Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems

Σχετικά έγγραφα
REPORT DOCUMENTATION PAGE

A Classical Perspective on Non-Diffractive Disorder

Defects in Hard-Sphere Colloidal Crystals

Gradient Descent for Optimization Problems With Sparse Solutions

Diamond platforms for nanoscale photonics and metrology

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

m i N 1 F i = j i F ij + F x

Solutions - Chapter 4

Ax = b. 7x = 21. x = 21 7 = 3.



Parts Manual. Trio Mobile Surgery Platform. Model 1033

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Το άτομο του Υδρογόνου

(... )..!, ".. (! ) # - $ % % $ & % 2007

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2



ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ


Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

!"#$ % &# &%#'()(! $ * +

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

ITU-R P (2012/02) &' (

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

ITU-R P (2009/10)



SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Note: Please use the actual date you accessed this material in your citation.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Microscopie photothermique et endommagement laser



! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Jeux d inondation dans les graphes

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

ITU-R P (2012/02)

m 1, m 2 F 12, F 21 F12 = F 21

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

HONDA. Έτος κατασκευής

ITU-R P (2012/02) khz 150

Between Square and Circle

rs r r â t át r st tíst Ó P ã t r r r â

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

A 1 A 2 A 3 B 1 B 2 B 3

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1


Homework 8 Model Solution Section


())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

!"!# ""$ %%"" %$" &" %" "!'! " #$!


Teor imov r. ta matem. statist. Vip. 94, 2016, stor



Περιεχόμενα. A(x 1, x 2 )

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx


MICROMASTER Vector MIDIMASTER Vector


(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Mesh Parameterization: Theory and Practice

Déformation et quantification par groupoïde des variétés toriques

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

Studies in Magnetism and Superconductivity under Extreme Pressure

! " #$% & '()()*+.,/0.

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &


Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα


ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667


a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k

Multi-GPU numerical simulation of electromagnetic waves

ITU-R P (2009/10)

Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a

Answers to practice exercises

ITU-R P ITU-R P (ITU-R 204/3 ( )

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage


Inflation and Reheating in Spontaneously Generated Gravity

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Transcript:

Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms of Use Yao, Norman Ying. 2014. Topology, Localization, and Quantum Information in Atomic, Molecular and Optical Systems. Doctoral dissertation, Harvard University. May 1, 2018 2:52:49 AM EDT http://nrs.harvard.edu/urn-3:hul.instrepos:12274580 This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:hul.instrepos:dash.current.terms-ofuse#laa (Article begins on next page)

W

40 87 G σσ LL (z) Gσσ LR (z) Πσσ LL (z) Πσσ LR (z)

ν =1/2

W

ß

Energy Site H = ij t ij c i c j + h.c. + i µ i n i t ij {µ i } µ i W W =0 t =0 W t t i + j t µ i µ j j

e r/ξ ξ H = α c αc α + α,β,γ,δ V α,β,γ,δ c αc β c γc δ.

ν =1/2 ν =1/2

1/r 2 H sd = 1 2N k,k,α,β J(k k )c k,α σ αβc k,β J(k k ) σ 1 2 J RKKY S 1 S 2 J RKKY r ξ J RKKY

J RKKY (r) = 1 8πr 3 J 2 exρ f ν 2 0 cos(2k f r) J ex ρ f ν o k f r ξ J SC RKKY (r) = 1 8πrξ 2 J 2 exρ f ν 2 0 cos(2k f r)e r/ξ. ξ 2 r ξ (ξ/r) 2 r 1 J RKKY 100 1 H 0 = k,α ɛ k c k,α c k,α + k [c k c k + c k c k ]. Ψ k =(c k,c k,c k,c k )T H 0

H 0 = k Ψ k (ɛ kτ 3 + k τ 2 σ 2 )Ψ k. τ 1,2,3 σ 1,2,3 τ {c k,c k } σ G 0 (k, ω) = 1 iω ɛ k τ 3 k τ 2 σ 2. G(k, k,ω)=g 0 (k, ω)δ(k k )+G 0 (k, ω)t (k, k,ω)g 0 (k,ω) J(k k )=J ex T (ω) = 1 N (SJ ex /2) 2 g 0 (ω) 1 (g 0 (ω)sj ex /2) 2 g 0 (ω) =1/N k G 0(k, ω) S k ω + τ 2 σ 2 g 0 (ω) = πρ f 2 ω. 2 E b < ω = E b

2 ( 1+π 2 (JS/2) 2 ρ 2 f ) (ω + ωπ2 (JS/2) 2 ρ f ) 2 =0 E b = 1 π2 (JS/2) 2 ρ 2 f. 1+π 2 (JS/2) 2 ρ 2 f J ex 0 E b J ex E b S =1 0 e 0 e 1 e I =1/2 15 13

H e,n = 0 S 2 z + µ e BS z + µ n BI z + AS z I z, 0 =2.87 µ e = 2.8 µ n = 0.43 A =3.0 ẑ

(a) R 1 R 2 R R1 (b) 2R 2,,,,,! 1 "! 2 " = =,,, Pair 1 Pair 2 R2 R R <r<2r t 1/r α α d d d =1

α = β β<α β<α d<α d<α d<α d<β d<β d<β+2 d<β/2 d< αβ α+β d<β/2 d<β/2 d<(β +2)/2 d< α(β+2) α+β+4 1/2 S z H = i ɛ i S z i ij t ij r ij α (S+ i S j + h.c.)+ ij V ij r ij β Sz i S z j ɛ i W α β β α ɛ i ɛ j t ij / r ij α R 1 < r ij < 2R 1 N 1 (R 1 ) (ρr d 1) t/rα 1 W ρ N 1 (R 1 ) R 1 d>α d = α δ t/r1 α

Dynamic Polarization (D) ν =1/2 α = β =1 α = β =2 (a) (c) α = β =3/2 α = β =3 (b) (d) Disorder Width (W ) d =1 t =1,V =2 α = β =1 α = β =3/2 α = β =2 α = β =3 W c 10 V S z R 2 δ 1,δ 2 >V(R 2 ) δ 1 δ 2 R 2 2R 2 N 2 (R 1,R 2 ) (n 1 (R 1 )R d 2) V/Rβ 2 t/r α 1, n 1 = ρn 1 N 2 R 2 R 1 R 2 d<β R 1 R 2 V/Rβ 2 t/r α 1 [1, V/Rβ 2 ] R t/r1 α 1 R β/α 2 d< αβ α+β

N 3 (R 1,R 2,R 3 ) (n 2 (R 1,R 2 )R d 3) V/Rβ 3 V/R β 2 n 2 = n 1 N 2 R 3 R 1,R 2 R 1 R 2 R 3 d<β/2 R 1 R β/α 2 R 2 R 3 t ij,v ij R 1 <R 2 V/R β 2 VR 2 1/R β+2 2 N 2 α = β d<β/2 α<β+4 α>β+4 α d c =1.5 α = β =3 d c =1.5 α =6 β =3 d c 2.3

d =1 α = β =1, 3/2, 2, 3 L =14 ν =1/2 W V ij = V =2 t ij = t =1 D ˆF = j Sz j e i2πj/l η k Dη k =1 k ˆF k k ˆF k k ˆF ˆF. k D Dη k L D 1 D 0 D α =2, 3 α =1 α =3 α =3/2 d =1 1 <α c < 3 α c =2

(a) (b) (c) z y x E (d) 1, 1 (e) 1, 1 1, 1 1, 1 1, 1 2B 0, 0 i t ij 1 r 6 ij ŷ ẑ ˆx = 1, 1, = 0, 0 α = β =3 α =6 j ŷ ẑ t ˆx α E d V d 2 /R 3 β =3 B W

V d 2 E 0 V 0 ν =1/2, 1/3, 1/4 L =16, 18, 20 H m = BJ 2 d z E = J =0,m j =0 = J =1,m j =1 H dd = 1 d i (1 3ˆr ij ˆr ij )d j 2 i j d rij 3 H dd {, } ɛ i = j i d s d a α = β =3 d rij 3 s,a = 1 dz 1 ± 0 d z 0 2 ɛ i W d sd a a ν(1 ν) 3 a0 0 d =1 d c =3/2 α = β =3

Dynamic Polarization (D) (a) β =3 V/t =2 1.0 0.8 ν =1/2 0.6 0.4 0.2 0.0 0.1 1.0 10.0 Disorder Width (W ) Disorder Width (W ) (b) 2 2.0 1.5 1.0 1.5 1 0.5 V/t =1 V/t =2 V/t =4 MBL Ergodic 1 1 1 4 3 2 1/4 1/3 1/2 Filling Fraction (ν) α β =3 W W c 1.4t V/t =1, 2, 4 d c =3 d =2 B = J =1,m j = 1 = J =1,m j =1 J z H = t 2 [ ij r (d i ij 6 + ) 2 (d j ) 2 +(d i ) 2 (d j +) 2] α =6 β =3 d =2 d c 2.3 d c =2.5 H NV = D 0 S 2 z + µ e BS z D 0

e Dk2t D D =0 T 1 k T 2 D T2 a 2 0/T 2 T 2 T 1 D T2 D e a 2 0/T a0 T a0 l (l 2 + Dt) d/2 e t/t 1 40 87 3 532 100 T a0 10µ T 2 100 T 1 25

2 3 T a0 1µ T 1,T 2 10

π/2 τ z i ±1

Ĥ = i h i τ z i + ij J ij τ z i τ z j + ijk J ijk τ z i τ z j τ z k +... J ij, J ijk,... ξ τi z τ z i Ĥ... + =( + )/ 2 h ( ) = h + j J jτ z j + j,k J jkτ z j τ z k +... π t/2 h ( ) t/2 t/2 π h ( )

0.8 1 0.6 0.4 0.2 spin echo DEER 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 0 4 6 8 10 F(t) D(t) W L J z = J F (t) d ξ t/2 π π/2 τ z

ψ(t) = R π/2 e iĥ t 2 R π R π/2 e iĥ t 2 R π/2 ψ(0), Rr π/2 = j r (ˆ1 iˆσ y j )/ 2 Rr π =(Rr π/2 ) 2 D(t) ψ(t) ˆτ z ψ(t) = ( 1+e 2iJ Ij τ j ) t 2 j II N τ j j D(t) J Ij j I N J Ij t 1 J Ij t 1 1 D(t) D(t) D osc (t) D(t) = D(t)+D osc (t), D(t) =1/2 N (t), 1/2

J Ij exp( j I /ξ) j I ξ log(t) t t 0 /J Ik k = I + d N fast =0 t 0 t t 0 e N/ξ N (t) ξ log(t/t 0 ) D(t) t ξ ln 2 t t 0 e N/ξ D( ) 2 N (1 + t D(t) 2 /t 2 0) α/2 t t 0 e N/ξ =, 2 N t t 0 e N/ξ α = ξ ln 2 D osc (t) D osc (t) D osc (t)

1 0.8 fit 0.6 0.4 0.2 0 0 2 4 6 8 10 J z =0.1J J z = J W =6J =3 d =3 N =7 Ĥ = J 2 (Ŝ+ i ij Ŝ j + Ŝ+ j Ŝ i )+J z Ŝi z Ŝz j + i ij h i Ŝ z i Ŝa j a {x, y, z} ±1/2 Ŝ± j = Ŝx j ± iŝy j h i [ W ; W ] J z =0 Ĥ W>0 J z 0 W/J S τ

10 0 10-1 10 0 10 4 10 8 10 12 0.26 0.22 0.18 0.14 3 4 5 6 7 8 0.4 0.3 0.2 0.1 fit 0 0 2 4 6 8 J z =0.1J J z = J d =3 d =7 W =8J N =3 α W d = 7 N = 3 α = c 1 / ln(c 2 W ) ξ 1/ ln(w ) D( ) N J z D( ) J z N c/1.8 N L =12 S z ψ(0) D(0) = ψ(0) ˆσ z ψ(0) > 0 D(t) π/2 t =0

D(t) =A/(1 + t 2 /t 2 0) α/2 A D osc (t) D(t) D(t) d t 0 [ exp(d/ξ)] d α α α = c 1 / ln(c 2 W ) α = ξ ln 2 ξ 1/ ln(w ) N f(k) =c/1.8 N 1/2 N

J,J z T 1 1 J 10 1 10 500 ξ ln(j 1 ) 6ξ 10 J 100 1 10 1 /J 1 5 10 3 J (1 10) 5µ 1 100µ 1 /J 1 (0.5 5) 10 3 J 50 1 25 1 /J 1 8 10 3

1/2 H = ij JS + i S j + ij J σ + i σ j + i J z S z i σ z i + h.c S σ XY J J J z J 0 σ S {σ i } ±J z

J!" J #" J! J J J J J J z S J σ J N =20 Stot z = σtot z =0 σ J =1.0 J z 10.0 J J S ent = ρ A log ρ A = ρ B log ρ B A B 30 100 D

N =8 Sent J =1.0 J =0.01 J z = 10.0 J =1.0 J =0.001 J z = 10.0 J =1.0 J =0.0001 J z = 10.0 Fractional Polarization k =1 k =2 Time (1/J) Time (1/J) Time (1/J) Time (1/J) N = 16 Fractional Polarization Sent k =1 J =1.0 J =0.01 J z = 10.0 S-chain!!-chain" J =1.0 J =0.001 J z = 10.0 J =1.0 J =0.0001 J z = 10.0 Time (1/J) Time (1/J) Time (1/J) N = 8 S z tot = σ z tot =0 k =1 S σ k =2 t int t d N = 16 k =1

ˆF = j Sz j e i2πj/l Sj z σj z k D k =1 k ˆF k k ˆF k k ˆF ˆF, k D D k N =8 J =10 2, 10 3, 10 4 J S ent t 1/J t 1/J J t 1/J J t int t>t int t>t d t int t d J S ent

t int 1/J t int 1/J 2 J, J J z t int J z t int J J S t d J z /J 2 J 2 /J z S t d D k=1 k =2 t e L k =1/L e Dk2t t d L 2 /D D J 2 /J z N =16 e 8 J t int t d

Sent J int J SPL quasi MBL thermal t L 2 /D t e L Short chain thermal t L 2 /D J d J 2 /J z SPL t e L Long chain 1/J 1/J int t (1/J) 1/J d 1/J 1/J int 1/J d t (1/J) ρ N = 8 N = 12 N = 16 d ρ/dw W/J S ent 1/J t>t int =1/J int J t>t d =1/J d D J 2 /J z S ent e L L 2 N

2.0 Sent 1.5 1.0 J independent 0.5 0.0 J 2 Time (1/J) t int J J 2 J L 2 t d 1/Dk 2 L 2 J =10 2 t int t d J J =10 5 S ent t d σ σ J

H W = i b z i S z i + i b z i σ z i b, b W H W ρ ψ = 1 N N i ψ Si+1 z Si z ψ H W ( ) N d ρ dw c. W/J d ρ dw N H T = H + H W J =1.0 J =0.01 J z =10.0 10 6 <W <10 4 10 3 N =8, 12 10 2 N =16 ρ ψ J/3 ρ H W

H h = ij JS i S j + ij J σ i σ j + i J z S z i σ z i. J 0 t int 1/J J S J 2 J S ent J S σ JJ /J z 1/t d J 2 /J z

ẑ Θ 0, Φ 0 {X, Y, Z} ij {X, Y } H dd = 1 κ 2 i j R 3 ij [ ] d i d j 3(d i ˆR ij )(d j ˆR ij ), κ 1/4πɛ 0 µ 0 /4π R ij d i d j 0 ±1 ẑ

±1 0 Ω + Ω Ω +, Ω 0 B = α( 1 + β 1 ) D = α ( β 1 + 1 ) α =Ω + / Ω αβ =Ω / Ω Ω = Ω 2 + Ω + 2 E 0 = Ω 2 / E B = + Ω 2 / E D = d R 0 κd 2 /R0 3 Ω 2 / D 0 B 0 D B 0 a i = B 0 i n i = a i a i H B = ij t ij a i a j + 1 V ij n i n j, 2 i j t ij = B i 0 j H dd 0 i B j t ii = j i ( 0 i0 j H dd 0 i 0 j B i 0 j H dd B i 0 j ) V ij = B i B j H dd B i B j + 0 i 0 j H dd 0 i 0 j B i 0 j H dd B i 0 j 0 i B j H dd 0 i B j N i = i a i a i κd 2 /R0 3 H dd H B

J =1 Ω (r) Ω + (r) Ω ± δ J = 1 l p l t l t l W (p l) β π/n κ =1,i j t ij = d2 01 R 3 [ χ i (q 0 + [q 2 ]σ x + [q 2 ]σ y )χ j ], t ii = j i 2 q 0 R 3 (d0 d B i (d 0 ) 2 ), V ij =2 q 0 R 3 [ d B i d B j d 0 d B i d 0 d B j +(d 0 ) 2], d 0 d B ẑ 0 B d 01 1 0 χ i = α i (1,β i ) T i q 0 = 1(1 2 3cos2 (Φ Φ 0 )sin 2 (Θ 0 )) q 2 = 3[cos(Φ Φ 2 0)cosΘ 0 i sin(φ Φ 0 )] 2 σ (R, Φ) R ij ij R Φ q 0 q 2 d B i

π/n (Θ 0, Φ 0 )=(sin 1 ( 2/3),π/4) q 0 =0 ˆX Ŷ H dd d + i d+ j d i d j d ± = (d x ± id y )/ 2 t ˆX ij = d2 01 χ R0 3 i tŷij = d2 01 χ R0 3 i [ 1 2 σx [ 1 2 σx + 3 2 σy 3 2 σy ] ] χ j, χ j. β =Ω /Ω + β β B 1 1 β Φ=π/4 W (p) = p t ij l Ψ l =arg[w (p l )] = arg[t 2 l t 2 l ] t l t l θ l =arg(t l ) θ l =arg(t l )= θ l+1 Ψ l =2θ l 2θ l+1 π/n θ l+1 = η l π η 2N β θ l β l+1 β l = sin( π 3 η + l π 2N ) sin( π 3 + η l π 2N ),

4N β 1 π/n t ij H B β = β 1,β 2 β 1 β 2 β 1 β 2 d B i ±1

β = β 1,β 2 Ψ, Ψ g 1 g 2 /R 3 β 2 β 1 c = 1 4π dkx dk y ( kx ˆd ky ˆd) ˆd H(k) = d(k) σ + f(k) ẑ H m = BJ 2 d z E + H D, B J d z ẑ E H D J =1 J, M E M J 0 ±1 ±1

d 1 d B i = d 1 V ij = 2 q 0 R 3 (d0 d 1 ) 2. V ij /t ij (d 0 d 1 ) 2 /d 2 01 100 Ω H B N ν

(Θ 0, Φ 0 )=(0.46, 0.42) β 1 =3.6e 2.69i β 2 =5.8e 5.63i 1/27R 0 > 10 S(R, 0) = n(r)n(0) ν = 1/2 (Θ 0, Φ 0 )=(0.66,π/4) β 1 = 2.82e iφ 1 β 2 = 4.84e iφ 2 (d 0 d 1 ) 2 /d 2 01 2.8 ĝ 1 ĝ 2 N s = 24 2π θ 1 4π θ 2

c = 1 ν =1/2 (d 0 d 1 ) 2 /d 2 01 6 S(R, 0) = n(r)n(0) N s =32 ĝ 1 ĝ 2 φ 1 = φ 2 =0.1 k 2 =0,k 1 =0, 2π/3, 4π/3 ĝ 2 N s =24 ĝ 2

E H m = BJ 2 d z E E 0, 0 J =1 1, 1 1, 0 1, 1 J ẑ J, m E

φ {X, Y } ẑ Θ 0 Φ 0 {x, y, z} {X, Y, Z} J =0, 1 0, 0 M J =1 40 87 N s = 24 Θ 0 E =0 J =1

J =1 e 1 e 2 M H r = [ e 1 (Ω 1 1, 1 +Ω 2 1, 0 )+ e 2 (Ω 3 1, 0 +Ω 4 1, 1 )+ ] Ω i = 1 Ω(Ω 2 Ω 4 1, 1 Ω 1 Ω 4 1, 0 +Ω 1 Ω 3 1, 1 ) Ω H dd = 1 κ 2 i j R 3 ij [ ] d i d j 3(d i ˆR ij )(d j ˆR ij ), κ =1/(4πɛ 0 ) R ij i j d i d j d R 0 d κd 2 /R0 3 Ω i {, } 2B a i = i j i t ij = i j H dd i j

V ij = i j H dd i j + i j H dd i j i j H dd i j i j H dd i j H B = ij t ij a i a j + 1 V ij n i n j, 2 i j N = i a i a i t ii {a, b, A, B} J =1 a i t ij V ij g 1 g 2 C = 1 f 11.5 J =1 ν ν =1/2 N s =44 Θ 0 =cos 1 (1/ 3) ν =1/2

a b A B J =1 φ g 1 g 2 f 11.5 C = 1 {Θ 0, Φ 0 } = {0.68, 5.83} σ xy = 1 2π F (θx,θ y )dθ x dθ y = 0.5 {θ x,θ y } F (θ x,θ y )= ( Ψ θ y Ψ θ x Ψ θ x Ψ θ y ) ν =1/2 Q torus = ( N uc +1 N b N uc+1 2N b ) ( Nuc 1 N b N uc+1 2N b ) Nuc = N s /2 N b ν =1/2 Θ 0

σ xy ν =1/2 ν =1/2

40 87 7 133 41 87 87 133 d 3 532 1µ 100 340 395 40 87 e 1 e 2 J,m = 2, ±2 v =41 (3) 1 Σ +

ν = 1/2 ν =1/2 N s = 24 N b =6 1/(3R 0 ) 3 (k x,k y )=(0, 0) (k x,k y )=( π, 0) ν =1/2 k x,k y N s = 16 N s = 44 N b =5 36 Q torus µ = E Nb +1 E Nb E Nb N b ν =1/2 ν =1/2 de/dθ 0 Θ 0 de/dθ 0 E =0.4 8

H lattice H hf Ω i H lattice H hf 40 87 H hf 1 =160 E = B/d 0.5 Ω i E 1,0 E 1,1 M H lattice H hf Ω i

(a) (b) E b " η η " BCS ψ BCS E b r < ξ η η r ξ r r<ξ

r ξ H 0 =,σ ɛ c,σ c,σ + [c c + c c ]. ψ BCS J E b = 1 (πjsn 0/2) 2 β2 = 1 1+(πJSN 0 /2) 2 1+β 2 N 0 tan(δ) β = πjsn 0 /2 E b = cos(2δ) E b δ

T K exp ( 1/JN 0 ) T K β 1/ ln( /T K ) 1 φ sh ( ) 1 e /ξ sin(2δ) r ξ r<ξ η η η η r L r R ẑ H int = J σ d σ[s L f( L )c σ( )c σ ( )+S R f( R )c σ( )c σ ( )], S L(R) f( ) H int = J σ d d σ[s L e i( )r L f, + S R e i( )r R f, ]c σ, c σ, f

Ψ =(c,,c, ) H 0 = d Ψ [ɛ τ z + τ x ]Ψ τ H int = J d d Ψ [S Le i( )r L f, + S R e i( )r R f, ]Ψ + E 0 E 0 = J d f, [S L + S R ] H T = H 0 + H int d n = d (u n, ψ, + v n, ψ, ) H T = ε n d nd n 1 ε n = 2 n n n E tot = 1 ε n = E V 1 2 2 n ε n (d nd n 1 2 ). dɛ ɛ δρ(ɛ) E V δρ(ɛ) I(r) I(r) =E, tot E, tot = 1 2 dɛ ɛ [δρ, (ɛ) δρ, (ɛ)]. δρ(ɛ) = 1 { [G π, (z) G(0) (z)]} z = ɛ + i0 + G (0) (z) =[z (ɛ τ z + τ x )] 1 G, (z)

T G, (z) =G (0) (z)+g(0) (z)t, G(0) (z), T, T T δρ(ɛ) = 1 π { [G(0) (z)t, G(0) (z)]} = 1 π { [JSΠ(1 JSG) 1 ]} Π G S 4 4 Π ll (z) = G ll (z) = d G (0) (z)g(0) (z)ei ( l l ) d G (0) (z)ei ( l l ) S ll = S l δ ll τ 0. τ 0 l l {L, R} J 1 [JSΠ(1 JSG) 1 ] [J 2 SΠSG] I( ) = E fβ 2 π(k f r) cos(2k fr)e 2r 3 ξ F1 [ 2r ξ ] + β2 (k f r) 2 sin2 (k f r)e 2r ξ F2 [ 2r ξ ]. k f r = L R

Interaction (khz) 400! 0! -400! 100! 150! R (nm) J YSR! RKKY E b 10 2 200! E f = 11.7 k f = 20.1 1 N 0 = 35 3 ξ =1.6µ J YSR E b 10 2 J YSR r ξ F 1 [α] =α dxe α( x 2 +1 1) F 0 2 [α] = 2 π x 2 +1 1) dx e α( 0 (x 2 +1) 1/r 2 /E f r E f /( k f ) ξ I( ) e 2r ξ O(J 2 )

J E b 0 η ɛ ɛ 0 [G, (z)] E b F (E b ) [1 SG(E b )] = 0. k f r 1 η η/e b F (E b )+η F (E b )=0

1 β η = 1 cos 2 (k f r) 1 β 2(k f e 2r r) 2 ξ. F (E b )+η F (E b )+ 1 2 η2 F (E b )+ 1 6 η3 F (E b )=0 η = 2 cos(k f r) (k f r) 2 e 2r ξ β 1 I(r) J YSR = η η E b 0 β 1 J YSR η J YSR = 1 cos 2 (k f r) 2r 1 β 2(k f r) 2 e ξ, 1 1 β U(r)c L, c R, U(r) =cos(k fr)/(k f r) 2E b β E b J YSR J YSR k f r> 1 1 β > ξ r.

r ξ J YSR r λ f ξ ξ / k f ξ J YSR = η η 1 r 2 β J YSR J YSR J YSR >J RKKY r J YSR

2 T K I I T K

ɛ = E b E b E b

( /T K ) c S =1/2 /T K > ( /T K ) c S G =1/2 /T K < ( /T K ) c S G =0 H BCS = dk [ ξ (2π) 3 k c kσ c kσ + ( c k c k + h.c.)] σ 1/2 S 1 S 2 H int = J 2 S 1ψ 1σ ψ 1 + J 2 S 2ψ 2σ ψ 2. ψ 1 ψ 2 H T = H BCS + H int T K

H T P S 2 =0 SU c (2) Q x =(Q + + Q )/2 Q y =(Q + Q )/2i Q z = 1 dk 2 σ (c (2π) 3 kσ c kσ 1) 2 Q+ = dk c (2π) 3 k c π k Q = ( Q +) 0 U c (1) Q P S Q S 0 S =0 P = Q =0 T 0 S =1 P =+ Q =0 D + D S =1/2 P = ± Q =1 S 2 Q =2 P = π

(S, Q, P ) S 0 (0, 0, ) T 0 (1, 0, +) D ± ( 1, 1, ±) 2 S 2 (0, 2, ) /T K /T K 1 S S = sin(k F R) k F R R = R 1 R 2 k F S D ± I I J I/T K

S = 0.1 I/T K /T K S =1 S =1/2 S =0 S 2 S 0 /T K T 0 I<0 S 0 I>0 I T K, =0 S 2 I, T K Q =0 Q =2 S 0 S 2 =0 =0

/T K I/T K = 0.58 S = 0.1 S 2 D + T 0 S 0 T 0 I eff = E S0 E T0 I T K T K ω T K S =0 S =1/2 T K I 0 D + T K S =0 S =0 D ± /T K D ± D + S =1 1/2 /T K

S 2 φ ( ) 1 e /ζ sin(2δ) E = 1 β2 1+β 2 ζ β tan(δ) =JSN 0 π/2 N 0 T k F R β E sh =0 I <0 I >0 F 1 S 1 σψ 1 T 0 D + D 4

(a) 1.0 Esh/ Esh/ 0.5 0.0 (b) 1.0 0.5 0.0 I<0 I>0 Molecular Doublet 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Mol. Triplet Molecular Doublet Triplet Kondo 0.6 0.8 1.0 1.2 1.4 1.6 Mol. Singlet 0.0 0.5 1.0 1.5 2.0 β k F R 4.1 Kondo Singlet k F R 2.6 k F R 4.1 β = JNSπ/2 β 0.86 β 1.3 k F R 2.6 500 0.14 Pb =1.55 T 20 mk T 0 S 0 E = hν S 0 S 0 D ± E S 0 di/dv S 0 T 0

T 0 D + D T 0 S 0 hν = E (D +,S 2 ) (D +,T 0 ) 2 1 3 2 S 2 S 0

g κ

1/2 H = H 0 + H H 0 = N 1 i=1 κ(s+ i S i+1 + S i S+ i+1 ) H = g(s 0 + S1 + S + N+1 S N + ) S ± = S x ± is y S = σ / 2 σ =1 g κ H c i = e iπ i 1 0 S + j S j S i H 0 H 0 = N 1 i=1 κ(c i c i+1 + c i c i+1 ) f k = 1 N jkπ A j=1 sin N+1 c j k =1,,N A =(N+1 2 )1/2 H 0 = N k=1 E kf k f k E k =2κ cos kπ N+1 t k = g A H = N t k (c 0f k +( 1) k 1 c N+1 f k + ), k=1 kπ sin N N+1 k = z (N +1)/2 H t z g/a

g κ κ a b k = z g κ/ N E z E z±1 κ/n ( 1) z 1 c N+1 H eff = t z (c 0f z + c N+1 f z + ) H eff τ = π 2tz U eff = e iτh eff =( 1) f z f z (1 (c 0 + c N+1 )(c 0 + c N+1 )) {(1,c 0,c N+1,c 0c N+1 ) 00 0,N+1} U fermi eff =( 1) n 0+n N+1 +n z ( 1) n 0n N+1 0,N+1, n θ = f θ f θ H eff

0,N+1 =( 1) n 0n N+1 Φ i =(α + β ) 0 (α + β ) N+1 Ψ M,nz Ψ M = N j=1 S+ j S j n z N Φ f =( 0,j N+1,j ) 0,N+1 0,N+1 Φ i j=1 a a = a a = a a a b a b b b b F = 1 + 1 2 12 i=1,2,3 [σi E(σ i )]

E e ikτ K N N H = i,j K i,js + i S j ɛ =1 F g/κ g κ ɛ ( ) 2 5 t k k z 3 E k [1 + ( 1) k+z cos(e k τ)] z = N+1 2 ( ) 10 t 2 k k z 3 E k N κ ɛ 0 g τ τ N t z t z κ/n τ 1/t z N/κ N N N E =0 H = (S0 z + SN+1 z ) N

=E k t k E =0 g L g R g L g R τ N/g

N =7 g/κ ɛ 0 = 10 3 τ 1/κ

g

T 1

L =12 N 1 H = κσi x σi+1 x + i=1 N i=1 Bσ z i κ B σi x σ ± i =(σi x ± iσ y i )/2 c i = σ+ i e iπ i 1 j=1 σ+ j σ j N 1 H JW = κ(c i c i+1 + c i c i+1 c ic i+1 c ic i+1 ) i=1 N B(c i c i c i c i ) i=1

H JW φ A φ φ =(c 1,c 2,...,c N,c 1,c 2,...,c N )T A ɛ 1 0 0 0 0 ɛ 1 0 0 Λ= 0 0 ɛ 2 0 0 0 0 ɛ 2 ψ ψaψ T =Λ ±ɛ k d k = ψ 2k 1,j φ j d k = ψ 2k,jφ j k =1,,N H JW = N ɛ k (d k d k d k d k ), k=1 d ɛ k κ 2 + B 2 2Bκcos q k q k = kπ/(n +1) 0 N +1 g B H = g(σ x 0σ x 1 + σ x Nσ x N+1)+B (σ z 0 + σ z N+1).

H JW = g(c 0c 1 + c 0c 1 + c 1c 0 c 0 c 1 ) g(c N c N+1 + c N c N+1 + c N+1 c N c N c N+1 ) + B (c 0c 0 c 0 c 0 + c N+1 c N+1 c N+1 c N+1 ). B = ɛ z d z c i = N k=1 (ψt ) i,2k 1 d k + N k=1 (ψt ) i,2k d k c 1 c N d gψ 2z 1,1 = gψ 2z 1,N B, ɛ z ɛ z±1 H eff ɛ z (d zd z d z d z)+ɛ z (c 0c 0 c 0 c 0)+ɛ z (c N+1 c N+1 c N+1 c N+1 ) gψ 2z 1,1 (c 0d z + d zc 0 ) gψ 2z 1,N (c N+1 d z + d zc N+1 ). B<κ

g t "E g t "E >> gt (1) (2) g τ = π 2gψ2z 1,1 U eff = e iτh eff =( 1) n z ( 1) (c 0 +c N+1 )(c 0+c N+1 )/2 = ( 1) nz (1 (c 0 + c N+1 )(c 0 + c N+1 )), n z = d zd z U eff Ψ={ Ω,c 0 Ω,c N+1 Ω,c 0c N+1 Ω } Ω c 0 c N+1 1 0 0 0 U eff Ψ=( 1) n z 0 0 1 0 Ψ. 0 1 0 0 0 0 0 1 e iπ i 1 j=1 σ+ j σ j 2 =

a b = a b = a b a b 0

0 (QR) 1 2 N-1 N N+1 (QR) 0 N +1 X F = 1 2 + 1 12 [ σ i E(σ i ) ], i=x,y,z E H = g(σ + 0 σ 1 + σ + N σ N+1 + )+ N 1 i=1 κ(σ+ i σ i+1 + ) U H t =2τ ρ DS ch

F DS = 1 2 + 1 12 = 1 2 + 1 12 = 1 2 + 1 12 i=x,y,z i=x,y,z i=x,y,z [ σ i 0U(σ i 0 ρ DS ch )U ] [ U σ i 0U(σ i 0 ρ DS ch ) ] [ σ i 0(t)(σ i 0 ρ DS ch ) ], σ i 0(t) M = e ikt K (N +2) (N +2) H = N+1 i,j=0 K ijc i c j c m = i n K mnc n c m (t) = n M mnc n σ + 0 (t) =U σ + 0 U = U c 0U = i M 0ic i = i M 0iσ + i e iπσ+ l σ l, l<i σ0(t) z = 2c 0(t)c 0 (t) 1= 1+2 M0iM 0j c i c j ij = 1+2 M0iM 0j σ + i σ j e iπσ+ l σ l, ij i<l<j c 0 F DS σ ± =(σ x ± iσ y )/2 [σ0(t)(σ x 0 x ρ ch )] = [ (σ 0 + (t)+σ0 (t))((σ 0 + + σ0 ) ρ ch ) ] σ 0 + (t)(σ0 ρ ch ) σ0 (t)(σ 0 + ρ ch ) i =0

[ σ + 0 (t)(σ0 ρ ch ) ] [ = ( ] M0iσ + i e iπσ+ l σ l )(σ 0 ρ ch ) i l<i = [ ] M00σ 0 + σ0 ρ ch = M 00. [ σ 0 (t)(σ + 0 ρ ch ) ] = M 00 σ z [σ0(t)(σ z 0 z ρ ch )] = [ σ0 z ρ ch ] [ + (2 ] M0iM 0j σ + i σ j e iπσ+ l σ l )(σ z 0 ρ ch ) ij i<l<j = [ 2M 00M 00 σ + 0 σ 0 σ z 0 ρ ch ] =2 M00 2, i = j i = j =0 [σ z 0]=0 F DS = 1 2 + 1 6 (M 00 + M 00 + M 00 2 ). N +1 0 F SS = 1 2 + 1 12 i=x,y,z [ σ i 0(t)(ρ SS ch σ i N+1) ],

ρ SS ch {0,,N} F SS σ x 0(t) = c 0(t)+c 0 (t) = i M 0ic i + M 0ic i = i i 1 [{ (M 0i )σi x + (M 0i )σ y i } ( σl z )]. l=0 i N +1 [σ x 0(t)(ρ ch σ x N+1)] = 2 (M 0,N+1 ) [ρ SS ch N ( σl z )]. l=0 σ y σ z [σ z 0(t)(ρ SS ch σz N+1 )] = 2 M 0,N+1 2 F SS = 1 2 + 1 6 [2 (M 0,N+1) [ρ SS ch N ( σl z )] + M 0,N+1 2 ). l=0 F SS =1 M 0,N+1 =1 [ρ SS N ch l=0 ( σz l )] =1 P = N l=0 ( σz l ) = a b = a b {0 a, 0 b, 1,,N,(N +1) b, (N +1) a } U b {0 b, 1,,N,(N +1) b } U a

{0 a, 1,,N,(N +1) a } U = U b U a F enc = 1 2 + 1 12 i=x,y,z [ σ i N+1(t)(σ i 0 ρ PP ch ρ N+1 ) ]. ρ PP ch {1,,N} σi 0 0 ρ N+1 (N +1) 0a,N+1 a 0b,N+1 b = P 2 = H Ua U a H Ua H Ua = g(c 0 a e iπn 0 b c 1 + c N eiπn (N+1) b c (N+1)a + ) F enc = 1 6 (2 M 0,N+1 2 [ M 2 0,N+1 M 0,0 M N+1,N+1 ] + M 0,N+1 2 + i M N+1,i M i,0 2 )+ 1 2. M

1/r 3 H B = N ωa i a i + i=1 N 1 i=1 κ(a i a i+1 + a i+1 a i). b k = 1 A A = (N +1)/2 k =1,,N H = k (ω + ɛ k)b k b k j sin jkπ N+1 a j ɛ k =2κcos( kπ ) N+1 H B = g(a 0a 1 + a N a N+1 + )+ω (a 0a 0 + a N+1 a N+1) g ω a 1 a N b k H B + H B = N t k (a 0b k +( 1) k 1 a N+1 b k + ) k=1 + ω (a 0a 0 + a N+1 a N+1)+ N (ω + ɛ k )b k b k, t k =(g/a)sin[kπ/(n +1)] b z ω = ω + ɛ z t z ɛ z ɛ z±1 H B eff = 2t z (η 0b z + b zη 0 ) η 0 =1/ 2(a 0 + a N+1 ) k=1

ξ ± =1/ 2(η 0 ± b z ) H B eff = 2t z (ξ +ξ + + ξ ξ ). H B eff τ B = π/( 2t z ) U B eff = e ihb eff τ B =( 1) ξ + ξ + ( 1) ξ ξ (U B eff ) ξ ± (U B eff )= ξ ± a 0 a N+1 a 0 (τ) (U B eff) a 0 (U B eff) = a N+1, a N+1 (τ) (U B eff) a N+1 (U B eff) = a 0, 0 1 a N+1 (τ) =M N+1,0 a 0 + ɛa ɛ ɛ =1 M N+1,0 2 g 2 a ɛ a i i =1,...,N +1 N +1 n N+1 (τ) =(1 ɛ) n 0 + ɛ n ɛ n i = a i a i n ɛ kt/ω > 1 g g ω/(kt)

40 Number of States 30 20 10 0 T1 NV (units of ms) T1 NV (units of s) 26 28 30 32 34 Participation Ratio Number of States 20 15 10 5 0 10 15 20 25 30 Participation Ratio Number of States 8 6 4 2 0 5 10 15 20 Participation Ratio Number of States 10 8 6 4 2 0 3 4 5 6 Participation Ratio N = 11 T 1 d = 10 κ = 50 σ d σ d g L g R N = 51 N = 51 κ = 50

g g T 1 ɛ = L k z(g 2 ψ k,l 2 + g 2 R 2 k ψ k,r 2 2 k )+N t T 1, g L(R) ψ k,l(r) k z k N t T 1 N

g L g R t z = g L ψ z,l = g R ψ z,r t = π/ 2t z ɛ = k z ( ψk,l 2 gl 2 2 k + ψ ) z,l 2 ψ k,r 2 Nπ + ψ z,r 2 2 k 2T1 g L ψ z,l, ( g L = Nπ 3 2 2T 1 ψ z,l k z ψ k,l 2 2 k ) + ψ 1 z,l 2 ψ k,r 2. ψ z,r 2 2 k 1/2 10 50 T 1 10

{J i } J 0 0 1 κ =1 g 0.7 T 1 N =11 N =51 1 ɛ 200 N =51 T 1

N PR = 1 N i=1 ψ i 4 N PR O(N) N PR N N PR σ κ σ κ 0.5κ < 2/3 T 1 5 gψ κ/n g = g M (N) κ N +2

g/κ N 1/6 N > 90% N = 100 J i = 1 2 (i +1)(N +1 i) H = N i=0 N+1 J i (σ + i σ i+1 + h.c.)+ i=0 h 2 σz i, h H = ij K ijc i c j K ij = J i δ j,i+1 + J j δ i,j+1 + hδ i,j H = N+1 k=0 ω kf k f k ω k = k + h N+1 2 c i (t) = j M ij(t)c i (0) h = N+1 t =2π M(2π) = 2 c i (2π) =c i (0) {J i } J i = J N i ψ H ψ ik =( 1) N+1+k ψ N+1 i,k

h = 3 (N +1) t = π 2 M ij = k ψ N+1 i,k ψ jk = δ N+1 i,j. {0, 1,...N} [ρ SS ch P ]=1 M 0,N+1 =1 F SS =1 h = 3(N +1) U 2 P = 1 0 0 0 ( i) N+1 UP 2 = 1 0 0 ( 1) N+1 F SS = 1 2 + 1 6 [2 M 0,N+1 + M 0,N+1 2 ), F enc = 1 2 + 1 6 [2 M 0,N+1 2 M 2 0,N+1 M 0,0 M N+1,N+1 + M 0,N+1 2 + i M N+1,i M i,0 2 ]. M 0,N+1 1 J i = 2 1 (i +1)(N +1 i) g κ J 0 = J N = g J 1 = J 2 =... = J N 1 = κ g/κ

1/T 1 M 0,N+1 1 N =2, 3 J i = 1 2 (i +1)(N +1 i) N>3 g = g M (N) ω k k N+1 2 h =0 F enc g M N 1/6 τ N 1/r 3 e iπ i 1 j=1 σ+ j σ j

XX N =12 90% N =10 98%

1/2 H N = γ e B S γn B I + A S z I z + A (S x I x + S y I y ), S 1/2 I A = 159.7 A = 113.8 N 1 H N = κ Si z Si+1 z + i=1 N (ω 0 + δ i )Si z, i=1 κ ω 0 δ i a 1 H eff = κsi z Si+1 z + JSNV z (Sa z + Sb z )+ i=1 N 1 i=b κs z i S z i+1, J a b

a)! 5-1%3-"617'01-"8234"53'. "!!!"#$%&'( "!!!!!!!!!!!! /&0010"(234 "!!!!)*"+,+-.( " b) J 9" 3 " % " * "!" c) - - N (1,N) (2,N 1) N +1 Q = H CP H CP Q M Q L Q M Q L

U eff = e ih eff T /2 S x NV e ih eff T /2 S x NV = e iκ S z i Sz i+1 T U local = e ih eff T e iκ S z i Sz i+1 T = e ijsz NV (Sz a+s z b )T κ(t + T )=2πm m U local N N th (N 1) st N +1 Q n+1 =( H i CP i ) n+1 U local Q M

Magnetic field gradient : Nitrogen impurity : Two-qubit NV Register Q L Q M Q L U directed = e ijsz NV Sz N T b H med = J(S z NV 1 + S z NV 2 )S z N b,

NV 1 NV 2 N b Q M ( H i CP i ) n+1

!"#$%&'()'*+#,-+%%&.'/-0",-1-2'!3/4'51,& '! "! "! "! #! "! $!!!! " "!!!! # #!!!! = %!! " 678'929%&: '! Q k m U p (k )! Q k #! 678'929%&: '! $ A B X U p = X 1 x π CP X 1 CP CP Q k =( H CP) k U (k) p = Q k U pq k n n +1 k = n 1 U swap = HU (k) p H XU (k) p Z HU (k) p H, X x Z z π

1/r 2 A B a R

%! $ " # A B a R λ Ω

1/r 6 1/2 H = 2 σi z + Ω 2 i σi x + i i<j C p r i r j p P i P j. Ω C p P i = =(1+σ z i )/2 m s =0 m s =1 H AB = i C p r A r i P p A P C p i + r B r i P p B P i. σa z σz B a R =[ζ(p)(p +1)C p / ] 1/p Ω=0

R max p r (r) p r (r) =n exp( nr) n R max = n 1 log N N = C p (a R R max ) p, L L A B E int = E E E + E, E αβ α A β B E int b 2 /L b

ε ε ε 1 + ε 2 ε 1 ε 2 ε 1 =exp[ 2 G t g/( λ)] G t g λ ε 1 =exp( c G t g / ) c G 1/L α = c G / = α 0 /L ε 2 = ε 2 (γt g ) γ t g ε 2 =1 exp[ (γt g ) δ ] (γt g ) δ δ

γ L γ = γ 0 L/L 0 γ 0 L 0 L 0 a R ε =exp( α 0 /Lt g )+(γ 0 L/L 0 t g ) δ. t opt α γ t opt = δl log[l 0 α 0 /(L 2 γ 0 )]/α 0 ε = ( δ L2 γ 0 log L ) δ 0α 0. L 0 α 0 L 2 γ 0 1/L 2 N a b ψ A,B =( A,B + A,B )/ 2

ψ SC = i i Ω(t) = ( ) Ω 0 sin 2 8t/t0 1+16t 2 /t 2 0 (t) = 0 [1 5exp( 4t/t 0 )], t 0 t = t 0 t π = π /E int π H H t g =2t 0 + t π F = ρ 2 AB ρ AB A B G t 0 F =1 cexp( d G t 0 ) c d ρ AB

1 0.9 0.8 F 0.7 0.6 0.5 0 2 4 6 8 10 G t 0 G t 0 N = 34 t 0 Ω 0 p =3 C 3 = 100Ω 0 a 3 0 =2.3Ω 0 b =3a t 0 L/ a R F = 1 2 [1 c exp( d Gt 0 )] { 1+exp [ (γ 0 L/ a R t g ) 3]} δ =3 β t 0 G E int t 0 A B

S p =6 p =3 n =43 γ 0 = 10 KHz F =0.95 Ω 0 =2π 3.2 MHz 0 =2π 7 MHz C 3 n 3 =2π 320 MHz a =1µm γ 0 = 100 Hz Ω 0 =2π 80 KHz 0 =2π 170 KHz a =2nm T 2 m s =+1 m s = 1 T 1

γ 0

r a S =1 W

W 2.87 m s = 1 m s =1 m Ω m 0 1 H r = 0 0 + NΩ( 0 W +h.c.) 0 m s =0 W W = 1 0...1 i.... N i NΩ/ H r = 0 0 + J W W J = NΩ 2 / m J J V dd W

m m>1 0 W Ω ext V dd J V dd Ω ext N =100 r =20nm m s =0, 1 σ α V ij = ( ) 1 3cos 2 µ 2 ϑ ij r i r j 3 { 1 4 [ 1+σ (i) z ][ 1+σ (j) z ] (i) σ + σ (j) } σ (i) σ (j) +, r i µ ϑ ij r i r j H = /2 i σ(i) z +Ω i σ(i) x + i<j V ij 0 m s =1 W H eff = N c µ 2 R 3 ( 1 q, 0 0 q,w +h.c.),

N c W 1 q, 0 m s =1 0 R =100nm m 2 m =3 φ ( N 2 N c = 0 1...1 i...0 N φ ), i N c N Ω h 100 MHz N c 70 N Ω N c > 50 N c N c Ω NΩ/

N c Ω=0 Ω=h 110 MHz N c 70 = h 4 GHz) N c Ω 1 q, 0 m s =1 p q π t π R H eff R r V c t π 1/R 3

m s = 1 p q t π 600 µs V c 1/R 3 N N W N T 2 i W [ p W = p T2 1 W σ (i) z W 2] = 4 ( N p T 2 1 1 ), N p T2 N

N T 2 W T eff 2 T 1 m s =1 m s =0 W m s =1 m s =0 p 1 0 T 1 p 0 1 T 1 p 1 0 T 1 0 m s =0 W 0 p W 0 = p T 1 0 0 σ (i) 1 W 2 = p T1 1 0 N, N T 0 1 1 0 W m s =1 T 0 1 1 p 0 1 T 1 N p 0 1 T 1 T 1 T 2 T 1 /N T 2

R = 100 nm W T 2 T 1 1 T 1

t g t π T 1 /N T 2 ε =1 exp[ (4t π /T eff 2 ) 3 ] ε =10 2 T eff 2 =11ms 0 1 W W W 100 khz m s =1 A 2.14 MHz 14 N N N t π =70µs ε =10 2 T eff 2 =700µs ε =10 4 T eff 2 =3ms W

I =1/2 S =1 B Ω MW 0 e 1 e Ω RF 1 e t e n π 1 e n e τ π/2 n e e n n e S =1 0 e

0 e 1 e I =1/2 15 H e,n = 0 S 2 z + µ e BS z + µ n BI z + AS z I z, 0 =2.87 µ e = 2.8 µ n = 0.43 A =3.0 ẑ n e

0 e I z B z,0 1 100 500 10µ 10µ

B z (y) = db z dy y + B z,0

6B;m`2 93, h?2 `+?Bi2+im`2 7Q` `QQK@i2KT2` im`2 bqhb/@bi i2 [m MimK +QKTmi2`X U V irq@ /BK2MbBQM H?B2` `+?B+ H H iib+2 HHQrBM; 7Q` H2M;i?@b+ H2 # b2/ +QMi`QH- r?b+? 2M #H2b 7mHHv T ` H@ H2H QT2` ibqmbx i i?2 HQr2bi H2p2H- BM/BpB/m H TH [m2ii2b `2 QmiHBM2/ BM ;`2v M/ 2 +? +QMi BMb bbm;h2 +QKTmi ibqm H Lo `2;Bbi2`X i i?2 b2+qm/ H2p2H Q7?B2` `+?v- bmt2`@th [m2ii2- QmiHBM2/ BM r?bi2-2m+qkt bb2b H iib+2 Q7 TH [m2ii2bc 2 +? bmt2`@th [m2ii2 Bb b2t ` i2hv K MBTmH i2/ #v KB+`Q@bQH2MQB/ +QM}M2/ KB+`Qr p2 }2H/bX AM Q`/2` iq HHQr 7Q` [m MimK BM7Q`K ibqm i` Mb@ 72` +`Qbb #QmM/ `B2b Q7 bmt2`@th [m2ii2b- i?2`2 2tBbib /m H bmt2`@th [m2ii2 H iib+2 QmiHBM2/ BM `2/X U#V h?2 b+?2k ib+ Lo `2;Bbi2` BKTH Mi ibqm rbi?bm bmt2`@th [m2ii2x hrq `Qrb Q7 BM/B@ pb/m H TH [m2ii2b rbi?bm bmt2`@th [m2ii2 `2 b?qrmx Lo `2;Bbi2`b- +QMbBbiBM; Q7 M 2H2+i`QMB+ U;`22MV M/ Mm+H2 ` Uv2HHQrV btbm `2 /2TB+i2/ rbi?bm bi ;;2`2/ mt@bhqtbm; `` v r?b+? Bb `Qr@ `2T2iBiBp2X AM/BpB/m H `Qrb rbi?bm bbm;h2 TH [m2ii2 `2 bt2+b}2/ #v M BMi2;2` n rbi? n = 1 #2BM; i?2 #QiiQK `Qr M/ n = M #2BM; i?2 iqt `QrX hq +?B2p2 bi ;;2`2/ bi`m+im`2- r2 bt2+@ B7v mmb[m2 BKTH Mi ibqm `Qr rbi?bm 2 +? TH [m2ii2 r?2`2bm bbm;h2 BKTm`BiB2b `2 BKTH Mi2/ M/ bm#b2[m2mihv MM2 H2/X 6Q` ;Bp2M `Qr Q7 TH [m2ii2b- i?2 BKTH Mi ibqm `Qr +Q``2bTQM/BM; iq i?2 H27i@KQbi TH [m2ii2 Bb M 4 R- r?bh2 i?2 TH [m2ii2 iq i?2 BKK2/B i2 `B;?i? b BKTH Mi ibqm `Qr M 4 kc i?bb T ii2`m +QMiBMm2b mmibh i?2 }M H TH [m2ii2 BM ;Bp2M `Qr- r?b+? #v +QMbi`m+iBQM? b i?2?b;?2bi BKTH Mi ibqm `Qr MmK#2`X h?2 BKTH Mi ibqm T`Q+2bb Bb `2T2 i2/ 7Q` 2 +? `Qr Q7 TH [m2ii2b rbi?bm i?2 bmt2`@th [m2ii2 M/ +`2 i2b M `` v Q7 Lo `2;Bbi2`b- r?b+? 2 +? Q++mTv mmb[m2 `Qr BM i?2 bmt2`@th [m2ii2x abm+2 2 +? Lo `2;Bbi2` Q++mTB2b mmb[m2 `Qr rbi?bm i?2 bmt2`@th [m2ii2- i?2 K ;M2iB+ }2H/ ;` /B2Mi BM i?2 y /B`2+iBQM HHQrb 7Q` BM/BpB/m H bt2+i`qb+qtb+ //`2bbBM; Q7 bbm;h2 `2;Bbi2`bX *Q?2`2Mi +QmTHBM; Q7 bt ib HHv b2t ` i2/ Lo `2;Bbi2`b BM /D +2Mi TH [m2ii2b Bb K2/B i2/ #v / `F btbm +? BM / i #mb U.a*"V M/ Bb b+?2k ib+ HHv `2T`2b2Mi2/ #v i?2 +m`p2/ HBM2 +QMM2+iBM; BM/BpB/m H `2;Bbi2`bX h?2 b2+qm/ BKTH Mi ibqm bi2t +Q``2bTQM/b iq i?2 +`2 ibqm Q7 i?2b2?q`bxqmi H M/ p2`ib+ H / `F btbm +? BMbX R98

1/2 H int =4κSzS 1 z 2 + (ω 0 + δ i )Sz, i κ ω 0 δ i H drive = i=1,2 2Ω isx i cos[(ω 0 + δ i )t] (x, y, z) (z, y, x) i=1,2 H int = κ(s + 1 S 2 + S 1 S + 2 )+Ω 1 S 1 z +Ω 2 S 2 z. H int Ω 1 Ω 2 κ Ω 1 Ω 2 κ Ω 1 Ω 2 H int = i κ(s+ i S i+1 + S i S+ i+1 )+ i Ω isz i

κ 1/2 κ i,i+1 Ω i Ω i+1 H FFST = g(s + NV 1 S 1 N 1 + S + NV 2 S N + )+ i=1 κ(s + i S i+1 + S i S+ i+1 )

Ω i Ω j g κ g Ω

H FFST g B z (y)

N = 18 8.71 18.1 T1 NV N =7 12.6 16 T1 NV T N 1 T N 1 50 1 T NV 1

p SS err N(p SS off + p adia + p dip + p SS T 1 + p SS T 2). ( ) p SS off Ω 2 i g Ω i g p adia ( ) κ 2 p dip Ω i p SS T 1 T 1 p SS T 2 N N 5 100 N 20 500 p FFST err p FFST off + p fermi + p g + p FFST T 1 + p FFST T 2. p SS err p FFST err p fermi g/ N κ/n ( g/ N κ/n )2 p g g p SS err t FFST

T NV 1 100 10 2 T 1 T 1 10 T 1 50 ɛ 1.4%

g H = ( 1 1 + 1 1 ) Ω( 0 1 + 0 1 + ) Ω N S N x +4κS NV z S N z, Ω Ω N B = 1 + 1 2 D = 1 1 2 + B + 2Ω 0 0 2Ω B Ω H = D D ( + 2Ω2 ) + + + 2Ω2 1 2 Ω N( + N + N ) +2κ( B D + D B )( + N + N + ), ± N = N ± 2 N S N x 2κ { ( + D + D + ) 2Ω ( D + D ) } ( + N N + N + N ). { D, } g κ Ω

κ + κ 2 / 2 0 (α + β ) (α + β D ) π 0 1 0 1 0 D D D Ω D

1/2

6B;m`2 8R, a+?2k ib+ `2T`2b2Mi ibqm Q7 iqtqhq;b+ HHv T`Qi2+i2/ bi i2 i` Mb72` h?2 ;`2v /`QTH2i `2T`2b2Mib k. `` v Q7 BMi2` +ibm; btbmb imm2/ BMiQ i?2 *ag" T? b2x Zm MimK btbm@`2;bbi2`b +QKTQb2/ Q7 i` Mb72` [m#bi U;`22MV M/ K2KQ`v [m#bi U;QH/V `2 `` M;2/ `QmM/ i?2 2/;2 Q7 i?2 k. /`QTH2i M/ +QmTHBM; #2ir22M i?2k Q++m`b i?`qm;? i?2 +?B` H 2/;2 KQ/2X URV "v K T@ TBM; i?2 [m MimK BM7Q`K ibqm QMiQ 72`KBQMB+ r p2@t +F2i U#Hm2V i` p2hbm; HQM; i?2 2/;2- i?2 [m MimK bi i2 + M #2 i` Mb72``2/ iq `2KQi2 `2;Bbi2`X h?2 r p2t +F2i i` p2hb QMHv BM i?2 /B`2+@ ibqm Q7 i?2 #Hm2 ``Qrc i?bb +?B` HBiv T`2p2Mib KQ/2 HQ+ HBx ibqm M/ /2bi`m+iBp2 # +Fb+ ii2`bm;x i bt2+b}2/ ibk2 i i?2 `2KQi2 `2;Bbi2` HQ+ ibqm- i?2 +QmTHBM; Bb im`m2/ QM M/ i?2 r p2t +F2i Bb + Tim`2/ UkVX :Bp2M M M+BHH `v K2KQ`v [m#bi M/ HQ+ H `2;Bbi2` K MBTmH ibqmb- irq@[m#bi ; i2 UjV + M #2 T2`7Q`K2/ #27Q`2 i?2 [m MimK bi i2 Bb i` Mb72``2/ # +F iq i?2 Q`B;BM H `2;Bbi2` M/ biq`2/ U9@8VX h?bb HHQrb 7Q` mmbp2`b H +QKTmi ibqm #2ir22M i?2 K2KQ`v [m#bib Q7 bt ib HHv b2t ` i2/ `2;Bbi2`bX?QM2v+QK# H iib+2 b /2TB+i2/ BM 6B;X 8k (jkd)x h?2 bbq+b i2/ > KBHiQMB M M im` HHv ;2M2` HBx2b i?2 EBi 2p KQ/2H (jrn) M/ 72 im`2b +?B` H btbm HB[mB/ ;`QmM/ bi i2 U*aG" T? b2vh0 = 1! x x 1! y y 1! z z κσi σj + κσi σj + κσi σj, 2 x,x! 2 y,y! 2 z,z! links links UdXRV links r?2`2 1σ `2 S mhb btbm QT2` iq`b U! = 1VX h?2 KQ/2H K v #2 bqhp2/ #v BMi`Q/m+BM; 7Qm` J DQ` M QT2` iq`b- {γ 0, γ 1, γ 2, γ 3 } 7Q` 2 +? btbm- b b?qrm b+?2k ib+ HHv BM 6B;X 8k M/ #v `2T`2b2MiBM; i?2 btbm H;2#` b, σ x = iγ 1 γ 0 - σ y = iγ 2 γ 0 - σ z = iγ 3 γ 0 (jk8- jkd)x h?2 J DQ` M QT2` iq`b `2 >2`KBiB M M/ b ibb7v i?2 bi M/ `/ MiB+QKKmi ibqm `2H ibqm {γ l, γ m } = 2δlm X h?2 >BH#2`i bt +2 bbq+b i2/ rbi? i?2 T?vbB+ H btbm Bb irq@/bk2mbbqm H bm#bt +2 Q7 i?2 2ti2M/2/ 7Qm`@/BK2MbBQM H J DQ` M >BH#2`i bt +2c i?mb- r2 Kmbi BKTQb2 i?2 ; m;2 T`QD2+iBQM- P = 1+D 2 r?2`2 D = γ 1 γ 2 γ 3 γ 0 (jk8)x R8N

H γ = i 4 κ i,j Û i,j γ 0 i γ 0 j, Ûi,j = iγ α i γ α j α ij ij Ûi,j Û i,j Ûl,m {U i,j = ±1} {U i,j } γ 0 U i,j 2 w(p) = ij p U i,j p p ij U i,j =+1 γ 0 π/2 w(p) =+1 π π/2 π/2 w(p) = 1 v Q κ i,j Q k,i(iu i,j )Q k,j = δ kk ɛ k H γ = 1 N/2 2 k= N/2 ɛ kc k c k c k = 1 2 j Q k,jγj 0 N k

ɛ k = ɛ k c k = c k k>0 H γ = k>0 ɛ k (c k c k 1 2 ), c k c k b U i,j H T = H 0 + H int H int L R H int = S 2 (σz L + σ z R)+g L σ β L σβ a + g R σ η R ση b. S β,η g L g R

Ûi,j γ 0 i π π/2 U ij w(p) = 1

a b H int = S 2 (iγl 3γ0 L + iγ3 R γ0 R )+g LγL 1γ1 aγl 0γ0 a + g R γr 1 γ1 b γ0 R γ0 b σ x σ x U i,j U L,a U R,b H T = H + H int = k>0 ɛ k (c k c k 1 2 ) + S (c L c L 1 2 )+ S(c R c R 1 2 ) g L U L,a (c L + c L ) i 2 ( k Q k,ac k + k Q k,a c k ) g R U R,b (c R + c R ) i 2 ( k Q k,bc k + k Q k,b c k ), c L,R =1/2(γL,R 0 iγ L,R 3 ) c L,R =1/2(γ L,R 0 + iγ L,R 3 ) σ z

L R S > 0 g L,g R < S c k S k ɛ k H eff = i g L Q k,a c L 2 c k i g R Q k,b c R 2 c k + h.c. τ ɛ κ/l l τ l/κ

61 40 y k y a = π b =0.46κ 0.14κ 0.17κ S g L (t) g L (t) = vf(t), dt t f(t ) 2 f(t) v g R (t) S l

T N v n p e v/t n p π N v π ξ a a π

v H p H T H p H e = v dp 2π pc pc p = v dx γ(x)(i )γ(x),

c p = c p {c k } p {γ(x),γ(y)} = δ(x y) c p H e = λ dx γ(x)(i )γ(x)(i ) 2 γ(x)(i ) 3 γ(x), λ Γ int p ɛ p k B T Γ int p Γ int p λ2 p 13 + λ2 p 11 T 2 + O(T 4 ). v v κ λ κ( κ κ )2 a 7 Γ int p κ2 S ( κ κ )4 (ap) 14 S = vp p<1/a Γ dec p σ α i Γ dec p S(ω)

e d/ξ d i S(ω 0 ) e ω 0/k B T ω 0 =2 v S l Γ dec p e S/k B T + le V /k B T. S(ω) 1 ω 2 +1/t 2 c t c Γ dec p 1/ 2 v v 1/t c

e S/k B T S l

L R R L

N ρ = i ρ i ρ i Q = { +,, + i, i, 0, 1 } ρ F tol ρ i M i

F i =1/ Q ρ i Tr[ρ i M i (ρ i )] p h = 1 Q Tr[P acc M(ρ)] 1 e ND(F exp F tol ), ρ Q Q = Q N P acc M = i M i F exp =1/N i F i D F tol F tol N F tol N F tol N (2F tol 1)N 2F tol 1 p d = 1 Q ρ Q Tr [ P 2 acct (ρ) ] e ND(2F tol 1 2/3), T 2F tol 1 > 2/3 5/6

a b original qticket:... cloned qticket:... F tol N " 1 " 2 " 3 minimum overlap " N #2 F tol N " 1 " 2 " 3 " N #1 " N 1" " N #2 " N #1 " N "# +" 0" " Z challenge questions " X F tol F tol N (2F tol 1)N Ftol cv = 1+1/ 2 2

X Z { 0, +, 0,, 1, +, 1,, +, 0,, 0, +, 1,, 1 }. n r n r 2 X Z Ftol cv r n F exp >Ftol cv n

r p cv h ( rd(fexp F cv 1 e )) n tol. F cv tol > 1+1/ 2 2 1+1/ 2 1.707 Ftol cv p cv d ( ) 2 v ( 2 1/2+e rd(f tol 1+1/ 2 2 )) n, v F dishonest <F tol <F exp

, 0 0, + 1, + 0, + 0, + +, 1, 0 1, + Z X 0, 0 0, 1 1, 1 0, 1, + +,, + +, n = 4 r =2 8 F tol =3/4 F tol =3/4 F tol > 1/2+1/ 8

c

c +1 1 1 (c+1)(c+2) X 1,...,X n {0, 1} δ i S {1,...,n} Pr [ i S X ] i i S δ i Pr[ n X i γn] e nd(γ δ) i=1 δ := n 1 N i=1 δ i γ δ γ 1 D(p q) =p ln p q +(1 p)ln 1 p 1 q (X =1)=p (X =1)=q

P ρ acc N F tol ρ = N i=1 ρ i 0 F tol 1 P ρ acc = N ( bi ρ i + b i ρ i ). b: b 1 F tol N i=1 b {0, 1} N N b 1 = N i=1 b i b i =1 b i ρ i = ρ i b 1 F tol N 1 b M i F i F exp =1/N i F i F exp >F tol p v 1 e ND(F tol F exp). X =(X 1,...,X N ) Pr[ X = b]= 1 Q = N i=1 [ Tr M(ρ) ρ Q N ( bi ρ i + b ) ] i ρ i i=1 1 Tr [ M i (ρ i )(b i ρ i + 6 b i ρ i ) ] ρ i Q

X i Pr[X i ]=F i 1 Q ρ Q Tr[P accm(ρ)] ρ = Pr[ N i=1 X i F tol N] L 1 µ

(a) (c) (b) (d) ±1 { +1, 1 } S =1 m s =0, ±1 E B ( =1) H NV =(D 0 + d E z )S 2 z + µ B g s S B d [ Ex (S x S y + S y S x )+E y (S 2 x S 2 y) ],

D 0 /2π 2.88 g s 2 µ B d d ±1 B = g s µ B B z / E ±1 E = E 0 (a + a ) a ω m E 0 ±1 0 = B ω m D 0 ±1 0 H i = g ( σ + i a + a σ i ) σ ± i = ±1 i 1 i g J z = 1 2 i 1 i 1 1 i 1 J ± = J x ± ij y = i σ± i H = ω m a a + B J z + g ( a J + aj + ), g

0.03 1 L w, h ( ) 1/2 g 2π 180 L 3 w GHz, ρe ρ E (L, w, h) =(1, 0.1, 0.1) µ ω m /2π 1 g/2π 1 g e /2π 10 T 2 η = g2 T 2 γ n th γ = ω m /Q n th =(e ω m/k B T 1) 1 T Q =10 6 T 2 =10 T =4 η 0.8 g = B ω m H ( ) e R He R R = g a J aj + (g/ ) 2 H eff = ω m a a + ( B + λa a ) J z + λ 2 J +J, λ =2g 2 / J + J = J 2 J 2 z + J z J

J 2 z ψ 0 x J x ψ 0 = J ψ 0 J 2 y = J 2 z = J/2 J 2 z z J z J 2 min = 1 2 ( V + V 2 + V 2 yz ξ 2 = 2J J min 2 J x 2, ) V ± = J 2 y ± J 2 z Vyz = J y J z + J z J y /2 ξ 2 < 1 H eff [ ρ = i λ 2 J z 2 + ( B + λa a ) ] J z,ρ + 1 D[σ 2T z]ρ i 2 +Γ γ ( n th +1)D[J ]+Γ γ n th D[J + ], i D[c]ρ = cρc 1 2 ( c cρ + ρc c ) T 1 2 λ/2 B T 1

Γ γ = γg 2 / 2 n = a a n ψ 0 N =100 n th T 1 2 Γ γ ξ 2 Γ γ T 2 N J 1 n th 1 ξ 2 4Γ γ n th Jλ 2 t + t T 2. t ξ 2 opt 2 Jη, t opt = T 2 / Jη J ξopt 2 J 2/3 n = a a J z

1 0.5 ξ 2 100 0.1 (a) 10 n th =0 0 0.2 0.4 0.6 J λt 1 0.5 ξ 2 opt 0.1 (b) 0. 50 N 0. 67 N 10 50 100 N N = 100 T 2 = 10 n th n th =1 T 2 =1 ω m /2π =1 g/2π =1 Q = 10 6 T 2 H int (t) =λj z f(t)δn(t). f(t) J z J z π δn(t) =n(t) n n

n S n (ω) = dte iωt δn(t)δn(0) J + (t) = e χ e iµ(jz 1/2) J + (0), J 2 +(t) J + (t)j z (t) χ µ dω χ = λ 2 F (ωτ) 2π µ = λ 2 dω 2π ω 2 Sn (ω), K(ωτ) A ω 2 n (ω), S n (ω) =(S n (ω)+s n ( ω)) /2 A n (ω) =(S n (ω) S n ( ω)) /2 F (ωτ) = ω2 dte iωt f(t) 2 τ 2 π K(ωτ) µ F K F M =4 S n (ω) =2γ n th ( n th +1)/(ω 2 + γ 2 ) ω =0 χ 0 (t) = 1λ2 n 2 2 th t2 n th 1 T2 2/λ n th t = t opt n th > J M π

t χ th λ 2 γ n 2 th t3 /M 2 Γ γ T 1 2 M n th γt2 ω dr = ω m + δ S n (ω) ω = ±δ n dr n th n dr ( n th +1) n dr t/m =2π/δ π χ dr ( λ δ ) 2 ndr n th γt µ λ2 δ n drt n dr n th χ th Γ γ n dr M =4 g J eff <J J 1 g i i g i/ i g2 i i g2 i / i g4 i g i

Sn(ω) f (t) 1 0 1 0 2 4 t/τ F (ωτ) ξ 2 1 0.5 (a) 0.1 (b) K (ωτ) δ 0 δ ω 0 5 10 J λt ξ 2 min 1 0.5 0.1 (c) 10 3 10 4 10 5 10 6 F K M =4 f(t) M =4 n th = 10 n dr = 10 3, 5 10 4, 10 6 n th = 50, 10 M =4 g/2π =1 T 2 = 10 N = 100 ω m /2π =1 Q = 10 6 n dr (1, 0.1, 0.1) µ N 200 2 N eff 100 η 1 H int = λ ( σ 1 + σ2 +h.c. )

4

σ y 2 10 12 3 Q = ν/ ν ν ν ν

Excitation Laser Si Photodiode Diamond Film Bragg Mirror Microwave Line µ > 0 ±1 0 0 1

H gs =(D gs + d σ z )S 2 z + gµ b S B + d σ x (S x S y + S y S x )+d σ y (S 2 x S 2 y) d, C 3v D gs µ b S k k = {x, y, z} σ D gs S z ω 0 ±1 ω D gs ω D gs B 1 =2b 1 cos(2πωt)ˆx H gs V = e 2πiωtS2 z H gs =(D gs + d σ z ω)s 2 z + gµ b B z S z + gµ b b 1 S x

ρ = 1 i [H gs,ρ]+ k L k ρl k 1 2 L k L kρ 1 2 ρl k L k ρ L k r k I Ω=gµ b b 1 =D gs ω F (I,Ω, ) = γρ ss 22 + γ2 κ+γ ρss 33 ρ ss 22 ρ ss 33 F σ y (τ) = 1 1 1 2πQ (S/N) τ τ S/N C 1

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 A V 3 E 3 A I D es γ orbital states electron spin sublevels 3 2 1 0 D gs κ λ 1 E 1 A1 S B 9.5 x 105 I 0 9 F(!) (photons/sec) 8.5 8 C ν 7.5 500 0 500 Detuning from resonance,! (Hz) 3 E 3 A 1 E 1 A I γ κ λ S z 0 ±1 C 1 T2 =88 σ y (τ) =8.124 10 5 τ 1/2 Q S/N

D gs T δω δωt T 1 T T c T c T c T 2 m f =0 π T T 2 π ) 2 x ) τ π x τ π ) 2 x θ ) φ θ φ t p θ = gµ b b 1 t p Ω 1 gµ b b 1 (D gs Ω),gµ b B z

U echo = e i π 2 Sx e i(δωs2 z +bs z )τ e i π 2 Sx e i π 2 Sx e i π 2 Sx e i(δωs2 z +bs z )τ e i π 2 Sx = WW W W = e i π 2 Sx e i(δωs2 z +bs z)τ e i π 2 Sx = e i(δω ˆX bs y )τ, W W = e i π 2 S x e i(δωs2 z +bs z )τ e i π 2 S x = e i(δω ˆX+bS y)τ, ˆX ˆX = 1 2 0 1 2 0 1 0 1 2 0 1 2. [ ˆX,S y ]=0 W W U echo = e 2i(D gs Ω)τ ˆX ˆX 0 π 4 ˆx U 45 = e i π 4 S y U 45 0 = 1 2 ( 0 i + + ±1 S z U echo U 45 0 = 1 ( ) ie iδωτ + + e iδωτ 0. 2 Sz 2 δν S z B A S z I z π/2 π/4 S z

Optical Pumping Z 1 2 3 4 5 6 π π π 4 T T 4 TF } S 2 z X Y S z 1 2 3 4 5 6 0 S z S 2 z S z S 2 z Sz 2 2T S z ψ 0 = m s =0 U echo ψ f = U echo U 45 ψ 0 = 1 2 sin(φ) 0 1 2 cos(φ)( +1 + 1 ) φ =(D gs ω)t = δωt ˆM ˆM = a 0 0 + b ( +1 +1 + 1 1 ) a b ˆM

ψ f δω ω 0 = 1 ω 0 ˆM ˆM / ω ˆM 2 = ˆM 2 ˆM 2 2a 3b ˆM M τ = M T δω ω 0 M = ξ D gs Tτ ξ 5 b 0 a 0.031 λ/γ T = T 2 1 D gs =2870 δω/ω 0 =8.8 10 9 / τ 0.2% N 1/ N N 1.74 10 23 3 10 11 µ 3 3 1/ N 2 10 13 / τ 2 10 9 / τ 100µ 1 2 σ pulsed y 6.7 10 13 / τ

T 1/2 2T e (2T/T 2) n n 3 T 2 T e n =1 2 S/N T e 10 17 3 10 13 50 100 D gs 1µ

T 2, 10 20µ D gs dd gs /dt = 74.2(7) dd gs /dt 100 dd gs /dt =100 D gs dd gs /dt 75 dd gs /dt

δ D gs V ij S i S j = κ 2 3ˆri ˆr j δ ij r 3 S i S j S i κ a r (1) = aŷ r (2) = 3a ˆx a 2 2ŷ r(3) = 3a a ˆx 2 2ŷ H = V ij S i S j = 3κ 4a 3 (S2 z 2/3). ɛ kl H = S i S j V ij = κ 2 ( ) 3ˆr i ˆr j δ ij ɛ r k r 3 kl ˆr l S i S j = 3κ 2a 3 [ 3 4 (ɛ xx + ɛ yy )(S 2 z 2/3) + 1 8 (ɛ xx ɛ yy )(S 2 x S 2 y) + 1 8 (ɛ xy + ɛ yx )(S x S y + S y S x ) 1 2 ɛ zx(s x S z + S z S x ) 1 2 ɛ zy(s y S z + S z S y )]. α = 3 4 (ɛ xx + ɛ yy ) 3κ 2a 3 3κ 4a 3 a =2.38 α = 4.32(ɛ xx + ɛ yy ) =2.88

(a) "(T) (b) area A!d, Ed Diamond 1 Diamond 2 "0 clock 1 clock 2 (c)!1, E1 clamp1 Diamond clamp2 z T0 T!2, E2 Pz=Fz/A=Y! #T dd gs /dt η 1,2 E 1,2 ɛ xx = ɛ yy = ɛ zz dd gs dt ( ) 1.6 10 6 =( 4.32 2) 15, 1K 5 δ 3 ddgs dt 742 2.58 10 7

E 1 η c1 E 2 η c2 <η c1 T ɛ 1,2 η d (1 + η c1,2 E c1,2 /E d ) T T T 0 ω 0 T T 0 10 2 10 3

ω 1 (T ) = ω 0 + β 1 T ω 2 (T ) = ω 0 + β 2 T β 1,2 = dɛ dd gs dt dɛ = η d (1 + η c1,2 E c1,2 /E d )(dd gs /dɛ) τ =0 T 0 T 0 t φ 1,2 (t) =ω 0 t + t 0 β 1,2 T (t )dt ± φ 0, φ 0 = ξ t/ T 2,N φ(t) =φ 2 (t) φ 1 (t) = t 0 β 1,2 T (t )dt ± 2 φ 0 β 1,2 β 2 β 1 φ 1 (t) φ 2 (t) t φ 1(t) = φ 1 (t) β 1 T (t )dt 0 ( t ) = φ 1 (t) β 1,2 T (t )dt 0 = φ 1 (t) β 1 β 1,2 ( φ(t) 2 φ 0 ). β 1 β 1,2 t t ω 1 ω 1 = = ( ξ β1 (1+2 T2 NtD gs β 1,2 ) 2 ) 1/2 ( ) ( ( ) ) 2 1/2 ω β1 1+2. ω T =T 0 β 1,2

D ZFS (khz) (a) (b) (c) 0 1 2 3 Brass Tungsten 2.443 khz, 6.92 mk 4 0 2 4 6 8 10 Temperature (mk) D ZFS (khz) 2 2.2 2.4 2.6 2.8 T=5 mk T=10 mk 3 0.2 0.1 0 0.1 0.2 Position (mm) diamond d clamp D gs β 1,2 β 1 ν beat 10 Q 10 6 D gs β 1,2 η d (1 + η c1,2 E c1,2 /E d )/( 75 T 0.01 dd gs /dt

D gs σ ɛ F ijkl S i S j ɛ kl F Sz 2 (D gs + A 1 (ɛ xx + ɛ yy )+A 2 ɛ zz )(S 2 z 2/3) A 1 A 2 ɛ xx = ɛ yy = ɛ zz dd gs /dt =2A 1 + A 2 T T 0 L d L = L d η d T P = E d L d /L = E d ε d = E d Tη d L T 0.01K

Al + ion clock Ensemble NV Echo (0.01ppb x 1mm 3 ) TXCO Commercial Rb Single NV Echo Rb Chip Clock Ensemble NV CW SAW Oscillator 10 15 10 10 10 5 Allan Deviation after 1s averaging Single NV CW / f 40 1000 N 2

σ y =2 10 12 τ 1/2 9 /

200 m s =0 m s = ±1 d /dt = (2π)77 / N

" #!!"#$%&'( )%*%&+( Temperatureaccuracy Kelvin 10. 1. 0.1 0.01 CdSe QD SThM Nano Diamond Raman Liquid crystal Infrared Green FluorescentProtein Seebeck! "!! "!,-./0'( )%*%&+( #! " " 0.001 ProjectedNano Diamond Bulk Diamond 0.01 0.1 1. 10. Sensor size um ±1 0 (T ) δ

! 1.1 " 1.05 1!"#$!" "!" 1 0.8 Normalized fluorescence 0.95 0.9 0.85 population 0.6 0.4 0.2 0.8 0 0.75 0 100 200 300 400 500 2τ (us) 24.2 24.22 24.24 24.26 24.28 T ( o C) 2τ 50 2π 2τ = 250 µ 2τ = 50 µ 2τ 2τ m s =0 m s = 1 η = C d /dt 1 T Nt, T t C T C 0.03 1 / 200 600

ω 1 2 ( 0 + B ) B = 1 2 ( +1 + 1 ) τ 2π +1 1 τ ±1 99.99 % 12 13 0.5 2τ η =(9± 1.8) / 2τ =250µ δt =1.8 ± 0.3 2τ (2d /dt 2τ) 1 2τ < 2τ 1 µ

N 500 =2.87 100 100 nm 2.5

" # 40 1 42 7000 Normalized fluorescence 0.98 0.96 0.94 0.92 0.9 data max. slope meas. freq. y ( µm) 44 46 48 50 52 54 56 58! $ " #!"#$ % & 6000 5000 4000 3000 2000 1000 0.88 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.9 ω (GHz) 60 0 50 55 60 65 70 x ( µm)! 4 $ 15 3.5 3 off AU Fit on AU Fit " theory NV data 2.5 10 T (K) 2 1.5 1 0.5 0 T (K) 5! # $ % & 0.5 0 50 100 150 200 250 300 350 laser power ( µw) 0 0 1 2 3 4 5 6 7 8 9 distance ( µm) 500 0.8 µ

0.8 ± 0.1 µ 0.8 µ δt =(44± 10) T (r) = Q 4πκr Q κ r 72 ± 6 1 2 1 2 5 7 µ 1 T =( 20 ± 50)

12 µ 0.5 ± 0.2 10 120µ 3.9 ± 0.1 80 80 µ /

y ( µm) " 10 5 0 5 10 15 5 0 5 10 15 x ( µm) # $ +$'()*!"#$$$$$$$!"%$$$$$$$$!#$$$$$$$$%$$$$$$$$$#$$$$$$$$"%$$$$$$$"#!" &'()#$!"$ &'()#$ &'()#%!"%!"#$$$$$$$!"%$$$$$$$$!#$$$$$$$$%$$$$$$$$$#$$$$$$$$"%$$$$$$$"# & '()* T K 2.5 2.0 1.5 1.0 0.5 0.0 Pos 1 Pos 2 y ( µm) 250 200 150 100 50 30 35 40 45 &'()! T (K) 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0!"#$ 0 20 40 60 80 100 Au Fluorescence (kcps) *#+#$%-. /#+#,15#3,1%#4 y ( µm) 35 40 45 50 55!"% *#+#$%,-. /#+# 60 /#+#012#3,1$#4 50 55 60 65 70 75 50 60 70 80 x ( µm) x ( µm) 3500 3000 2500 2000 1500 1000 500 532 638 1 2 1 2 494/528 515 617 532 630

50 µ 5 =2.87 f 1,2 f (ω )+ f ω ω f 3,4 f (ω + )+ f ω ω+ ( ) δω + δb + δt d dt ( ) δω δb + δt d dt δt = δω (f 1 + f 2 ) (f 3 + f 4 ) d /dt (f 1 f 2 )+(f 3 f 4 ), ω ± δω δb

C 0.03 δt σ δt = σ/(c d dt 2τ) c 2τ t<30 s t η = δt t m 1 δt = N 1 ΣN i=1 (T i mp i ) 2 T i P i σ (δt) =δt 1 2 Γ 2 (n/2) Γ( ) N 1 Γ 2 ((n 1)/2)

9 / 250 µ 13 T 1 /2 3 1000 80 µ / n 200 µ B 10 10 6 5 20 µ 50 µ

2

S 1,S 2 R H 12 = ɛ 1 S z 1 + ɛ 2 S z 2 + t 12 (S + 1 S 2 + S 1 S + 2 )+V 12 S z 1S z 2 ɛ i W t 12,V 12 R R t 12,V 12 ɛ i W t 12 = = S z =0 δ a = ɛ 1 ɛ 2 δ a t a = t 12 τ α a, S z =0

(a), (b) r 1 r 2 1 2 =, =, t R 2 = (c) a δ a + δ b + V ab,,, δ b δ a V δ ab a δ b V ab, = 3 r 3 r 4 4 b, (δ a + δ b )+V ab R 1 S 1 S 2 a S 3 S 4 b t a,t b H ab H a = δ a τ z a + t a τ x a τ x a V 12 S z 1S z 2 S z =0 a =12 b =34 R 1 R 2 t(r 2 ) ɛ i W a b S z a =0 S z b =0 H ab = δ a τ z a + t a τ x a + δ b τ z b + t b τ x b + V ab τ z a τ z b V ab = V 13 V 14 V 23 + V 24 τa z = S1 z = S2 z H ab H ab

R 1,R 2 V ab 0 t a/b 0 τ z δ a/b t a/b t 2 a + δ 2 a, t 2 b + δ2 b V ab t a t b µ α µ z H ab τ µ O(1) τ x τ z H = H ab + H cd + H int = ab µ z ab + cd µ z cd + V αβ µ α abµ β cd, α,β {x,z} H int = V ac τ z a τ z c + V ad τ z a τ z d + V bcτ z b τ z c + V bd τ z b τ z d µ V (r) 1/r 1/r 3

V (r) 1/r β V ab = V 13 V 14 V 23 + V 24 ( 1 = 1 ) ( 1 + 1 ) R β 13 R β 14 R β 24 R β 23 ( ) ( ) 1 = R 2 + r 4 r 1 1 1 β R + 2 + r 3 r 1 β R 2 + r 3 r 2 1 β R 2 + r 4 r 2 β 1 ( ) β 2r3 r 1 +2r 4 r 2 2r 4 r 1 2r 3 r 2 R2 1. R β 2 R 2 2 2 R β+2 2 R 1 <R 2 /2 R 2 1 R ij V ab = V 13 V 14 V 23 + V 24 a b V ab R 2 1/R 5 2 V ab N 2 (R 1,R 2 ) V/R β 2 VR 2 1/R β+2 2

R 1 R 2 N 2 (R 1,R 2 ) (n 1 (R 1 )R2) d VR2 1/R β+2 2 t/r1 α R d (β+2) 2, n 1 = ρn 1 n 1 (R 1 )R d 2 R 2 2R 2 VR2 1 /Rβ+2 2 t/r1 α R 1 R 2 d>β+2 R 2 V (R 2 ) t(r 1 ) V (R 2 ) t(r 1 ) R2 1 /Rβ+2 2 1/R1 α 1/10 R 2 R α+2 β+2 1 N 2 (R 1,R 2 ) R1 d+2 (R α+2 β+2 1 ) d (β+2) α+2 d α+d β+2 = R1. d> α(β+2) α+β+4

N 3 (R 1,R 2,R 3 ) (n 2 (R 1,R 2 )R d 3) Ṽ/Rβ 3 Ṽ/R β 2 =(n 2 (R 1,R 2 )R3) d ṼR2 1/R β+2 3 ṼR1/R 2 β+2 2 = R 2d α+2 1 R d 2 R d β 2 3 n 2 = n 1 N 2 R 3 R 1,R 2 R 1 R 2 R 3 d>(β +2)/2 R 1 R (β+2)/(α+2) 2 R 2 R 3 N 3 V σ z α>β+4 R 1 R 2 R 3 α>β R 2 R 1 R β+2/α+2 2 R 1 R β/α 2 R <R 2 R 2 O(1) R 1 R <R 2

R N 2 (R 1, R) ρn 1 (R 1 ) R d R d α 1 R d. O(1) R R α/d 1 1 R 2 V (R 2 ) t(r 1 ) R >R 2 R = R 2 R 1 R = R 2 V R <R 2 R 2 R R 2 R α/d 1 1 R α β 1 d c = αβ α+β d< αβ α+β R 2 O(1) N 2 (R 2 ) 1 R 2

R 2 N 2 (R 1,R 2 ) R 2 α = β R 1 R 2 R 2 N 2 (R 2 ) 1 1 N 2 (R 2 )=ρ 2 R 2d β 2 V W = R2d β2 = 1 W ρ 2 V = 1 1 ρ 2 a β 0 W V/a β 0 D = W V/a β 0 ρ 1/a d 0 R 2 a 0 D 1/(2d β), d = β =3 R 2 a 0 3 D d =2 R 2 a 0 D α = β =3 d c =1.5 D>1 d c α = β =3 d z i d z j

i<j d z i d z j r 3 ij = i<j (d s i + d a i σ z i )(d s j + d a j σ z j ) r 3 ij = i<j (d s ) 2 r 3 ij + i<j d a d s (σ z rij 3 i + σj z )+ i<j (d a ) 2 σ z rij 3 i σj z, d z = d s + d a d z = d a d s ɛ i = i j d a d s i ɛ rij 3 i = j i d a d s Q rij 3 j = ν da d s a 3 0 l lat 1 ν l 3 Q j =1 0 δɛ 2 i = ɛ2 i ɛ i 2 ɛ 2 i = ( )( d a d s d j i k i Q a d s rij 3 j Q rik 3 k ) Q j Q k = νδ jk + ν 2 (1 δ jk ) ( ) 2 [ ɛ 2 i = (ν ν 2 ) 1 l lat + ( ν ) 1 2 l 6 l lat ] l 3 d a d s a 3 0 W = ɛ ɛ 2i = 2i ɛ i 2 = da d s (ν ν a 3 2 ) 1 0 l, 6 l lat ν 1 W ν da d s ρ ν/a 3 0 W = da d s (ν ν a 2 ) 1 3 l lat 0 l 6 a 3 0 1 N 2 (R 2 )=ρ 2 R 2d β 2 V W = R2d 32 = 1 W ρ 2 V = 1 1 ρ 2 a 3 0 d a d s (ν ν a 2 ) 3 l lat 0 V/a 3 0 1 l 6.

V (d a ) 2 ( d s 1 R 2 a 0 (ν ν d a ν 2 ) ) 1 2d 3 1. 2 l 6 l lat ν 1 ( ) 1/3 d d =3 R 2 s a0 d a / ν d =2 R 2 ds d a a 0 /ν 3/2

H B = ij t ija i a j + 1 2 i j V ijn i n j X Y (Θ 0, Φ 0 ) = s 1, 1 + v 1, 1 + w 1, 0 s =Ω 2 Ω 4 / Ω v =Ω 1 Ω 3 / Ω w = Ω 1 Ω 4 / Ω i j R =(R, θ, φ) {x, y, z} H = 1 6 4πɛ 0 R 3 2 ( 1) q C q(θ, 2 φ)tq 2 (d (i), d (j) ), q= 2 C k q (θ, φ) k z q T 2 2 ( ) T±2(d 2 (i), d (j) )=d (i) ± d (j) ± T±1(d 2 (i), d (j) )= d (i) z d (j) ± + d (i) ± d (j) z / 2

( T0 2 (d (i), d (j) )= d (i) d (j) + +2d (i) z d (j) z ) + d (i) + d (j) / 6 d ± = (d x ± id y )/ 2 1, 0 1, ±1 T 2 ±1 t ij i j T 2 0 i j = 2 3 [d2 00w i w j 1 2 d2 01(v i v j + s i s j )], i j T 2 +2 i j = d 2 01(v i s j ), i j T 2 2 i j = d 2 01(s i v j ), d 00 = 1, 0 d z 0, 0 d 01 = 1, ±1 d ± 0, 0 t ij V ij V ij = i j H dd i j + i j H dd i j i j H dd i j i j H dd i j i d i = d 1 ( s i 2 + v i 2 )+µ 0 w i 2 d 1 = 1, ±1 d z 1, ±1 µ 0 = 1, 0 d z 1, 0 1, 0 V ij

ij d i j d z d z + 1 2 (d +d + d d + ) i j = d 2 0, i j d z d z + 1 2 (d +d + d d + ) i j = d i d 0, i j d z d z + 1 2 (d +d + d d + ) i j = d 0 d j, i j d z d z + 1 2 (d +d + d d + ) i j = d i d j 1 2 µ2 01(s i wi w j s j + w i vi v j wj + ) i j d + d + i j = µ 2 01(s i wi w j vj + w i vi s j wj ), i j d d i j = µ 2 01(w i s i v j wj + v i wi w j s j), d 0 = 0, 0 d z 0, 0 µ 01 = 1, ±1 d ± 1, 0 1, 0 1, ±1 H dd t ii = j i ( i j H dd i j i j H dd i j ) t ii 2B {a, b, A, B} a A b B t ij V ij g 1, g 2 w t ij V ij a A b B g 2 w a/b = w A/B w a/b = w A/B

40 87 40 87 I 1 =4 I 2 =3/2 H Q 1 40 87 1, ±1 T±2 2 H dd Ω M H hf {a, b, A, B} A H hf A = a H hf a = B H hf B = b H hf b 10 3

A B t ii E(R, t) =E(R)e iωt + ˆX H lattice = E(R) α(ω)e(r) E(R) = E(R) p β p(r)e p e p α(ω) H lattice = E 2 (R) [ 2α α 3 +(α α ) p C 2 pγ p ] α α γ 0 = β 0 2 1/3 γ ±1 =1/ 3(β0β ± β β 0 ) γ ±2 = 2/3β β ± [ ] H lattice = E 2 2α α (R) +(α α ) 0, 0 C0 2 0, 0 γ 0 3 H lattice = E 2 (R)[ 2α α 3 +(α α ){γ 0 ( s 2 1, 1 C 2 0 1, 1 + v 2 1, 1 C 2 0 1, 1 + w 2 1, 0 C 2 0 1, 0 )+γ 2 sv 1, 1 C 2 2 1, 1 + γ 2 s v 1, 1 C 2 2 1, 1 }]. δe = H lattice H lattice A B {s, v, w} t ii

σ + π σ γ ±2 γ ±1 =E 1,0 E 1,1 H lattice ˆx ŷ ẑ λ 0 {a, b, A, B} λ L = R 0 λ 0 λ L λ L k ˆX Ŷ λ L k ( ˆX ± Ŷ ) 2λ L ˆk ẑ Ω 2 Ω 3 Ω 1 =Ω 4 =0 Ω 1 =Ω 4 Ω 2 =Ω 3 =0 M Θ 0 =0.68, Φ 0 =5.83

k x k y Θ 0 =0.05 E 32 Θ 0 =1.05 E 28 Θ 0 =0.68 E 36 Θ 0 =0.25 E 40 {θ a,θ b,φ a,φ b,α a,α b,γ a,γ b } = {0.53, 0.97, 1.36, 3.49, 2.84, 2.03, 4.26, 3.84} s i =sin(α i )sin(θ i ) v i =sin(α i )cos(θ i )e iφ i w i =cos(α i )e iγ i ν =1/2 N s =24 {Θ 0, Φ 0,θ a,θ b,φ a,φ b,α a,α b,γ a,γ b } = {0.65, 3.68, 2.4, 2.97, 6.06, 4.1, 0.97, 2.74, 3.44, 1.74} f 7 A B a b γ A = π + γ a γ B = π + γ b w a/b = w A/B E 8 ν =1/2 Θ 0

40 87 Θ 0 A B d 00 = d 01 1, ±1 s i s i d 00 /d 01 v i v i d 00 /d 01 (0, 0) ( π, 0) E < 4 A B

I(r) = β2 4π 0 [G 0 (r; z)g 0 (r; z)]dx G 0 (r; z) = d 3 k z+ɛτ z+ τ x z 2 ɛ 2 2 G 0 (r; z = ix) = 2πρ 0 k f r e 2 +x 2 /v f r (cos(k f r) ) 2 + x 2 τ z +sin(k f r)[ix + τ x ]. 2 + x 2

[G 0 (r; z)g 0 (r; z)] I(r) = = k f r 0 x 2 + 2 dx e 0 β 2 π(k f r 0 ) 2 E f β 2 [ 2 + x 2 cos(2k f r 0 )] π(k f r 0 ) 2 (x 2 + 2 ) [ cos(2k f r 0 ) 0 dx e k f r 0 x 2 + 2 E f ] +2 2 sin 2 (k f r) k f r 0 x 2 + 2 dx e E f 0 (x 2 + 2 ) x x I(r) = β 2 cos(2k π(k f r 0 ) 2 f r 0 ) 0 dx [ e k f r 0 x 2 +1 E f ] +2sin 2 (k f r) 0 k f r 0 x 2 +1 E f dx e (x 2 +1) dx [e k f r 0 ] x E f = E k f r 0 f 1 k f r 0 e E f 0 dx [ e k f r 0 x 2 +1 ] E f = E f k f r 0 e k f r 0 E f [ ] kf r 0 F 1 E f F 1 F 1 [α] =α 0 dxe α( x 2 +1 1). k f r 0 x 2 +1 dx e E f 0 (x 2 +1) = π k f r 0 [ ] 2 e E kf f r 0 F 2 E f

F 2 F 2 [α] = 2 π 0 x dx e α( 2 +1 1). (x 2 +1) I(r) = E fβ 2 π(k f r 0 ) cos(2k fr 3 0 )e k f r 0 [ ] E kf f r 0 F 1 + β2 = E [ fβ 2 π(k f r 0 ) cos(2k fr 3 0 )e 2r 0 2r0 ξ F1 ξ k f r 0 E f (k f r 0 ) 2 sin2 (k f r)e E f ] [ + β2 (k f r 0 ) 2 sin2 (k f r)e 2r 0 2r0 ξ F2 ξ [ ] kf r 0 F 2 E f ] F 1 F 2 F 1 [α] =α 0 dxe α( x 2 +1 1) 1.25(α +0.65) 1/2 F 2 [α] = 2 π 0 x dx e α( 2 +1 1) (x 2 +1) 0.8. (α +0.65) 1/2 [G, (z) G (0) (z)] = [SΠ+SΠSG + SΠSGSG +...]= [SΠ(z)(1 SG(0) (z)) 1 ]. S S

SC Interaction (khz) Interaction Strength Hz 6! 6000 5000 4000 3! 3000 2000 1000 Full SC Correction Perturbative SC Correction β =0.01 0! 3! 5! 7! 0 3 4 5 6 7 Distance between spins nm R (nm) β =0.01 =0 S [SΠ(z)(1 SG (0) (z)) 1 ] [SΠ(z)SG (0) (z)]. Π(z) G(z) [SΠ(z)SG (0) (z)] = n,m Ψ n S Ψ m Ψ m S Ψ n. (z ε m ) 2 (z ε n ) E tot +iλ 0 iλ = = iλ iλ iλ dɛ 4π 2Re[ iɛ (iɛ ε m ) 2 (iɛ ε n ) ] ɛdɛ ɛ 4πi (iɛ ε m ) 2 (iɛ ε n ) dɛ 4π ɛ (ɛ + iε m ) 2 (ɛ + iε n ). ±i iε m,n iλ

iλ iε n iλ dɛ ɛ iλ 4π (ɛ + iε m ) 2 (ɛ + iε n ) = 1 ε n (ε n Λ). 2 (ε n ε m ) 2 m iλ dɛ ɛ iλ 4π (ɛ + iε m ) 2 (ɛ + iε n ) = 1 ε n (ε n Λ) + ε m (ε m Λ) 4 (ε n ε m ) 2 = 1 (ε n Λ) 4 (ε n ε m ) = 1 4 iλ iλ dɛ 1 2π (ɛ + iε m )(ɛ + iε n ). 4δE tot =2 +iλ 0 0 dɛ 4π 2 [i [SG(0) (iɛ)sg (0) (iɛ)]] dɛ 4π 2 [i [SG(0) (iɛ)sg (0) (iɛ)]] iλ 0 dɛ 4π 2 [i [SG(0) (iɛ)sg (0) (iɛ)]], G σσ LL (z) Gσσ LR (z) Πσσ LL (z) Πσσ LR (z) G σσ LL (z) Gσσ LR (z) Πσσ LL (z) Πσσ LR (z) L R G σσ LL (z) =Gσσ RR (z)

G σσ LR (z) =Gσσ RL (z) G σσ LL (z) = d 3 1 k z 2 2 ɛ 2 z ɛ k k z + ɛ k = ρ 0 2 z 2 z z G σσ LR (z) G σσ LR(z) = d 3 1 k z 2 2 ɛ 2 z ɛ k k z + ɛ k e ik r 0, r 0 = r L r R G σσ LR (z) = 2 z 2 r v 0 f ρ 0 e k f r 0 2 z 2 z sin(k fr 0 )+ 2 z 2 cos(k f r 0 ) sin(k f r 0 ) sin(k f r 0 ) z sin(k f r 0 ) 2 z 2 cos(k f r 0 ). Π σσ LL (z) Π σσ LL (z) = ρ 0 ( 2 z 2 ) 3/2 z z. k f r 1