. Hodge-Arakelov-theoretic Evaluation I. Yuichiro Hoshi. December 10, 2015

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ". Hodge-Arakelov-theoretic Evaluation I. Yuichiro Hoshi. December 10, 2015"

Transcript

1 .. Hodge-Arakelov-theoretic Evaluation I Yuichiro Hoshi RIMS, Kyoto University December 10, 2015 Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

2 Notation and Terminology : the geometric portion of Π, i.e., the kernel of the outer surjection from Π to the arithmetic quotient of Π ( ): the profinite completion of ( ) For a topological group G, H i (G, A) def = lim H G: open subgps of finite index H i (H, A) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

3 2 Galois-theoretic Theta Evaluation In 2, 2 1 2, and 3: Fix a v Vbad. def Π v = Π tp func l X v alg m Π tp Ÿ v Π tp Ÿ v Π tp Y v Π v = Π tp X v Π tp Y v Π ± v Π cor v def = Π tp X v def = Π tp C v M Θ = (M Θ M ) M: a projective system of mono-theta environments F v : the tempered Frobenioid determined by X v Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

4 Goal: Θ v evaluation labeled by t q t2 v (t LabCusp ± at v) Problem 1 A conjugacy indeterminacy in a situation related to the theta value q t2 at t F l depends, a priori, on the label t F l. v That is to say, various objects at t F l is well-defined up to conjugation which is, a priori, independent of the label t F l. On the other hand, we want to establish a suitable Kummer theory for such theta values. We have to synchronizes conjugacy indeterminacies in situations related to the theta values at various t F l. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

5 Problem 2 By using the structure of a Hodge-theater, we synchronized globally the various LabCusp ± v by means of relative to through 0 D,v D ± ( through 0 D,w ) the var. bij. {cuspidal inertia subgps of π tp 1 (X v )}/Inn(π tp 1 (X v )) {cuspidal inertia subgps of πét 1 (X K )}/Inn(πét 1 (X K )). Moreover, the crucial global F ± l -symmetry arises from a profinite conjugation (cf. πét 1 (C F )/πét 1 (X F ) πét 1 (C K )/πét 1 (X K ) = F ± l ). We have to discuss the comparison between tempered conjugation and profinite conjugation. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

6 Γ ( ) : the dual graph of the special fiber of ( ) v Irr( ): the set of irreducible components of the special fiber of ( ) v Fix an inversion automorphism ι def = ιÿ of Ÿ v ι X, ιÿ, and Z Irr(Ÿ ) ( = Irr(Y ) = Irr(Ÿ ) = Irr(Y )), (Note: ι Irr 1 Z) a subgraph Γ ( ) Γ ( ) for ( ) {X, X, Ÿ, Ÿ }, i.e., l l l 1 l t LabCusp ± (Π v ) a subgraph Γ t def t l ( ) Γ ( ) l +1 for ( ) {X, X, Ÿ, Ÿ }, i.e., l 1 l = 0 (i.e., for instance, Γ ( ) def = Γ 0 ( ) ) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

7 { t, } Π v Π v : a decomposition subgroup of Γ X Γ X, i.e., Π tp X,Γ X Π ± v Π v def = N Π ± v (Π v ) Π ± v def = Π v Π tp Ÿ v Π tp Ÿ v Thus, for instance: Π ± v /Π v Π ± v /Π v Gal(X v /X v ) ( = µ l ), Π ± v Π v = Π v [Π v : Π v ] = 2, [Π± v : Π v ] = l,... Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

8 Then: func l Π v alg m (Π v Π v Π v, ι) well-defined up to Π v -conj. (Recall: Π v func l alg m θ(π v) θ(π v ) H 1 (Π tp Ÿ (Π v), (l Θ )(Π v ))) Thus: func l Π v alg m θι (Π v ) θ(π v ), θ ι (Π v ) θ(π v ): µ 2l -, µ-torsors func l Moreover: Π v alg m (l Θ )(Π v ): the subquotient of Π v det d by (l Θ )(Π v ) Π v G v (Π v ): the arithmetic quotient of Π v Π v G v (Π v ): the arithmetic quotient of Π v Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

9 . Key Lemma (Comparison Between Temp d Conj. and Prof. Conj.). I t Π v : an inertia subgp ass d to the cusp lab d by t s.t. I t v γ, γ ± v Then the following three conditions are equivalent: γ ± v I (γ γ ) t Π γ v I (γ γ ) t (Π ± v )γ where. ( ) γ def = γ ( ) γ 1 Key Lemma follows from the theory of semi-graphs of anabelioids. In the situation of Key Lemma, write δ def = γ γ ± v. ( Lemma It δ = I (γ γ ) t Π γ v = Πδ v ) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

10 By the theory of semi-graphs of anabelioids, one can construct, from the inclusions I δ t = I (γ γ ) t (a) the dec. gp D δ t def = N Π δ v (I δ t ) Π δ v that contains I δ t Π γ v = Πδ v : (b) a dec. gp D δ µ Π δ v, well-def d up to (Π± v )δ -conj., ass d to µ (c) a dec. gp D δ t,µ Π δ v, well-def d up to (Π± v )δ -conj., ass d to the µ -translation of the cusp that det. I δ t (i.e., an ev. pt lab d by t) Moreover, this construction is compatible w/: the ± v -conjugation the inclusion Π v t Π v If, moreover, = t, then the construction of (a) and (c) is compatible w/ the cor Π v -conjugation. (Recall: the F ± l -symmetry arises from the cor Π v -conjugation.) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

11 . I. t δ = I (γ γ ) t Π δ v Πγ v = Π δ v By restricting θ ι (Π γ v) θ ι (Π γ v) to Π γ v Πtp Ÿ (Πγ v), we obtain µ 2l -, µ-torsors θ ι (Π γ v ) θ ι (Π γ v ) H 1 (Π γ v, (l Θ)(Π γ v )). Thus, by restricting them to (G v (Π γ v ) ) Dt,µ δ Π γ, we obtain v θ t (Π γ v ) θ t (Π γ v ) H 1 (G v (Π γ v ), (l Θ)(Π γ v )), i.e., µ 2l q t2 v µ q t2 v, where l t l is det d by t. ( )θ t (Π γ v ) def = ( ) θ t (Π γ v ) (= ( )θ t (Π γ v )) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

12 In summary: func l Π v alg m {θ t (Π γ v )} t F l, { θ t (Π γ v )} t F l arising from Π γ v : an arbitrary ± v -conjugate of Π v It δ : an arbitrary ± v -conjugate of I t s.t. It δ Π γ v γ-conj. (t ranges over the elements of LabCusp ± (Π γ v) LabCusp ± (Π v )) Moreover, this alg m is compatible w/ the independent conj. actions of ± v on the sets of (not temp d but) prof. conj. {Π γ v } γ and {I δ t } δ. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

13 . Remark. A conjugacy indeterminacy in a situation related to the theta value ( ) θ t at t F l depends, a priori, on the label t F l. That is to say, various objects at t F l is well-defined up to conjugation which is, a priori, independent of the label t F l. However, our resulting theta values ( )θ t (Π γ v ) H 1 (G v (Π γ v ), (l Θ)(Π γ v )) for various t F l are computed relative to label-independent G v (Π γ v ) and (l Θ)(Π γ v ). conjugate synchronization.( One may apply Kummer theory related to theta values.) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

14 func l Recall: Π v M TM (Π v) (M TM alg m θι )(Π v ) (M TM θ ι )(Π v ) in H 1 (Π v, (l Θ )(Π v )) (Recall: M TM is an isomorph of O F v.) By restricting them to Π γ v Π v, we obtain M TM (Πγ v ) (M TM θι )(Π γ v ) (M TM θ ι )(Π γ v ) in H 1 (Π γ v, (l Θ)(Π γ v )) Thus, by the nat l θ ι (Π γ v ) θ 0 (Π γ ), we obtain a splitting v (M TM θ ι )(Π γ v )/M µ TM (Πγ v ) = M µ TM (Πγ v ) ( θ ι (Π γ v )/M µ TM (Πγ v ) ). (Recall: M µ µ TM (resp. M TM ) is an isomorph of Oµ (resp. O µ ).) F v F v Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

15 In the remainder of 2, suppose: Π tp X (MΘ ) = Π v 1 Π µ (M Θ ) Π M Θ Π tp X (MΘ ) By base-chan g Π v Π v Π v = Π tp X (MΘ ) via Π M Θ Π tp X (MΘ ), we obtain closed subgroups Π M Θ Π M Θ Π M Θ. Π µ (M Θ ), (l Θ)(M Θ ), Π v (M Θ ), G v(m Θ ): the respective corresponding subquotients of Π M Θ a cyclotomic rigidity isomorphism (l Θ )(M Θ ) Π µ (M Θ ) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

16 By applying the cycl. rig. isom. (l Θ )((M Θ )γ ) Π µ ((M Θ )γ ) arising from the γ-conjugate (M Θ ) γ of M Θ θ ι (Π γ v ) θ ι (Π γ v ) H 1 (Π γ v, (l Θ)(Π γ v )), θ t (Π γ v ) θ t (Π γ v ) H 1 (G v (Π γ v ), (l Θ)(Π γ )), and v (where γ ± v ) to (M TM θ ι )(Π γ v )/M µ TM (Πγ v ) = M µ TM (Πγ v ) ( θ ι (Π γ v )/M µ TM (Πγ v )), we obtain θ ι env ((MΘ )γ ) θ ι env ((MΘ )γ ) H 1 (Π v ((M Θ )γ ), Π µ ((M Θ )γ ), θ t env ((MΘ )γ ) θ t env ((MΘ )γ ) H 1 (G v ((M Θ )γ ), Π µ ((M Θ )γ )), (M TM θ ι env )((MΘ )γ )/M µ TM ((MΘ )γ ) = M µ TM ((MΘ )γ ) ( θ ι env ((MΘ )γ )/M µ TM ((MΘ )γ ) ). Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

17 In a similar vein, by applying the cycl. rig. isom. (l Θ )((M Θ )γ ) µẑ(g v ((M Θ )γ )), we obtain: θ ι bs ((MΘ )γ ) θ ι bs ((MΘ )γ ) H 1 (Π v ((M Θ )γ ), µẑ(g v ((M Θ )γ ))), θ t bs ((MΘ )γ ) θ t bs ((MΘ )γ ) H 1 (G v ((M Θ )γ ), µẑ(g v ((M Θ )γ ))), (M TM θ ι bs )((MΘ )γ )/M µ TM ((MΘ )γ ) bs ) = M µ TM ((MΘ )γ ) bs ( θ ιbs ((MΘ )γ )/M µtm ((MΘ )γ ) bs. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

18 2 1 2 Multiradial Kummer-detachment of Theta Monoids Goal: multiradial Kmm-detach. of theta monoids, i.e., O F v Θ v Strategy: By the final assertion of 1, we have: Π v multiradial alg m via multiradial cycl. rig. étale-like O F v Θ v mono-theta O F v Θ v, i.e., labeled by env Thus, by applying the Kummer theory for theta functions: Frobenius-like O Kummer Θ F v v theory (O F v Θ v ) env Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

19 func l Recall: F v µ 2l(T ) Θ alg m Ÿ v v O (T ) Ÿ v (which determines the monoid O Cv Θ { Ψ F Θ v = Ψ F Θ v = Ψ F Θ v,α func l Recall: F v alg m } def = O (A Θ C ) (Θ α v Θ v )N A Θ α Aut D v (Ÿ ) v (A Θ ) = O (A Θ C ) Θ N v Θ v A Θ ) { } def Ψ F Θ v,α = O (A Θ C ) (Θ α v Θ v )Q 0 A Θ α Aut D v (Ÿ ) v the base-theoretic hull C v F v def (Π v ) Ψ Cv = OC v (A Θ ) (well-defined up to Π v -conjugation). ( )Ψ F Θ v : the Frobenius-like theta monoid. Ψ Cv : the Frobenius-like constant monoid Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

20 Recall: M Θ func l M TM alg m (MΘ ), θ env (M Θ ) θ env (M Θ ) in H 1 (Π tp Ÿ (MΘ ), Π µ (M Θ )) { } Ψ env (M Θ ) def = Ψ ι env(m Θ ) def = M TM (MΘ ) θ ι env (MΘ ) N { } Ψ env (M Θ ) def = Ψ ι env(m Θ ) def = M TM (MΘ ) θ ι env (MΘ ) Q 0 ι: inv. autom. Recall: M Θ func l G v(m Θ ), µẑ(g v (M Θ )) Π µ (M Θ ) alg m func l M TM(M Θ ) H 1 (Π tp alg m Ÿ (MΘ ), Π µ (M Θ )) (Recall: M TM is an isomorph of O.) F v (Π tp X (MΘ ) ) Ψ cns (M Θ ) def = M TM (M Θ ). ( )Ψ env (M Θ ): the mono-theta-theoretic theta monoid. Ψ cns (M Θ ): the mono-theta-theoretic constant monoid ι: inv. aut. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

21 In particular, by applying the above algorithm to M Θ (Π v ):. ( )Ψ env (M Θ (Π v )): the étale-like theta monoid. Ψ cns (M Θ (Π v )): the étale-like constant monoid In order to obtain multiradial Kummer-detachment of Θ v, let us relate Frobenius-like/mono-theta-theoretic/étale-like theta monoids. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

22 In the remainder of 2 1 2, suppose: MΘ (F v ) = M Θ Then, by applying the Kummer theory, relative to a suitable assign t ι α, we obtain an isomorphism ( ) Ψ F Θ v,α ( ) Ψ ι env(m Θ ) (cf. the Kummer theory of theta functions in tempered Frobenioids). Write ( )Ψ F Θ v ( ) Ψ env (M Θ ) for the collection of the above isomorphisms. Moreover, again by applying the Kummer theory, we obtain an isomorphism Ψ Cv Ψ cns (M Θ ). Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

23 Thus, every isomorphism M Θ (Π v ) M Θ = M Θ (F v ) determines: (étale) (mono-theta) (Frobenius) Π v = Π tp X (MΘ (Π v )) Π tp X (MΘ ) = Π tp X (MΘ ) Ψ env (M Θ (Π v )) Ψ env (M Θ ) Ψ F Θ v Ψ env (M Θ (Π v )) Ψ env (M Θ ) Ψ F Θ v G v = G v (M Θ (Π v )) G v (M Θ ) = G v (M Θ ) Ψ env (M Θ (Π v )) Ψ env (M Θ ) Ψ F Θ v Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

24 Moreover, every isom. M Θ (Π v ) M Θ = M Θ (F v ) also determines: (étale) (mono-theta) (Frobenius) Π v = Π tp X (MΘ (Π v )) Π tp X (MΘ ) = Π tp X (MΘ ) Ψ cns (M Θ (Π v )) Ψ cns (M Θ ) Ψ Cv G v = G v (M Θ (Π v )) G v (M Θ ) = G v (M Θ ) Ψ cns (M Θ (Π v )) Ψ cns (M Θ ) Ψ C v That is to say, we obtain various Kummer isomorphisms. Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

25 Thus, by the final assertion of 1, we obtain multiradial Kummer-detachment of theta monoids: Π v multiradial alg m (cf. 1) ( ) Ψ env (M Θ (Π v )) via multiradial cycl. rig.. Remark. On the other hand, the above discussion only gives uniradial Kummer-detachment of constant monoids.. ( )Ψ F Θ v (cf. (Π v Ψ Cv ) (G v (M Θ ) Ψ C v ) : a uniradial environment) ( the theory of log-shells) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

26 2 3 4 Definition (used in 4) (1) v V non Fv : the Fro d corresponding to G v O F v (omit the case of v V arc ) an F -prime-strip def {an isomorph of F v } v V (2) v V non Fv µ : the µ-kummer Frobenioid corresponding to G v O µ F v {Im ( (O F v ) H = O F H v equipped with the µ-kummer structure, i.e., (omit the case of v V arc ) O F v O µ F v ) }H Gv: open subgps an F µ -prime-strip def {an isomorph of F µ v } v V Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

27 (3) F = { F v } v V : an F -prime-strip v V bad Fv corresponds to G v (O q N mod µ 2l F q N v v : the split- µ-kummer Frobenioid corresponding to F µ v G v (O µ F v (µ 2l q N v /µ 2l) (µ 2l q N v /µ 2l)) w/ µ-kmm str. v V good V non F v corresponds to G v (O F v p N v p N v ) Fv µ : the split- µ-kummer Frobenioid corresponding to G v (O µ F v p N v p N v ) w/ µ-kmm str. (omit the case of v V arc ) an F µ -prime-strip def {an isomorph of F µ v } v V v ) Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

28 (4) an F µ -prime strip def a suitable collection of data ( C, Prime( C ) V, F µ, { ρ v } v V ), i.e., a collection of data obtained by replacing the F of an F -prime strip ( C, Prime( C ) V, F, { ρ v } v V ) by an F µ -prime-strip F µ Thus: F -prime-strip func l alg m F -prime-strip func l alg m F -prime-strip func l alg m F -prime-strip func l alg m F µ -prime-strip F µ -prime-strip F µ -prime-strip Yuichiro Hoshi (RIMS, Kyoto University) Hodge-Arakelov-theoretic Evaluation I December 10, / 28

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

IUTeich. [Pano] (2) IUTeich

IUTeich. [Pano] (2) IUTeich 2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

A Hierarchy of Theta Bodies for Polynomial Systems

A Hierarchy of Theta Bodies for Polynomial Systems A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Chapter 2. Ordinals, well-founded relations.

Chapter 2. Ordinals, well-founded relations. Chapter 2. Ordinals, well-founded relations. 2.1. Well-founded Relations. We start with some definitions and rapidly reach the notion of a well-ordered set. Definition. For any X and any binary relation

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα