Σχετικά έγγραφα
9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

m i N 1 F i = j i F ij + F x

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Parts Manual. Trio Mobile Surgery Platform. Model 1033

!"#$ % &# &%#'()(! $ * +

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα


ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Διαφορικές Εξισώσεις.

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

TeSys contactors a.c. coils for 3-pole contactors LC1-D

( () () ()) () () ()


4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π:

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ


ITU-R P (2012/02) &' (


5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD AD AD V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.

d 2 y dt 2 xdy dt + d2 x

Apì ton diakritì kôbo ston q ro tou Gauss

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

#%" )*& ##+," $ -,!./" %#/%0! %,!

A 1 A 2 A 3 B 1 B 2 B 3

Déformation et quantification par groupoïde des variétés toriques

1ος Θερμοδυναμικός Νόμος


ιαµέριση (Partition) ορισµένη στο διάστηµα I = [a, b]


ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012


Α Ρ Ι Θ Μ Ο Σ : 6.913

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

1 I X (f) := f(x t ) dt. f B

M p f(p, q) = (p + q) O(1)

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Mesh Parameterization: Theory and Practice

ŒˆŠ Š ˆ Š ˆ ˆ ˆ œ ƒ ƒˆƒ Š ƒ.. ˆÏÌ μ,.. ²

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

A Classical Perspective on Non-Diffractive Disorder

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

ds ds ds = τ b k t (3)

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

( () () ()) () () ()

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

υ η µ η. υ η µ υµ η υ υ υ µ υ η µ η υ. µ υ υ υ η ω µ ω µ υ η ω υ µ υ ω ω ω η ω ω., ω ω,, % #" ".µ, & ". 0, # #'

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

ΜΕΜ251 Αριθμητική Ανάλυση

/&25*+* 24.&6,2(2**02)' 24

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê



!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

VISCOUS FLUID FLOWS Mechanical Engineering

!"#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας


σ (9) = i + j + 3 k, σ (9) = 1 6 k.


(f s)(y) = f[s(y)] = y = Id Y, άρα f s = Id Y

Microscopie photothermique et endommagement laser

Μαθηματικά ΜΕΡΟΣ 6 ΠΑΡΑΓΩΓΟΙ

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ

= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Τομέας Θεωρητικής Φυσικής

!"#$%&' ()*%!&"' «$+,-./0µ / :1/.;./:69 <.5-8+9: $=5-.>057=9/7/=9» !"#$%&$'( trafficking %)*+!,,-.$. /0"1%µ$)$ 2"(%3$)*4 5"67+$4

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ


Πεπερασμένα στοιχεία στις πολλές διαστάσεις

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a

Transcript:

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine Netzwerke Gehirnregionen eg ionen und lokale Schaltkreise Verbindung von Gehirnarealen realen überlebenswichtige Proteine (Kanäle, Membran, Messenger...) Kanalaktivität, Signalempfang, Signalweiterleitung Synaptische Kopplung, Neurotransmitter, Rezeptoren Zusammenfassung von funktionellen Einheiten Makroskopische Informationsverarbeitung Global (Beobachtung) Verhalten

+ + 2+ 2+ 3

I L R L r L L πa 2 x =0 V 1 x = L V 2 I L = V 2 V 1 R L L R L = r L πa 2 C m Q V m Q = C m V m C m A

c m c m := C m A c m = 10nF /mm 2 R m = V I e I e V r m τ m τ m τ m := r m c m. V m = V i V a z q E E zqv

T k b P (E zqv )=(zqv /k b T ) R F V T k b T V T = R T ( = k ) bt F q V = V gg [] 1=[] P (E zqv ) [] =[] (zv gg /V T ) V gg = V ( ) T [] z () [] V m = RT P K [K + ] a + P A [A ] i F K A P K [K + ] i + P A [A ] a K A j Ion ( ) z : L : j = D ( d [] dx z F RT ) Vm L []

j = D d [] dx }{{} z F RT L [] Vm } {{ } (2.11) j I D I d[i] dx + z IF RT Vm L [I] =1 ˆL 0 j I D I RT L z I FV m z IFV m RT e z I FVm RT d[i] dx + z IF [ = RT Vm L ( j I = j I D I ( j I D I j I D I ˆL dx = 1 dx [I] 0 + z ) IF D I RT Vm L [I] a + z IF RT ) Vm L [I] a j I D I + z IF RT Vm L [I] i + z IF RT Vm L [I] a + z IF RT Vm L [I] i µ µ := FV m RT : ( e z Iµ j I + z ) IF D I RT Vm L [I] i j I = D Iz I µ L [I] i e z Iµ [I] a (1 e z Iµ ) P I = D I L j I = P I z I µ [I] a [I] i e z Iµ (1 e z Iµ ) ( j I + z )] IF D I RT Vm L [I] i = j I D I + z IF RT Vm L [I] a J I I J I := z I F j I = L

J = I J I =0 n I = ±1 + + K z K =+1 A z A = 1 J K = P K µf [K] a [K] i eµ 1 e µ, J A = P A µf [A] a [A] i e µ 1 e µ = P A µf [A] i [A] a eµ 1 e µ. I J I =0 P K [K] a + P A [A] i K A Fµ 1 e µ = }{{} =:u e µ = u v P K [K] i + K A }{{} =:v P A [A] a Fµeµ 1 e µ µ = u v FV P K [K] a + P A [A] i m RT = K A ( P K [K] i + P A [A] a K A V m = RT P K [K] a + P A [A] i F K A P K [K] i + P A [A] a K A + + V m = RT F ( PNa +[Na + ] a + P K +[K + ] a + P Cl [Cl ) ] i P Na +[Na + ] i + P K +[K + ] i + P Cl [Cl ] a + V m = RT F ( PNa +[Na + ) ] a P Na +[Na + ] i = RT F ( [Na + ) ] a [Na + ] i

i m = i V E i g i g i (V E i ) i

+ E Na = +55 E K = 75

+ + V m 60 P Na + 1 25 P K + E Na + 55

+ + + + + + + V m = 60 150 + + + + V m + V m + V m +

+ +

C m V = Q V C m dv dt = dq dt. dq dt I m I e dq dt = I m + I e C m dv dt = I m + I e dv c m dt = i m + I e A ( i m = i g i (V E i ))

r m = 1 g L dv c m dt dv dt τ m }{{} =c m r m = g L (V E L )+ I e A = E L V + R m I e V = V th V = V reset I e V (t) = E L + R m I e +(V (t o ) (E L + R m I e )) e t t 0 τm I e t k = t 0 + k t, k N [t k,t k+1 ] I e I (k) e V (t k+1 ) = E L + R m I e +(V (t k ) (E L + R m I e (k) )) e t τm. t [t k,t k+1 ] V (t) = E L + R m I e +(V (t k ) (E L + R m I e (k) )) e t t k τm. t 0 r := 1 t. I (t )

r V t V ( V (t )=V = E L + R m I +(V E L R m I ) V (E L + R m I ) t = τm V E L R m I ( ) V E L R m I t = τ m V E L R m I ( ( V E L R m I r = τ m V E L R m I (1) = 0 V V (x) x>0 ( ) )) 1 V E L R m I V E L + R m I > 0! t τm ) V <E L V I > 0 R m I >V E L V { ( ( )) V E τ r = m L R 1 mi V E L R m I, Rm I >V E. 0 I ( ) ( ) V E L R m I V V V V = 1+, V E L R m I V E L R m I V E L R m I r V E L R m I τ m (V V ) (1 + x) x x

f a f(x) =f(a)+ f (a) 1! (x a)+ f (a) 1! f(x) =(1 + x) 0 (1 + x) =(1 + 0) }{{} =0 + ln (1 + 0) 1! (x a) 2 + f (a) (x a) 3 +... 1! } {{ } =1 (x 0) + x. K + K + K + dv τ m dt = E L V r m g (V E K ) +R }{{} m I e dg g τ dt = g g g + g S i T i =[t i,t i+1 ] S i := ( [t i,t i+1 ]) t i+1 t i S i (i =1...n) Ti k Si k k S i S k i a

dg dt 2+ ( i) ( i) P i := g i : i g i := g i P i :

P K (V m ) k k n P K = n k n [0, 1] k k =4 + α n (V ) β n (V ) n dn dt = α n(v )(1 n) β n (V )n τ n (V ) dn dt = n (V ) n 1 τ n (V )= α n (V )+β n (V ) α n (V ) n = α n (V )+β n (V ) α n β n qb α V B α ( qb α /k B T ) α n (V ):=A α ( qb α /k B T )( A α ( B α V /V T ) A α β n (V ):=A β ( qb β V /k B T ) n (V )= 1 1+ β n α n (V ) = 1 ( 1+ A β A α ( (Bα B β) V V T ))

+ m k ( k = 3) h i ( i = 1) P Na + = m 3 h m h dm dt = α m(v )(1 m) β m (V ) m dh dt = α h(v )(1 h) β h (V ) h α m,α h ; β m,β h α n β m τ m (V ) dm dt τ m (V ) = m (V ) = = m (V ) m 1 α m (V )+β m (V )) α m (V ) α m (V )+β m (V ) + + i m = g i (V E L ) + g }{{} K n 4 (V E K ) + g }{{} Na m 3 h(v E Na ) }{{} g i =. E L =. g K =. E K = g Na =. E Na =+

dv C m dt = i m + I e A τ m (V ) dm dt τ n (V ) dn dt τ h (V ) dh dt = m (V ) m = n (V ) n = h (V ) h α n (V ) = 0.01(V + 55) 1 ( 0.1(V + 55)) β n (V ) = 0.125 ( 0.0125 (V + 65)) α m (V ) = 0.1(V + 40) 1 ( 0.1(V + 40)) β m (V ) = 4( 0.0556 (V + 65)) α h (V ) = 0.07 ( 0.05 (V + 65)) β h (V ) = 1 1+( 0.1(V + 35)) + + + + 2+

+ + S i (i =1...n) S i S j, (i, j) {1,...,n} 2 P (S i,t) t S i dp (S i,t) dt n = P (S j,t)p(s j S i ) j=1 j=1 n P (S i,t)p(s i S j ) s i S i (i, j) {1...n} 2 r ij r ji S i S j S i r ij S j r ji i ds i dt = n s j r ji j=1 n s i r ij. j=1 r ij V r ij (V ) S i S j. r ji (V )

S i S j U ij S i ( U ij /k b T ) r ij (V )=R ij ( U ij (V )/k b T ) k b R ij U ij (V ) U ij (V ) c 0 + c 1 V r ij (V ) = R ij ( U ij (V )/k b T ) = R ij ( (c 0 + c 1 V )/k b T )=R ij c 0 k bt c 1 V k b T a ij := R ij c 0 k bt, b ij := k bt. c 1 ) r ij (V )=a ij ( Vbij a ij b ij C r 1(V ) O r 2 (V ) m α m(v ) m, β m(v ) h α h(v ) h. β h (V ) o = m 3 h

C r 5 r 1 r r 2 6 r 4 8 r 3 8 8888888 I O r 1,...,r 6 C r 5 r r 2 6 r 4 8 8888888 I r 1 =0 r 3 =0 r 5 =. r 2 =. r 4 = r 6 = C r 5 r 1 r r 2 6 r 4 8 r 3 8 8888888 I r 1 = r 3 = r 5 = r 2 = r 4 = r 6 = O O r 7 C r 5 C 1 r 6 O r 4 I r 3 r 9 r 1 r 2 C 4 I 4 r 5 r 6 r 2 r 1 r 3 r 4 C 2 r 6 r 5 C 3 r 8 r 10 I 3

C r 1 O r 2 dc dt = r 2 O r 1 C do dt = r 1 C r 2 O C (1 O) do dt = r 1 (1 O) r 2 O O(t 0 )=O O(t) =O + K 1 ( (t t 0 )/τ 1 ) K 1 = O O O = τ 1 = r 1 r 1 + r 2 1 r 1 + r 2 do dt ( = K 1 1 ) ( t/τ 1 ) 1 O + 1 O τ 1 τ 1 τ 1 ) = ( 1τ1 O(t)+ 1 O τ 1 = (r 1 + r 2 ) O (r 1 + r 2 )O(t) = r 1 (r 1 + r 2 )O(t). O(t 0 ) = O + K 1 1 = O + O O = O.

C r 5 r 1 r r 2 6 r 4 8 r 3 8 8888888 I O I O do dt di dt = r 1 (1 O I) (r 2 + r 3 ) O + r 4 I = r 6 (1 O I) (r 4 + r 5 ) I + r 3 O O(t 0 )=O I(t 0 )=I O(t t 0 ) = O + K 1 ( (t t 0 )/τ 1 )+K 2 ( (t t 0 )/τ 2 ) I(t t 0 ) = I + K 3 ( (t t 0 )/τ 1 )+K 4 ( (t t 0 )/τ 2 K 1 = (O O )(a + 1/τ 2 )+b(i I ) 1 τ 2 1 τ 1 K 2 = (O O ) K 1 K 3 = K 1 a 1/τ 1 b K 4 = K 2 a 1/τ 1 b O = br 6 dr 1 ad bc I = cr 1 ar 6 ad bc a = (r 1 + r 2 + r 3 ), b = r 1 + r 4, c = r 3 r 6, d = (r 4 + r 5 + r 6 ) τ 1/2 = a + d ± 1 (a b) 2 2 2 +4bc.

a x V (x, t) x t

x Q C m V t = Q t = I L(x) I L (x + x) I m + I e, C m V I L I m I e I L R L Φ dx Φ(x + dx) Φ(x) = R L (x) I L (x), R L dx R L (x) =r L πa 2 (x) r L dx Φ(x + dx) Φ(x) = r L πa 2 (x) I L(x). dx dx 0 Φ x = r L πa 2 I L. ( ) Φ a 0 Φ x V x = (Φ i Φ a ) x I L = πa2 r L V x. C m V = E d

d E = Φ ρ i Ω Ω Ω Φ = ρ i ɛ 0. ɛ 0 ˆ ˆ ρ i Φ ndν= dµ 2πa xe = Q Q E =, ɛ 0 ɛ 0 2πa xɛ 0 E V = d 1 Q C m = ɛ 0 2πa x. ɛ 0 2πa x d }{{}}{{} =:c m =C 1 m V c m 2πa x }{{} t C m = πa2 (x) V r L x (x) ( 1) πa2 (x + x) V (x + x) r }{{} L x }{{} I L (x) I L (x+ x) I m + I e. 2πa(x) x I m I e i m i e x 0 c m V t = 1 ( a 2 V ) i m + i e 2ar L x x d a

dv =0. dx V =0. V L V = V. V (,t 0 ) V. x 1...n x V 1 (x )=V 2 (x )= = V n (x ). n n πa 2 V i I i (x )= =0. r L x x i=1 i=1

a x i m i m = V V r m. v := V V c m v t = a 2 v 2r L x }{{ 2 v + i e. r }} m {{} τ m := r m c m λ := arm 2r L τ m v t = λ2 2 v x 2 v + r mi e. v t =0 v 0 x I e x =0 2ε x <ε i e = Ie 2πa 2ε ε 0 λ 2 d2 v dx 2 = v r mi e. i e 0 x< ε x>ε λ 2 d2 v dx 2 = v,

v(x) =B 1 ( x λ )+B 2 ( x λ ) x <ε v(x) 0(x ) ( v(x) B1 x ) =0(x ) B1 =0, λ x >ε v(x) 0(x ) ( x v(x) B2 =0(x ) B2 λ) =0. B1 = B2 =: B x / [ ε, ε] ( v(x) =B x ). λ [ ε, ε] λ 2 d2 v dx 2 = v r mi e. ˆε ε λ 2 d2 v dx 2 dx = ˆε ε ( ) dv λ 2 dv (ε) dx dx ( ε) (v r m i e ) dx = ˆε ε vdx r m i e 2ε = ˆε ε I e vdx r m 2πa dv dv dx ( ε) dx (ε) dv dv t ε dx (t) t ε dx (t) dv dx (t) = ( 2λB ε ) λ { B λ ( t λ), t < ε B λ ( t λ), t > ε ( = λ 2 B ( λ ε ) B ( )) ε λ λ λ = ˆε ε vdx r mi e 2πa.

v ε 0 v 2λB 1=0 r mi e 2πa B = r mi e 4πaλ. x R R λ := v(x) = R λi e 2 ( x λ ). r m 2πaλ ( ) L λ λ := arm 2r L. 2πaL := S D λ a a = S D 2πL L λ S D V µ µ µ C m V µ t = I L (x µ 1 ) ( 2 L µ I L x µ + 1 ) 2 L µ I m + I e

I L V µ V µ+1 ) ) Φ µ Φ µ 1 Φ µ+1 Φ µ I L (x µ 1 2 L µ = r L 1 2 L µ 1 πa 2 µ 1 + r L 1 2 Lµ πa 2 µ, I L (x µ + 1 2 L µ = L r µ L L + r µ+1 2πa 2 L µ 2πa 2 µ+1 Φ V C m = ɛ 0 2πa µ L µ }{{} d =:c m c m V µ t g µ 1,µ = g µ,µ+1 = = i µ m + i µ e + g µ 1,µ (V µ V µ 1 ) g µ,µ+1 (V µ+1 V µ ) ( ( L µ 1 L µ r L 2πa 2 + r L µ 1 2πa 2 µ L µ L µ+1 r L 2πa 2 + r L µ 2πa 2 µ+1. ) 1 (2πa µ L µ ) 1 a µ a 2 µ 1 = ), r L L µ (L µ 1 a 2 µ + L µ a 2 µ 1 ) 1 (2πa µ L µ ) 1 a µ a 2 µ+1 = ) r L L µ (L µ a 2 µ+1 + L µ+1a 2 µ g µ,µ+1 µ µ+1

j F B (G j )= 1 k G i. k G k j F M (G j )= {G j1,...,g jk }. i=1

j j F G (G j ) = g(j, i) = k g(j, i) G i i=1 1 (2π) d 2 σ k 1 l=1 (2π) d 2 σ ( ) 1 i j 2 2 σ 2 ( ). 1 i l 2 2 σ 2 d σ i j i j g(j, i)

u j = D u, = = / x / y / z, D V u V V ˆ u ( x ) d x. t V V u V ˆ ˆ u j n d s = ( x ) d x. t V V j n V F ˆ ˆ F ( x ) d x = F ( x ) n d s V u = u V ˆ ˆ ˆ u ( x ) d x = j n d s = t V V V j d x,

V j u ( t = D u ). D u t = D u = u := = n i=1 2 x 2 i n D D = D = 1 0 0 0 1 0 0 0 1 5 0 0 0 1 0 0 0 1 D : M := i m i : R := 1 M mi r i r i : x i T R = 1 2 3 J lm ω l ω m l,m=1 J : ω :

J lm = i m i ( r 2 i δ lm r il r im ), { 1, l = m δ lm = r 0, il r im l m i J v 1,v 2,v 3 0 <λ 1 λ 2 λ 3 J = ( ) λ 1 v 1 v 2 v 3 λ 2 ( ) T v 1 v 2 v 3. λ 1 λ 3 λ 1 λ 2,λ 3 λ 1,λ 2 λ 3 λ 1 λ 2 λ 3 λ 3 λ 1 λ 2 1, 1: D = D L := ( ) 1 v 1 v 2 v 3 ε ( ) T v 1 v 2 v 3. λ 2 λ 3 ε λ 1 λ 1 1, 1: D = D P := ( ) 1 v 1 v 2 v 3 1 ( ) T v 1 v 2 v 3. λ 3 λ 2 ε

G G G = 90

Ω R d u t = D u. d h

h h u h t = D h u h Ω h. u t u (t) =f(t, u(t)) f u (t) u(t + h t) u(t) h t u ht (t + h t ) u ht (t) h t = f(t, u ht (t)) u ht (t + h t ) = u ht + h t f(t, u ht (t)) u ht (t + h t ) u(t + h t ) u ht u h t 0. u (t) =f(t, u(t)) t + k h t, (k =1...n) u h (t + h) =u h (t)+h Φ h (t, u h (t),u h (t + h)) Φ f

Φ h f h 0 u h u h 0 u(t + h) =u(t)+h u (t) }{{} + h2 2 u (t) } {{ } +...+ hp p! u(p) (t)+ u u = u u = f u u(x + h) u(x) (x) = h 0 }{{ h } u (x) u (x) u (x) u(x + h) u(x) h u(x) u(x h) h u(x + h) u(x h) 2h

ξ 1 (x h, x), ξ 2 (x, x + h) u(x ± h) =u(x) ± hu (x)+ h2 2 u (ξ 2/1 ) u(x + h) u(x) = u (x)+ h h 2 u (ξ 2 ) u(x) u(x h) = u (x) h h 2 u (ξ 1 ) u(x ± h) =u(x) ± hu (x)+ h2 2 u (x) ± h3 6 u (ξ 2/1 ) u(x + h) u(x h) = u (x)+ h2 ( u (ξ 1 )+u (ξ 2 ) ) 2h 6 + () ( + u)(x) := = u(x+h) u(x) h u(x) u(x h) h h u(x + h) 2u(x)+u(x h) h 2 u(x ± h) =u(x) ± hu (x)+ h2 2 u (x) ± h3 6 u (x)+ h4 u(x + h)+u(x h) =2u(x)+h 2 u (x)+ h4 4! ( + u)(x) =u (x)+ h2 ( u (4) (ξ 1 )+u (4) (ξ 2 ) 24 u 4! u(4) (ξ 2/1 ) ) ( u (4) (ξ 1 )+u (4) (ξ 2 ) )

u C 4 ( Ω) u = f ( Ω) + u h (x) =f(x) ( Ω h ) O(h 2 ) Ω h n +1 n 1 Ω h (0, 1) h = n 1 u h (h) u h (2h) u h =. u h (1 h) L h u h = q h L h = 1 h 2 2 1 1 2 1 1 2 1 1 2 q h = f(h)+h 2 ϕ 0 f(2h) f(1 h)+h 2 ϕ 1, ϕ 0 ϕ 1

u }{{} t u (t) u(t + h t) u(t) h t = D ( u) }{{} L h u h = q h x + u h (t + h t,x)=u h (t, x)+ h td h 2 (u h(t + h t,x h) 2u h (t + h t,x)+u h (t + h t,x+ h)), Ω h =(0, 1) h = n 1 2+ h2 h td 1 h t D u h (t + h t,h) u h (t, h)+ htd ϕ h 1 2+ h2 h 2 h t D u h (t + h t, 2h) 2 0 1 = u h (t, 2h). 1 u h (t + h t, 1 h) u h (t, 1 h)+ h td ϕ h 2 1 2+ h2 h td Ω=(0, 1) (0, 1) = {(x, y) : 0<x<1, 0 <y<1}. Ω Ω h (n 1) (n 1) Ω Γ h 4n h Ω h = {(x, y) Ω:x/h, y/h Z} h = 1 n, Γ h = {(x, y) Ω :x/h, y/h Z}. u = u xx u yy = f Ω, u = ϕ Γ = Ω.

( h u)(x, y) := ( x x + y y + ) u(x, y) = h 2 (u(x h, y)+u(x + h, y) +u(x, y h)+u(x, y + h) 4u(x, y)) 1 h = h 2 1 4 1. 1 (h, h), (2h, h),...,(1 h, h); (h, 2h),...,(1 h, 2h);...;(h, 1 h),...,(1 h, 1 h). L h u h = q h T I 4 1 L h = h 2 I T I, T = 1 4 1. I T 1 4 T I (n 1) (n 1) I (n 1) u C 4 (Ω)

A R n n A T R n n u, v R n (Au, v) =(u, A T v) (, ) R n R n u, v (u, v) ˆ1 (u, v) := u(x)v(x) dx. 0 A A T A A T A u, v (Au, v) =(u, A v). A = d dx u, v [0, 1] (Au, v) = ( ) d = d dx dx. ( ) d dx u, v = ˆ1 0 d u(x)v(x) dx = dx ˆ1 0 ( u(x) d ) dx v(x) dx + uv 1 0 }{{} =0 L 2 (Ω) Ω=[0, 1]

u d ( D(x) d ) dx dx u = f. v(x) ( d ( D(x) d ) ) dx dx u,v = (f,v) ˆ1 d ( D(x) d ) ˆ1 dx dx u v(x) dx = f(x)v(x) dx 0 D =1 0 ˆ1 0 d ( ) du dx dx (x) v(x) dx = ˆ1 0 du dv du (x) (x) dx dx dx dx (x)v(x) 1 0 u(x) =v(x) =0 Γ du dx (x)v(x) 1 =0 0 v v U

u U Φ 1 (x),...φ n (x) u u(x) U(x) =U 1 Φ 1 (x)+...+ U n Φ n (x). U 1...U n V 1...V n U 1...U n V i V i V i = Φ i i =1...n KU = F K F i ˆ1 0 ˆ1 0 ˆ1 du dx (x)dv i (x) dx = f(x)v i (x) dx dx 0 ˆ1 n du j dφ j dx dx (x) V i (x) dx = f(x)v i (x) dx. j=1 i K (U i ) i=1...n i F (i, j) 0 K ij = ˆ1 0 dφ i dx (x)dv j (x) dx. dx

K 2 1 K = h 1 1 2 1. 1 2