( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Σχετικά έγγραφα
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Το θεώρηµα πεπλεγµένων συναρτήσεων

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Κανόνες παραγώγισης ( )

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΕΚΦΩΝΗΣΕΙΣ

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Μεθοδολογία Υπερβολής

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

Μεθοδολογία Έλλειψης

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

1,y 1) είναι η C : xx yy 0.

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

b proj a b είναι κάθετο στο

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q

Ορισµός: Μερική παράγωγος ως προς x (αντ. ως προς y) στο σηµείο x,y είναι η παράγωγος της f ως προς x στο x (αντ. ως προς y στο y ( + ) ( )

(Study Guide for Final Test)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Σημειώσεις Μαθηματικών 1

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Κεφάλαιο 6 Παράγωγος

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

6. Κεφάλαιο Διανύσματα, Διανυσματικές εξισώσεις, Διανυσματικά Πεδία.

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0).

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

Ανοικτά και κλειστά σύνολα

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μαθηματική Ανάλυση ΙI

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

Ερωτήσεις αντιστοίχισης

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

5 Γενική µορφή εξίσωσης ευθείας

5 Παράγωγος συνάρτησης

Εφαρμοσμένα Μαθηματικά ΙΙ

ds ds ds = τ b k t (3)

ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

Γ5. Αν για τα α, β έχουµε α β= 0, ισχύει πάντα ότι α = 0 ή β= 0. Μονάδες 10

x 2 = x x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

Μεθοδολογία Παραβολής

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α

Κλασικη ιαφορικη Γεωµετρια

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

Μαθηματική Ανάλυση ΙI

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

11 Το ολοκλήρωµα Riemann

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

1.1.3 t. t = t2 - t x2 - x1. x = x2 x

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

Συναρτήσεις Πολλών Μεταβλητών. ΗΥ111 Απειροστικός Λογισμός ΙΙ

0.8 Επικαµπύλια ολοκληρώµατα

Εφαρμοσμένα Μαθηματικά ΙΙ

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Εφαρμοσμένα Μαθηματικά ΙΙ

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

Λύσεις στο επαναληπτικό διαγώνισμα 3

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

ΚΕΦΑΛΑΙΟ 2. Παράγωγος συναρτήσεων πολλών µεταβλητών. είναι µία κατεύθυνση στον (δηλαδή ένα. E. Αν υπάρχει το όριο ( + ) ( ) ( )

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

Transcript:

Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν κ πραγµατική κ ( το υποσύνολο S f { κ} του ). Η S Παραδείγµατα: )Έστω f : : x + y + z. Αν x + y + z κ ορίζει την επιφάνεια µιας σφαίρας κέντρου κ > τότε η,, και ακτίνας r κ στον. Ιδιαίτερα αν κ, έχουµε την επιφάνεια της µοναδιαίας σφαίρας του. Η συνάρτηση f είναι βέβαια C. ) Έστω (,, ),(,, ) f x y z x y z x y z συνάρτηση). Αν κ, η εξίσωση κώνο στο Πράγµατι, Η εξίσωση + (,,. µε κορυφή στο z x + y z ± x + y. f : είναι µια C x + y z x + y z ορίζει έναν διπλό z x + y, ορίζει έναν ορθό κώνο που βρίσκεται πάνω από το xy επίπεδο και η z x + y ορίζει τον «κατά κορυφήν» κώνο που βρίσκεται κάτω από το xy επίπεδο. Η επιφάνεια αυτή σχηµατίζεται µε την περιστροφή µιας ευθείας π που διέρχεται από το (,, ) περί τον άξονα των z και σε γωνία µε αυτόν. 4

)Έστω (,, ) f x y z ax+ β y+ γ z, όπου a, β, γ µε a + β + γ >. Αν κ τότε η εξίσωση ax+ β y+ γ z κ, ορίζει ένα επίπεδο Ε στον διάνυσµα ( a, β, γ ). Είναι βέβαια προφανές ότι η f είναι C στον 4)Έστω ανοικτό και : (, ),(, ) g κάθετο στο. C συνάρτηση. Θέτουµε z g x y x y και ορίζουµε µια συνάρτηση f : θέτοντας, f x, y, z z g x, y, x, y, z. Η f είναι C συνάρτηση στο, αφού οι µερικές παράγωγοί της, g g f, και, είναι συνεχείς συναρτήσεις. x x y y z Είναι απλό να ελέγξουµε ότι η επιφάνεια S που ορίζεται από την εξίσωση f x, y, z z g x, y G g της g. συµπίπτει µε το γράφηµα Πράγµατι, S x, y, z : f x, y, z { } ( x, y, : z g( x, y) ( x, y, g ( x, y )) :( x, y ) G( g ). ( Σηµειώνουµε ότι το υποσύνολο του.) είναι ανοικτό Παρατήρηση. Ο παραπάνω ορισµός µπορεί βέβαια να διατυπωθεί για κάθε και κάθε C συνάρτηση f : U. Αν κ τότε το σύνολο των x x,..., x : f x κ, ορίζεται ως το σύνολο στάθµης της f. Αν, µιλάµε για µια καµπύλη στάθµης και αν για µια επιφάνεια στάθµης. Για παράδειγµα, αν f ( x, y) x + y και κ >, τότε η καµπύλη στάθµης που ορίζει σηµείων η εξίσωση x + y κ είναι ο κύκλος κέντρου (, ) και ακτίνας r κ. Παρατηρούµε ότι το παράδειγµα 4 γενικεύεται και για g :.. Πρόταση. Έστω U ανοικτό, x U και f : U C συναρτήσεις συνάρτηση διαφορίσιµη στο x. Αν f ( x) ( x),..., ( x) x x δείχνει προς εκείνη την κατεύθυνση κατά µήκος της οποίας η f αυξάνει ταχύτερα. Απόδειξη: Έστω ευθείας,, τότε η κλίση f ( x ) η µε η. Ο ρυθµός µεταβολής της f στο x επί της l t x + tη t δίνεται από την παράγωγο της f στο x στην κατεύθυνση η, δηλαδή την ποσότητα, f ( x) η f ( x)( η). Όµως f ( x) η f ( x) η cosθ f ( x) cosθ όπου θ [, π] η γωνία των διανυσµάτων η και f ( x ). Αν θ τότε cosθ και ο ρυθµός αυτός γίνεται µέγιστος. ηλαδή έχουµε τον µέγιστο ρυθµό µεταβολής όταν τα διανύσµατα η και f ( x ) είναι παράλληλα και οµόρροπα.

Παραδείγµατα. ) Σε ποια κατεύθυνση ξεκινώντας από το (, ) αυξάνει f x, y x y ; ταχύτερα η Λύση. f x y f,, j. (,) (, ), (,) (, ) (, ) κατεύθυνση x + y + z )Έστω,( x, y, (,,) x,, x, y. Άρα x y. Έτσι η f αυξάνει ταχύτερα στην. Ποια είναι η κατεύθυνση της ταχύτερης αύξησης για την f στο σηµείο (,, ) ; Λύση Οι µερικές παράγωγοι της f στο ανοικτό U (,,) x x x + y + z, y y x + y + z και 9,,. 9 Συνεπώς, f (,, ),, (,,) στην κατεύθυνση. Θεώρηµα. Έστω z z x + y + z ανοικτό και : είναι οι. Έτσι η f αυξάνει ταχύτερα f C συνάρτηση και P ( x, y, z) κ όπου κ σταθερά, ( κ f ( ) ). Τότε το διάνυσµα f ( P) ένα σηµείο στην επιφάνεια S που ορίζεται από την εξίσωση είναι κάθετο στην S υπό την ακόλουθη έννοια: Αν v είναι το εφαπτόµενο διάνυσµα στο t µιας c : a, b S a, b c P, τότε C καµπύλης [ ] µε ( και ) f ( P) v. Απόδειξη: Από την υπόθεσή µας, c [ a, S, εποµένως f ( c( t) ) κ για κάθε t [ a,. Το εφαπτόµενο διάνυσµα της c στο c είναι το v c '. Εφαρµόζουµε τον κανόνα αλυσίδας στην σύνθετη συνάρτηση foc :[ a, και στο t, οπότε έχουµε, λαµβάνοντας υπόψη ότι η foc είναι σταθερή συνάρτηση, ότι d( foc) dt f dx f dy f dz x dt y dt z dt ( c ) + ( c ) + ( c ) (,, ), [, ] f c( ) c ' f ( P) v ( όπου c t x t y t z t t a b

4 Γεωµετρική σηµασία της κλίσης: Το είναι σταθερή. Σηµείωση Το v και f ( P) το P ( x, y, z ). f είναι ορθογώνιο στην επιφάνεια όπου η f µεταφέρονται παράλληλα ώστε να αρχίζουν από Παρατηρήσεις: ) Το προηγούµενο θεώρηµα ισχύει για κάθε f :, ( ανοικτό ) µε. Στην περίπτωση ορίζει µια καµπύλη { κ} C f, την καµπύλη στάθµης της f. ) Αν f :, ( ανοικτό ) είναι C συνάρτηση f x y κ, η (, ) C συνάρτηση, τότε η διανυσµατική συνάρτηση, f : : x f ( x) ( x),..., ( x) x x ονοµάζεται διανυσµατικό πεδίο κλίσεων της f και είναι βέβαια συνεχής. Η συνάρτηση αυτή έχει µεγάλη γεωµετρική σηµασία καθώς µας δείχνει συγχρόνως δύο πράγµατα, ον την κατεύθυνση στην οποία η f αυξάνει ταχύτερα και ον την κατεύθυνση που είναι ορθογώνια στις επιφάνειες στάθµης της f. Από την προηγούµενη συζήτηση οδηγούµαστε στον ακόλουθο ορισµό.. Ορισµός Έστω f : C συνάρτηση ( ανοικτό ) και S µια επιφάνεια στάθµης της f, δηλαδή S ορίζεται από µια εξίσωση της µορφής κ. Το εφαπτόµενο επίπεδο της S σε ένα σηµείο P ( x, y, z ) ορίζεται από την εξίσωση, f P X P ( ), αν f ( P), X ( x, y, της S, ( P)( x x) + ( P)( y y) + ( P)( z z) x y z Με περισσότερη ακρίβεια το εφαπτόµενο επίπεδο της S στο P είναι το σύνολο,