρικοί τύποι για να γίνονται οι υπολογισμοί ευκολότερα. Πράγματι οι πολλαπλασιασμοί ανάγονται σε αθροίσεις και αφαιρέσεις (με χρήση εκτεταμένων πινάκων για ημίτονα και συνημίτονα.) ) π.χ. Ο τύπος sin α cos β= ½ sin (α+β) +1/2 sin(α-β) θα χρησιμοποιηθεί για το γινόμενο 0.17365 * 0.99027 Από τους πίνακες: 0.17365=sin (10), 0.99027= cos (8) sin(18)=0.3092, sin (2)= 0.03490 άρα 0.17365 * 0.99027 = ½ (0.3092 + 0.03490 )=0.17196 (το παράδειγμα είναι με χρήση τωρινών ορισμών για sin, cos αφού τότε sin ήταν το μισό της αντίστοιχης χορδής κύκλου με ακτίνα 10,000,000 )

Θέμα παρουσίασης: Ιστορία της τριγωνομετρίας και της αστρονομίας.