x i x k = e = x j x k x i = x j (luật giản ước).

Σχετικά έγγραφα
1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n

Năm Chứng minh Y N

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

+ = k+l thuộc H 2= ( ) = (7 2) (7 5) (7 1) 2) 2 = ( ) ( ) = (1 2) (5 7)

I 2 Z I 1 Y O 2 I A O 1 T Q Z N

Năm 2017 Q 1 Q 2 P 2 P P 1

Kinh tế học vĩ mô Bài đọc

SỞ GD & ĐT ĐỒNG THÁP ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2014 LẦN 1

O 2 I = 1 suy ra II 2 O 1 B.

M c. E M b F I. M a. Chứng minh. M b M c. trong thứ hai của (O 1 ) và (O 2 ).

Q B Y A P O 4 O 6 Z O 5 O 1 O 2 O 3

Năm 2014 B 1 A 1 C C 1. Ta có A 1, B 1, C 1 thẳng hàng khi và chỉ khi BA 1 C 1 = B 1 A 1 C.

Suy ra EA. EN = ED hay EI EJ = EN ED. Mặt khác, EID = BCD = ENM = ENJ. Suy ra EID ENJ. Ta thu được EI. EJ Suy ra EA EB = EN ED hay EA

O C I O. I a. I b P P. 2 Chứng minh

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

5. Phương trình vi phân

Môn: Toán Năm học Thời gian làm bài: 90 phút; 50 câu trắc nghiệm khách quan Mã đề thi 116. (Thí sinh không được sử dụng tài liệu)

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

L P I J C B D. Do GI 2 = GJ.GH nên GIH = IJG = IKJ = 90 GJB = 90 GLH. Mà GIH + GIQ = 90 nên QIG = ILG = IQG, suy ra GI = GQ hay Q (BIC).

Bài Tập Môn: NGÔN NGỮ LẬP TRÌNH

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 NĂM HỌC NGÀY THI : 19/06/2009 Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Batigoal_mathscope.org ñược tính theo công thức

Truy cập website: hoc360.net để tải tài liệu đề thi miễn phí

Vectơ và các phép toán

* Môn thi: VẬT LÝ (Bảng A) * Ngày thi: 27/01/2013 * Thời gian làm bài: 180 phút (Không kể thời gian giao đề) ĐỀ:

x = Cho U là một hệ gồm 2n vec-tơ trong không gian R n : (1.2)

ĐỀ 83.

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015 Môn: TOÁN Thời gian làm bài: 180 phút.

Sử dụngụ Minitab trong thống kê môi trường

Ngày 26 tháng 12 năm 2015

Tuyển chọn Đề và đáp án : Luyện thi thử Đại Học của các trường trong nước năm 2012.

Chương 12: Chu trình máy lạnh và bơm nhiệt

Phụ thuộc hàm. và Chuẩn hóa cơ sở dữ liệu. Nội dung trình bày. Chương 7. Nguyên tắc thiết kế. Ngữ nghĩa của các thuộc tính (1) Phụ thuộc hàm

ĐỀ 56

Năm Pascal xem tại [2]. A B C A B C. 2 Chứng minh. chứng minh sau. Cách 1 (Jan van Yzeren).

CÁC ĐỊNH LÝ CƠ BẢN CỦA HÌNH HỌC PHẲNG

Chứng minh. Cách 1. EO EB = EA. hay OC = AE

1.1.3 Toán tử Volterra Công thức Taylor Bài toán Cauchy... 15

Tôi có thể tìm mẫu đơn đăng kí ở đâu? Tôi có thể tìm mẫu đơn đăng kí ở đâu? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα

ĐỀ BÀI TẬP LỚN MÔN XỬ LÝ SONG SONG HỆ PHÂN BỐ (501047)

x y y

A. ĐẶT VẤN ĐỀ B. HƯỚNG DẪN HỌC SINH SỬ DỤNG PHƯƠNG PHÁP VECTƠ GIẢI MỘT SỐ BÀI TOÁN HÌNH HỌC KHÔNG GIAN

A E. A c I O. A b. O a. M a. Chứng minh. Do XA b giao CI tại F nằm trên (O) nên BXA b = F CB = 1 2 ACB = BIA 90 = A b IB.

Chương 1: VECTOR KHÔNG GIAN VÀ BỘ NGHỊCH LƯU BA PHA

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

(CH4 - PHÂN TÍCH PHƯƠNG SAI, SO SÁNH VÀ KIỂM ĐỊNH) Ch4 - Phân tích phương sai, so sánh và kiểm định 1

Lecture-11. Ch-6: Phân tích hệ thống liên tục dùng biếnđổi Laplace

TUYỂN TẬP ĐỀ THI MÔN TOÁN THCS TỈNH HẢI DƯƠNG

Tính: AB = 5 ( AOB tại O) * S tp = S xq + S đáy = 2 π a 2 + πa 2 = 23 π a 2. b) V = 3 π = 1.OA. (vì SO là đường cao của SAB đều cạnh 2a)

MỤC LỤC LỜI NÓI ĐẦU...

có thể biểu diễn được như là một kiểu đạo hàm của một phiếm hàm năng lượng I[]

KỸ THUẬT ĐIỆN CHƯƠNG IV

ShaMO 30. f(n)f(n + 1)f(n + 2) = m(m + 1)(m + 2)(m + 3) = n(n + 1) 2 (n + 2) 3 (n + 3) 4.

c) y = c) y = arctan(sin x) d) y = arctan(e x ).

Biên soạn và giảng dạy : Giáo viên Nguyễn Minh Tuấn Tổ Hóa Trường THPT Chuyên Hùng Vương Phú Thọ

2.1 Tam giác. R 2 2Rr = d 2 (2.1.1) 1 R + d + 1. R d = 1 r (2.1.2) R d r + R + d r = ( R + d r. R d r

A 2 B 1 C 1 C 2 B B 2 A 1

HOC360.NET - TÀI LIỆU HỌC TẬP MIỄN PHÍ. đến va chạm với vật M. Gọi vv, là vận tốc của m và M ngay. đến va chạm vào nó.

Bài Giảng Môn học: OTOMAT VÀ NGÔN NGỮ HÌNH THỨC

1.6 Công thức tính theo t = tan x 2

J.-P. Serre.

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

Tứ giác BLHN là nội tiếp. Từ đó suy ra AL.AH = AB. AN = AW.AZ. Như thế LHZW nội tiếp. Suy ra HZW = HLM = 1v. Vì vậy điểm H cũng nằm trên

@misc{milneft, title={lý thuyết trường và lý thuyết Galois (v.4.53)} year={2017}, note={xem \url{ pages={178} }

Бизнес Заказ. Заказ - Размещение. Официально, проба

ỨNG DỤNG PHƯƠNG TÍCH, TRỤC ĐẲNG PHƯƠNG TRONG BÀI TOÁN YẾU TỐ CỐ ĐỊNH

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

ĐỀ SỐ 16 ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2017 Thời gian làm bài: 90 phút; không kể thời gian giao đề (50 câu trắc nghiệm)

Ngày 18 tháng 3 năm 2015

1 Dãy số và các bài toán về dãy số Giớithiệu Định nghĩa và các định lý cơ bản Một số phương pháp giải bài toán về dãy số...

7. Phương trình bậc hi. Xét phương trình bậc hi x + bx + c 0 ( 0) Công thức nghiệm b - 4c Nếu > 0 : Phương trình có hi nghiệm phân biệt: b+ b x ; x Nế

Nội dung. 1. Một số khái niệm. 2. Dung dịch chất điện ly. 3. Cân bằng trong dung dịch chất điện ly khó tan

Bài giảng Giải tích 3: Tích phân bội và Giải tích vectơ HUỲNH QUANG VŨ. Hồ Chí Minh.

BÀI TẬP LỚN MÔN THIẾT KẾ HỆ THỐNG CƠ KHÍ THEO ĐỘ TIN CẬY

Exercises. Functional. Analysis. A review for final exam st Edition

B. chiều dài dây treo C.vĩ độ địa lý

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

DONGPHD. DongPhD Problems Book Series. Vector Spaces. Inner Product Spaces. Hilbert Spaces. Banach Spaces. Normed Spaces.

Dữ liệu bảng (Panel Data)

- Toán học Việt Nam

gặp của Học viên Học viên sử dụng khái niệm tích phân để tính.

KỸ THUẬT ĐIỆN CHƯƠNG II

Μπορείτε να με βοηθήσετε να γεμίσω αυτή τη φόρμα; Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN

Ví dụ 2 Giải phương trình 3 " + = 0. Lời giải. Giải phương trình đặc trưng chúng ta nhận được

Tinh chỉnh lược đồ và các dạng chuẩn hoá

Ý NGHĨA BẢNG HỒI QUY MÔ HÌNH BẰNG PHẦN MỀM EVIEWS

CƠ HỌC LÝ THUYẾT: TĨNH HỌC

CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC DẠNG 1: ĐỊNH LUẬT THỨ NHẤT

1.1.2 Hàm Green Công thức tích phân Poisson Tính chính quy... 8

LẤY MẪU VÀ KHÔI PHỤC TÍN HIỆU

(Complexometric. Chương V. Reactions & Titrations) Ts. Phạm Trần Nguyên Nguyên

2.1. Phương trình hàm Cauchy Phương trình hàm Jensen... 17

1.3.2 L 2 đánh giá Nghiệm yếu Nghiệm tích phân, điều kiện Rankine-Hugoniot... 25

Câu 2. Tính lim. A B. 0. C D Câu 3. Số chỉnh hợp chập 3 của 10 phần tử bằng A. C 3 10

TRƯỜNG THPT CHUYÊN NGUYỄN TẤT THÀNH NIÊN KHÓA: * * CHUYÊN ĐỀ

Μετανάστευση Σπουδές. Σπουδές - Πανεπιστήμιο. Για να δηλώσετε ότι θέλετε να εγγραφείτε

CHƯƠNG 3: NHIỆT ĐỘNG HÓA HỌC

HỒI QUY TUYẾN TÍNH ĐƠN. GV : Đinh Công Khải FETP Môn: Các Phương Pháp Định Lượng

TRANSISTOR MỐI NỐI LƯỠNG CỰC

Transcript:

1 Mục lục Chương 1. NHÓM.................................................. 2 Chương 2. NHÓM HỮU HẠN.................................... 10 Chương 3. NHÓM ABEL HỮU HẠN SINH....................... 14

2 CHƯƠNG 1 NHÓM Bài tập 1.1. Chứng minh rằng trong một nhóm với 2n phần tử, ngoài phần tử đơn vị còn có một phần tử là nghịch đảo của chính nó. Chứng minh. Giả sử nhóm có 2n phần tử là A = {e, x 1, x 2,..., x 2n 1 }. Do A là một nhóm nên mỗi phần tử đều khả nghịch. Giả sử x i e, x j e(i j) cùng có chung một phần tử khả nghịch là x k e thì x i x k = e = x j x k x i = x j (luật giản ước). Vậy ứng với mỗi phần tử e x m A thì tồn tại phần tử khả nghịch e x n A. Giả sử A không chứa phần tử nào có nghịch đảo là chính nó. Theo kết quả ở trên thì nhóm A có (n 1) cặp (x m, x n ) như vậy. Do đó, ta chỉ còn 2 phần tử là e và x p nào đó. Theo giả thiết phản chứng x p có nghịch đảo không phải là chính nó nên e chính là nghịch đảo của x p. Mà e cũng là nghịch đảo của e nên x p = e (vô lý). Vậy A có chứa một phần tử là nghịch đảo của chính nó là x p nào đó. Bài tập 1.2. Chưng minh mọi nhóm có cấp không lớn hơn 5 đều là nhóm abel. Chứng minh. Gọi A là nhóm thỏa mãn A 5. Ta xét từng trường hợp sau : Nếu A = 1 thì A = {e}. Do đó A là nhóm abel. Nếu A = 2, 3, 5, là những số nguyên tố nên A là nhóm cyclic. Do đó A giao hoán.

Nếu A = 4. Giả sử tồn tại a A, ord(a) = 4 thì A = a là nhóm cyclic. Do đó A giao hoán. Giả sử với mọi a A, ord(a) 4 thì ord(a) = 1 hoặc ord(a) = 2. Nếu ord(a) = 1 thì a = e, suy ra A giao hoán. Nếu ord(a) = 2 thì a 2 = e. Theo bài tập 1.3, nhóm A giao hoán. Bài tập 1.3. Chứng minh rằng nếu x 2 = e với mọi x là phần tử của nhóm A thì A là nhóm abel. Chứng minh. Xét 2 phần tử x, y A, ta có xy A. Suy ra (xy) 2 = e = x 2 y 2. Ta có : xyxy = (xy) 2 = x 2 y 2 = xxyy. Giản lược 2 vế ta thu được yx = xy. Vậy A là một nhóm abel. Bài tập 1.4. Chứng minh rằng G là nhóm abel nếu và chỉ nếu (ab) n = a n b n. Chứng minh. Chứng minh tương tự bài tập 1.3. Bài tập 1.5. Nhóm nhân các số thực có đẳng cấu với nhóm cộng các số thực hay không? Chứng minh. Xét đồng cấu f : (R, +) (R,.). Khi đó, với mọi x R, ta có ( x f(x) = f 2 + x ( x ( x [ ( x )] 2 = f.f = f. 2) 2) 2) 2 Giả sử f đẳng cấu thì với mọi y là số thực âm, tồn tại x R sao cho [ ( x )] 2 y = f(x) = f 0 (mâu thuẫn vì y < 0). 2 Vậy f không đẳng cấu. Bài tập 1.6. Chứng minh rằng nếu G = H thì có tương ứng 1-1 giữa các đẳng cấu từ G vào H và các tự đẳng cấu của G. 3

Chứng minh. Ta sẽ chứng minh tương ứng này "đơn trị sau" và "đơn trị trước". Cách 1 : Với mọi f : G H thì tồn tại duy nhất một đẳng cấu f 1 : H G. Đặt g = f 1 f thì g là tự đẳng cấu duy nhất tương ứng với f. Với mọi tự đẳng cấu g : G G. Giả sử tồn tại 2 đẳng cấu f, f từ G vào H sao cho g = f 1 f = f 1 f. Vì f đẳng cấu nên với mỗi x G, tồn tại duy nhất y H thỏa mãn y = f (x). Đồng thời f cũng đẳng cấu dẫn đến tồn tại duy nhất x G sao cho f(x ) = y = f (x). Vậy ứng với mỗi y H tồn tại 2 phần tử tương ứng x, x G. Do G = H nên điều này chỉ xảy ra khi x = x, kéo theo f = f. Kết hợp hai điều trên suy ra tương ứng trong giả thiết là 1-1. Cách 2 : Gọi E = {f : G H f đẳng cấu }, Aut(G) = {g : G G g đẳng cấu }. Xét tương ứng ϕ : E Aut(G) thỏa mãn ϕ(f) = f 1 f với f E. Nếu f 1 = f 2 thì f 1 f 1 = f 1 f 2 nên ϕ(f 1 ) = ϕ(f 2 ). Do đó, ϕ là một ánh xạ. Giả sử tồn tại tương ứng ψ : Aut(G) E thỏa mãn ψ(g) = f g với f E thì ψ cũng là một ánh xạ. Khi đó ψ ϕ(f) = ψ(f 1 f) = f f 1 f = f ϕ ψ(g) = ϕ(f g) = f 1 f g = g Vậy ψ ϕ = 1 E và ϕ ψ = 1 Aut nên ψ là ánh xạ ngược của ϕ. Do đó, ϕ là song ánh. Bài tập 1.7. Cho nhóm G và A là một nhóm các tự đẳng cấu của G. Chứng minh rằng tập G A lập thành một nhóm với phép nhân sau đây (g, α)(g, α ) = (gα(g ), αα ). Nhóm này được gọi là nhóm toàn hình của G. 4

Chứng minh. Xét A = {α : G G, α đẳng cấu } thì α(gg ) = α(g)α(g ), g, g G. Ta xét các tính chất sau : Tính kết hợp : với mọi (g, α), (g, α ), (g, α ) G A ta có [(g, α)(g, α )] (g, α ) = (gα(g ), αα )(g, α ) = (gα(g )αα (g ), αα α ) = (gα(g α (g )), αα α ) = (gα)(g α (g ), α α ) = (g, α)[(g, α )(g, α )]. Phần tử trung lập : xét (e, 1 G ) G A, với mọi (g, α) G A ta có : (g, α)(e, 1 G ) = (gα(e), α1 G ) = (ge, α) = (g, α) = (eg, 1 G α) = (e1 G (g), 1 G α) = (e, 1 G )(g, α). Vậy (e, 1 G ) là phần tử trung hòa của G A. Phần tử nghịch đảo : giả sử g 1 G là nghịch đảo của g G, α 1 là đẳng cấu ngược của α A. Khi đó, với mọi (g, α) G A luôn tồn tại duy nhất g G sao cho g 1 = α(g ). Suy ra g = α 1 (g 1 ). Ta xét biểu thức sau (g, α)(g, α 1 ) = (gα(g ), αα 1 ) = (gα(α 1 (g 1 )), 1 G ) = (gg 1, 1 G ) = (e, 1 G ). (1.1) Đồng thời ta có (g, α 1 )(g, α) = (g α 1 (g), α 1 α) = (α 1 (g 1 )α 1 (g), 1 G ) = (α 1 (g 1 g), 1 G ) = (α(e), 1 G ) = (e, 1 G ). (1.2) Từ 1.1 và 1.2, ta thu được (α 1 (g 1 ), α 1 ) là nghịch đảo của (g, α) Từ ba tính chất trên ta chứng minh được G A là một nhóm. Bài tập 1.8. Tìm tất cả các tự đẳng cấu của nhóm cộng các số hữu tỉ. Chứng minh. Xét tự đồng cấu f : Q Q thỏa mãn q f(q). Khi đó 5

Xét n là số nguyên dương, ta có f(n) = f(1 } +. {{.. + 1 } ) = nf(1). n Xét p q Q với p, q Z+, (p, q) = 1, ta có qf ( ) ( ) ( ) p p p = f +... + f = f p q q q q +... + p q }{{}}{{} q q ( = f q. p ) = f(p) = pf(1) q ( ) p f = p q q f(1). ( Do f là đồng cấu nên f(0) = 0 và f p ) ( ) p = f. q q Vậy với mọi x Q, ta luôn có f(x) = xf(1) và hơn nữa f đẳng cấu. Thật vậy, Nếu f(1) = 1 thì f(x) = x. Đây là tự đẳng cấu đồng nhất. Nếu f(1) = q Q thì * Với x, x Q sao cho f(x) = f(x ) thì xf(1) = x f(1) x = x. Vậy f là đơn cấu. * Với mọi y Q, ta đã biết f(1) = q Q nên tồn tại x Q sao cho y = x.q = xf(1). Vậy f là toàn cấu. Từ các kết quả trên, ta có f là một đẳng cấu. Kết luận : Mọi tự đẳng cấu trong (Q, +) đều có dạng f(x) = xf(1), x Q. Bài tập 1.9. Một nhóm cyclic cấp 12 có bao nhiêu phần tử sinh khác nhau. Chứng minh. Giả sử G là nhóm cyclic cấp 12 sinh bởi a thì phần tử sinh còn lại của G là a 5, a 7, a 11 vì (5, 12) = 1, (7, 12) = 1, (11, 12) = 1 ( xem bài tập 1.10 ). 6

Bài tập 1.10. Chứng minh rằng nếu một nhóm cyclic G được sinh bởi phần tử a cấp m thì G cũng được sinh bởi a k nếu và chỉ nếu m, k là hai số nguyên tố cùng nhau. Chứng minh. Ta có G = a thì a m = e. Xét phần tử b = a k G, k m. Gọi d = (m, k) thì b m d = a k m d = (a m ) k d = e. Giả sử tồn tại n thỏa mãn b n ) = e thì a kn = e, suy ra kn là bội của m. Do đó, kn d là bội của m d. Mà ( k d, m d = 1 ( Do d = (k, m) ). Vậy n là bội của m d hay cấp của b là m d. Nhóm G vừa được sinh bởi a, vừa được sinh bởi b = a k khi và chỉ khi a, b cùng cấp. Suy ra m = m d d = 1. Vậy (m, k) = 1. Bài tập 1.11. Cũng với giả thiết như bài tập 1.10. Hãy tìm cấp của phần tử a k trong G, với k bất kì. Chứng minh. Xem bài tập 1.10. Bài tập 1.12. Liệt kê tất cả các tự đẳng cấu của nhóm cyclic cấp 16. Chứng minh. Giả sử G là nhóm cyclic sinh bởi a có cấp m, gọi r là số nguyên dương thỏa mãn (r, m) = 1. Ta xét tự đồng cấu sau : f : G G x f(x) = x r Ta chỉ cần chứng minh f đẳng cấu. Thật vậy, Xét x G thỏa mãn f(x) = e thì tồn tại k Z + sao cho (a k ) r = x r = e. m Theo bài tập 1.10 thì r là bội của hoặc x = e. Do (r, m) = 1 nên (m, k) trường hợp đầu bị loại. Vậy x = e, suy ra f là đơn cấu. 7

Với mọi y G thì tồn tại k Z + thỏa mãn y = a k. Do (r, m) = 1 nên tồn tại i, j Z sao cho ir + jm = 1 a ir.a jm = a (a i ) r.(a m ) j = a (a i ) r = a (a ik ) r = a k = y. Vậy tồn tại x = a ik A thỏa mãn f(x) = x r = y. Từ hai kết quả trên, ta có f là đẳng cấu. Ta có (1, 16) = (3, 16) = (5, 16) = (7, 16) = (9, 16) = (11, 16) = (13, 16) = (15, 16) = 1. Vậy r = 1, 3, 5, 7, 9, 11, 13, 15, khi đó các đẳng cấu là: f(x) = x, f(x) = x 3, f(x) = x 5, f(x) = x 9, f(x) = x 11, f(x) = x 13, f(x) = x 15 với mọi x G. Bài tập 1.13. Chứng minh rằng tâm Z của nhóm G là một nhóm con chuẩn tắc của G và G/Z đẳng cấu với các nhóm tự đẳng cấu trong G. Chứng minh. Nhắc lại Z(G) = {a G : ax = xa, x G}, Aut(G) = {f : G G f đẳng cấu}, Inn(G) = {C a : G G C a (x) = axa 1 } ( Nhóm các tự đẳng cấu trong của G ). Khi đó a Z(G), x G, ta có xax 1 = axx 1 = ae = a Z(G). Vậy Z(G) là nhóm con chuẩn tắc của G. Xét ánh xạ ϕ : G Inn(G) sao cho ϕ(a) = C a. * Với mọi a, a, x G ta có ϕ(aa ) = C aa = aa x(aa ) 1 = a(a xa 1 )a 1 = C a C a = ϕ(a)ϕ(a ). 8

Vậy ϕ là đồng cấu. Hơn nữa, ϕ là một toàn cấu. * Xét a G sao cho C a = ϕ(a) = 1 G suy ra, với mọi a, x G ta có axa 1 = x ax = axa 1 a = xa. Do đó, a Z(G). Suy ra kerϕ = Z(G). Vì thế, G/Z(G) = Inn(G). Bài tập 1.14. Chứng minh rằng các phần tử có cấp hữu hạn trong một nhóm abel lập thành một nhóm con. Chứng minh. Gọi A là nhóm abel. Khi đó, giả sử B = {x A : ord(x) < + }. Với mọi x, y B thì ord(x) = n < +, ord(y) = m < + hay x n = e = y m. Giả sử y 1 là nghịch đảo của y và k = [m, n] < + (bội chung nhỏ nhất của m,n) thì (xy 1 ) k = x k (y k ) 1 = (x n ) k n(y m ) k m = e k n(e 1 ) k n = e Giả sử s = ord(xy 1 ) thì s k < +. Do đó, xy 1 B. Vậy B là nhóm con của A. 9

10 CHƯƠNG 2 NHÓM HỮU HẠN Bài tập 2.1. Chứng minh rằng số lớp kề trái trong một nhóm con bất kỳ của một nhóm hữu hạn bằng số lớp kề phải của nó. Chứng minh. Giả sử A là một nhóm hữu hạn, S A. Với mỗi a A, ta có as = {as : s S}, Sa = {sa : s S}. Xét ánh xạ f : S as thỏa mãn s as thì rõ ràng f là một song ánh nên S = as. Tương tự, ta cũng có S = Sa nên as = Sa. Bài tập 2.2. Chứng minh rằng mọi p nhóm đều chứa một nhóm con cấp p. Chứng minh. Giả sử A là một p nhóm thì tồn tại n Z + thỏa mãn A = p n. Khi đó, với mọi x A ta có e = p n x = p n 1 (px) = p(mx) trong đó m = p n 1. Khi đó, nhóm B sinh bởi các phần tử mx là nhóm con của A có cấp là p. Thật vậy, giả sử tồn tại k sao cho e = k(mx) = kp n 1 x thì kp n 1 là bội của p n nên k là bội của p hay cấp của B bằng p. Bài tập 2.3. Biểu diễn các phép thế dưới dạng tích các xích. Tìm cấp của mỗi phép thế. Chứng minh. Đáp số : 1. (1, 4)(2, 3, 6, 5) có cấp là 4. 2. (1, 5)(2, 4, 3) có cấp là 6.

3. (1, 6)(2, 5, 4) có cấp là 6. Bài tập 2.4. Biểu diễn các tích sau dưới dạng tích những xích rời rạc và tìm cấp của chúng. Chứng minh. Đáp số : 1. (3, 5)(2, 4, 7, 6) có cấp là 8. 2. (1, 5, 6)(2, 4, 7, 3) có cấp là 12. Bài tập 2.5. Chứng minh rằng S n là một nhóm không abel nếu n > 2. Chứng minh. Giả sử rằng S n là nhóm abel với mọi n 3. Ta sẽ chỉ ra nhóm S 3 không abel. Thật vậy, với n = 3 thì S 3 = 3! = 6. Khi đó, ta liệt kê các phép thế của S 3 như sau : e = α 2 = α 4 = 2 1 3 3 2 1 α 1 = α 3 = α 5 = 1 3 2 2 3 1 3 1 2 Hiển nhiên α i e = eα i, i {1,..., 5}. Ta kiểm tra các phần tử còn lại α 2 α 1 = 1 3 2 = α 3, α 1 α 2 = 2 1 3 = α 5 2 3 1 3 1 2 Vậy α 2 α 1 α 1 α 2. Do đó, S 3 không abel. 11

Bài tập 2.6. Chứng minh rằng S n được sinh bởi hệ các xích sau đây : 1. (1, 2), (1, 3),..., (1, n). 2. (1, 2,..., n 1) và (n 1, n). 3. (1, 2) và (1, 2,..., n). Chứng minh. Ta nhắc lại : X được gọi là hệ sinh của G nếu G là nhóm con nhỏ nhất chứa X. Nghĩa là nếu tồn tại một tập G G, G sinh bởi X thì G = G. 1. Bây giờ, theo giả thiết, gọi X = {(1, 2),..., (1, n)} thì rõ ràng X S n. Giả sử S n S n và S n sinh bởi X. Ta cần chứng minh S n S n. Thật vậy, với mọi phép thế α trong S n, ta có α = (1, 2,..., n) = (1, 2,..., n 1)(1, n) = (1, 2,..., n 2)(1, n 1)(1, n) =... = (1, 2)... (1, n). Vậy α S n, suy ra S n S n hay S n = S n. 2. Tương tự : α = (1,..., n) = (1,..., n 1)(n 1, n). 3. Tương tự : α = (1, 2)(1, 2,..., n). Bài tập 2.7. Chứng minh rằng nếu A G và [G : A] = 2 thì A G. Khi đó, xác định nhóm thương G/A. Chứng minh. Trước tiên ta chứng minh A là nhóm con chuẩn tắc của G Ta có [G : A] = 2 nên G có đúng hai lớp kề là xa và A, trong đó x / A. Khi đó, xa A = φ, xa A = G. Với mọi g G, a A, hiển nhiên ta có gag 1 A nếu g A. Ngược lại, nếu g / A thì g = xh với h A. Vậy gag 1 = xhah 1 x 1 A. Vậy A là nhóm con chuẩn tắc của G. 12

Nhóm thương G/A = {ga : g G} (tức là số lớp kề trái), ở trên ta đã chỉ ra 2 lớp là xa và A nên G/A = {xa, 1.A : x G, x / A}. 13

14 CHƯƠNG 3 NHÓM ABEL HỮU HẠN SINH Bài tập 3.1. Xét các nhóm cộng Z Q. Chứng minh rằng Q/Z là một nhóm tuần hoàn. Nhóm này có đúng một nhóm con cấp n đối với mọi n 1, nhóm con này là nhóm cyclic. Chứng minh. i) Ta có Q/Z = {q + Z x Q} = { a b + Z a Z, b Z+ }. Với mọi 0 x Q/Z, ta chọn m = b thì ( a ) mx = b b + Z = a + Z = 0. Vậy x có cấp hữu hạn. Do đó Q/Z tuần hoàn. ii) Với mọi n 1 thì tồn tại một phân tích q = 1 n Q. Xét nhóm B = { 1 n + Z, n Z+ } thì B Q/Z, B = n. Giả sử tồn tại r sao cho với mọi x B, rx = 0 thì 0 = rx = r n + Z r n Z Vậy r là bội của n nên mọi phần tử của B đều có cấp là n. Do đó, B là nhóm cyclic. Giả sử tồn tại B là nhóm con của Q/Z có cấp n thì với mọi 0 x B 0 = nx = n. a b + Z na b Z. Do x 0 nên a không chia hết cho b, suy ra n chia hết cho b. Vậy b = n k, k Z+. Khi đó x B có dạng x = a b + Z = ak n + Z. Rõ ràng, B B mà B, B cùng cấp nên B = B.

Bài tập 3.2. Chứng minh rằng nếu A là một nhóm cyclic cấp n và d là một ước nguyên dương của n thì A có đúng một nhóm con cấp d và nhóm con này cũng cyclic. Chứng minh. Giả sử A = a thì na = 0. Do d là một ước nguyên dương của n nên n = d.k với k Z +. Khi đó 0 = na = dka = d.(ka) Đặt B = {ka : k Z + } thì B A và B = d. Đương nhiên, B cũng là nhóm cyclic. Giả sử tồn tại B A có cấp d sinh bởi b thì b = r.a. Khi đó b có cấp là n (n, r). Thật vậy, n (n, r) b = n (n, r) ra = r na = 0. (n, r) Nếu tồn tại m sao cho mb = ( 0 thì rma = 0, ) suy ra rm chia hết cho n. Vậy rm n r chia hết cho (n, r) (n, r). Mà (n, r), n n = 1 nên m chia hết cho (n, r) (n, r). n Do đó, cấp của b là. Suy ra d = n (n, r) (n, r). Hay (n, r) = n = k. Vậy tồn tại d x, y Z sao cho nx + ry = k. Vậy ka = nxa + rya = r(ya) B (vì nxa = 0). Vậy B B, mà B, B cùng cấp nên B = B. Bài tập 3.3. Chứng minh rằng trong một nhóm abel hữu hạn A, với mỗi ước nguyên dương d của A, có ít nhất một nhóm con cấp d. Chứng minh. Xét phân tích A = p t 1 1... p t k k trong đó p 1,..., p k là các số nguyên tố khác nhau. Do d là ước của A nên tồn tại một phân tích Xét một phần tử x của A, ta có d = p s i i... p s j j, s i t i, s j t j. 0 = p t 1 1... p t k k x = p t 1 1... p s i i.pt i s i i... p s j j.pt j s j j... p t k k x = d(mx), 15

trong đó m = p t 1 1... p t i s i i... p t j s j j... p t k k. Vậy nhóm B sinh bởi các phần tử mx là một nhóm con của A có cấp là d. Bài tập 3.4. Chứng minh rằng mọi nhóm abel hữu hạn A mà không phải là nhóm cyclic đều chứa một nhóm con đẳng cấu với Z/ p Z/ p. Chứng minh. Xét phân tích A = p t 1 1... p t k k khác nhau. với p 1,..., p k là các số nguyên tố Theo hệ quả 1.1, do A không phải là nhóm cyclic nên tồn tại t i 2. Khi đó, ta có thể phân tích A = p t 1 1... p 2 i.p t i 2 i... p t k k. Theo bài tập 1.2, p 2 i là ước của A nên tồn tại nhóm B con của A có cấp p 2 i. Vậy B là một p i nhóm abel cấp p 2 i nên B = Z/ pi Z/ pi (định lý 1.4). Bài tập 3.5. Giả sử G và H là các nhóm cyclic có cấp tương ứng là m, n. Chứng minh rằng G H là một nhóm cyclic nếu và chỉ nếu (m, n) = 1 Chứng minh. Giả sử G = x, H = y thì mx = 0 G, ny = 0 H. Khi đó Giả sử (m, n) = 1 thì G H = {(x, y) x G, y H} có cấp là mn. mn(x, y) = (mnx, mny) = (0 G, 0 H ). Giả sử tồn tại k sao cho k(x, y) = (0 G, 0 H ) thì kx = 0 G, ky = 0 H. Suy ra k lần lượt chia hết cho m, n. Mà (m, n) = 1 nên k chia hết cho mn. Vì thế mọi phần tử của G H đều có cấp mn. Vậy G H = (x, y). Giả sử G H là nhóm cyclic cấp mn nhưng (m, n) > 1. Gọi k là số mũ của G H (bội chung nhỏ nhất của cấp mọi phần tử thuộc G H). Khi đó k = [m, n] = mn < mn. Ta lại có (m, n) k(x, y) = (kx, ky) = (0 G, 0 H ). Vậy k chia hết cho mn (vô lí vì k < mn). Do đó, từ giả thiết phản chứng ta có (m, n) = 1 16

Bài tập 3.6. Chứng minh rằng nếu cấp của một nhóm abel hữu hạn A không chia hết cho mọi số chính phương (bình phương của một số nguyên) lớn hơn 1) thì A là nhóm cyclic. Chứng minh. Xét phân tích A = p t 1 1... p t k k, p 1,..., p k là các số nguyên tố đôi một khác nhau. Do giả thiết A không chia hết cho mọi số chính phương nên t 1 =... = t k = 1. Thật vậy, giả sử tồn tại i {1,..., k} sao cho t i 2 thì p t i i cho p 2 i (mâu thuẫn). Khi đó theo hệ quả 1.1, A là nhóm cyclic. = p 2 i.pt i 2 i chia hết Bài tập 3.7. Liệt kê tất cả các nhóm abel không đẳng cấu với nhau có cấp 72 và 216. Chứng minh. Ta có 72 = 2 3.3 2. Sau đây là tất cả các nhóm đẳng cấu với nhau. Z/2 Z/2 Z/2 Z/3 Z/3 = Z/2 Z/6 Z/6, Z/2 Z/2 Z/2 Z/9 = Z/2 Z/2 Z/18, Z/8 Z/3 Z/3 = Z/3 Z/24 Z/8 Z/9 = Z/72 Các nhóm còn lại đều không đẳng cấu với nhau. Làm tương tự đối với 216 = 2 3.3 3. Bài tập 3.8. Các nhóm Z/12 Z/72 và Z/18 Z/48 có đẳng cấu với nhau không? Chứng minh. Hai nhóm này không đẳng cấu với nhau vì Z/18 Z/48 = Z/2 Z/9 Z/3 Z/16 Z/12 Z/72 = Z/3 Z/4 Z/8 Z/9. Hai nhóm vế sau không đẳng cấu với nhau. 17