: Koja je vrijednost izraza

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ": Koja je vrijednost izraza"

Transcript

1 Ključni obrazovni ishodi na ispitima iz MATEMATIKE-VIŠA RAZINA na državnoj maturi u 00. god. Ovaj dokument namijenjen je učenicima koji će 00. god polagati matematiku na državnoj maturi i njihovim nastavnicima. Cilj dokumenta je skrenuti pozornost na ključne ishode u pripremi za polaganje ispita. U ispitima državne mature u 00. god mogu se ispitivati svi obrazovni ishodi navedeni u Ispitnom katalogu za državnu maturu. U sljedećoj tablici izdvojeni su ključni obrazovni ishodi, koji će se, uz ostale obrazovne ishode, ispitivati na svim ispitnim rokovima državne mature u 00. god. Primjeri zadataka uz pojedine ishode izabrani su iz oglednih i dosad održanih nacionalnih ispita i probne državne mature. PODRUČJE ISPITIVANJA/ OBRAZOVNI ISHOD PRIMJER ZADATKA BROJEVI I ALGEBRA zbrajati, oduzimati, množiti, dijeliti, korjenovati, potencirati, odreñivati apsolutne vrijednosti Izračunajte : 0. 4 Koje je vrijednost izraza 0.00? A 0 7 B 0 6 C 0 D Koja je vrijednost izraza 3? 8 : A B 3 C D 7

2 rabiti postotke Cijena iznajmljivanja bicikla je najprije povećana % pa snižena %, Što treba učiniti s cijenom da postane jednaka početnoj? A povećati je 3% B sniziti je 3% C povećati je.6% D sniziti je.6% 0 učenika se upisalo u plesnu grupu. 0 % grupe čine mladići. Naknadno se upišu djevojke i 8 mladića. Koliki je sada postotak mladića u plesnoj grupi? Masa Jupitera približno je jednaka kg. Masa Zemlje je: 7 0 kg, a masa Zemlje A. 0.03% mase Jupitera B. 0.3% mase Jupitera C. 3% mase Jupitera D. 3.3% mase Jupitera rabiti omjere Broj a je za 3 veći od pozitivnog broja b. Njihov je omjer :3. Tada je a jednak A 3 B 9 C D Mjere kutova trokuta su u omjeru :0 : 4. Najdulja stranica ima duljinu 0 cm. Kolika je tada duljina najkraće stranice zaokružena na jednu decimalu? A.. cm B..6 cm C..0 cm D..4 cm iz zadane formule izraziti jednu veličinu pomoću drugih Odredite h iz formule S rπ( r h) = +. Odredite s ako je t s s + r r = ( r, t ) s.

3 rabiti džepno računalo Ulaganjem 000 kn u banku nakon n godina dobiva se n kuna. Koliki je iznos na računu nakon godina? Rabeći džepno računalo odredite koji je od navedenih brojeva najveći: A log 8 B 380 C tg (78 ) D 3. rabiti mjerne jedinice u geometriji i u zadatcima s tekstom U 00 ml sirupa za snižavanje temperature sadržano je.4 g paracetamola. Koliko miligrama paracetamola ima u ml sirupa? Slitina od koje se izrañuje kovanica od 0 lipa sastoji se od nikla i željeza. Omjer nikla prema željezu je :9. Masa kovanice od 0 lipa je 3.6 g, njezin promjer je 0. mm, a gustoća slitine je 6.9 g/cm 3. Koliko je grama željeza potrebno za izradbu jedne kovanice od 0 lipa? (Rezultat ne zaokružujte.) FUNKCIJE odrediti domenu funkcije Odredite domenu funkcije g( x) log ( x 4) =. Odredite domenu funkcije log ( x 4) h ( x) =. x 7 izračunati funkcijske vrijednosti Temperatura T (u C ) u stakleniku t sati nakon početka sumraka dana je formulom T ( t) = t t+ 30, 0 t. Uzima se da sumrak 4 počinje u 9 sati. Kolika je temperatura bila u sat?

4 Na nogometnoj utakmici vratar ispucava loptu. Putanja lopte opisana je funkcijom h= 0.06x x h gdje je h visina lopte iznad zemlje, a x horizontalna udaljenost od mjesta ispucavanja. Veličine h i x su izražene u metrima. Na kojoj je visini lopta kad je njezina horizontalna udaljenost od mjesta ispucavanja m? Funkcija je zadana grafom. Kakvog je predznaka vrijednost funkcije za x =? odrediti nultočke funkcije Zadana je funkcija f ( x) ( x 3 x x) funkcije. = +. Odredite nultočke te Odredite drugu nultočku funkcije f ( x) = a( x 3) + ako joj je jedna nultočka. crtati grafove polinoma (najviše 3. stupnja) Skicirajte graf funkcije f ( x) = ( x 3 + x x) Odredite koordinate tjemena grafa funkcije f ( x) = x + x 8 sjecišta grafa s koordinatnim osima. Nacrtajte graf funkcije.

5 prepoznati zadani niz Posljednji, - ti red stadiona može primiti 048 gledatelja. Svaki prethodni red prima 0 gledatelja manje. Koliko gledatelja prima prvi red stadiona? Turistički autobus za razgledavanje grada uveo je novi način plaćanja karata. Prvi putnik koji uñe u autobus plaća 83 kn, a svaki sljedeći 3 kn manje. Koliko je svoju kartu platio osmi putnik? rabiti derivaciju funkcije kod ispitivanja tijeka funkcije Odredite (lokalne) ekstreme funkcije f ( x) = ( x 3 + x x) JEDNADŽBE I NEJEDNADŽBE rješavati linearne jednadžbe Riješite jednadžbu x 3 =. x+ Riješite jednadžbu + 4(x ) = 9 4x. rješavati linearne nejednadžbe Skupu svih rješenja nejednadžbe 3 x< 0 pripada broj: A B C - D - rješavati kvadratne jednadžbe Riješite jednadžbu x x 0 + =. Riješite jednadžbu t t = 0. rješavati kvadratne nejednadžbe Riješite nejednadžbu x x+ < 0. Riješite nejednadžbu x + x 3. Riješite nejednadžbu x( x ) > 0.

6 rješavati jednadžbe/nejednadžbe koje se mogu faktorizirati Odredite sva rješenja jednadžbe = 0. 4 x x x rješavati jednadžbe/nejednadžbe s potencijama jednakih baza Rješenje jednadžbe x+ 9 = nalazi se u intervalu A, ] B, ] C, ] D, x x+ x Riješite jednadžbu = 3. rješavati jednadžbe/nejednadžbe koje se mogu riješiti izravnom primjenom definicije logaritma Na slici je graf funkcije f ( x) = log b x. Odredite b. y (6,4) x rješavati sustave algebarski i grafički Marija je za 7-ti roñendan dobila na dar buket od 7 ruža, bijelih i crvenih. Cijena bijele ruže je 8 kn, a crvene 9 kn. Koliko je u buketu bilo crvenih, a koliko bijelih ruža, ako je buket plaćen 4 kn? U rješenju sustava jednadžbi x+ y= 3 x+ 3y= 40 Nepoznanica x jednaka je: A 8 B C 7 D 4

7 GEOMETRIJA rabiti definicije sinusa, kosinusa i tangensa kuta u pravokutnome trokutu Ako je cosα = 0.6, tada je duljina tetive AB na slici jednaka: B α S cm A A. 3 cm B. 4 cm C. 6 cm D.8 cm Kolika je mjera kuta u vrhu A? rabiti koordinatni prikaz vektora Koji je od navedenih vektora prikazan na slici?

8 A AB = 4 i+ 3j B AB = 4 i 3j C AB = 3 i 4j D AB = 3 i 4j Zadane su točke A(,), B (3,). Odredite vektor a= AB. rabiti eksplicitni i implicitni oblik jednadžbe pravca Napišite jednadžbu pravca prikazanog grafom. y 0 x odrediti jednadžbu kružnice iz zadanih elemenata i obrnuto Zadana je kružnica ( x ) ( y ) zadane kružnice za koju je y> =. Odredite točku T (, y) Odredite središte S i polumjer kružnice r zadane jednadžbom x + y + 6x 8y+ 9= 0. A S ( 3, 4), r = 4 B S ( 3, 4), r = 6 C S ( 3, 4), r = 4 D S ( 3, 4), r = 6 rabiti formule iz KNJIŽICE S FORMULAMA Zadan je pravac y = x+ 4. Odredite udaljenost ishodišta od zadanog pravca. Metalna kugla ima obujam 88π cm 3. Koliki joj je polumjer?

9 Posebno naglašavamo da će se: elementarno računanje rješavanje linearne jednadžbe ili nejednadžbe rješavanje kvadratne jednadžbe ili nejednadžbe rješavanje linearnog sustava korištenje osnovnih odnosa u trokutu (kutovi, Pitagorin poučak, površina) korištenje formula iz knjižice s formulama korištenje džepnog računala ispitivati u jednostavnim zadatcima. Stručna radna skupina za matematiku

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni nastavnik.

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Matematika. dijelovi ispitnoga kataloga

Matematika. dijelovi ispitnoga kataloga Nacionalni centar za vanjsko vrednovanje obrazovanja Matematika dijelovi ispitnoga kataloga Označeni su sadržaji i obrazovni ishodi više razine koji nisu dio osnovne razine na državnoj maturi u škol. god.

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina. Zadaci i rješenja sa nacionalnih ispita i državnih matura

ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina. Zadaci i rješenja sa nacionalnih ispita i državnih matura SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita?

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita? SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.

Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period. Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Διαβάστε περισσότερα

2 Mature i državni ispiti iz matematike u europskim zemljama ( a) 4,zaa = 2 i. 27b. b = 3. 2 x sin. 2 +x. 1. Mature u Sloveniji

2 Mature i državni ispiti iz matematike u europskim zemljama ( a) 4,zaa = 2 i. 27b. b = 3. 2 x sin. 2 +x. 1. Mature u Sloveniji Ljetni rok, 995. godine Osnovna razina Zadatak. Ako od broja b oduzmemo dvokratnik broja a, dobije se 2. Ako se peterokratnik broja a umanji za (b + ), dobije se 6. Izračunajte brojeve a i b. Rješenje:

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu 1. u školskoj godini 2014./2015. Matematika. MATEMATIKA 2015.indd :00:54

Ispitni katalog za državnu maturu 1. u školskoj godini 2014./2015. Matematika. MATEMATIKA 2015.indd :00:54 Ispitni katalog za državnu maturu 1 u školskoj godini 2014./2015. Matematika MATEMATIKA 2015.indd 1 16.9.2014. 10:00:54 2 MATEMATIKA 2015.indd 2 16.9.2014. 10:00:54 3 Sadržaj Uvod...5 1. Područja ispitivanja...5

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu u školskoj godini 2016./2017. MATEMATIKA

Ispitni katalog za državnu maturu u školskoj godini 2016./2017. MATEMATIKA Ispitni katalog za državnu maturu u školskoj godini 2016./2017. 1 MATEMATIKA 2 Sadržaj UVOD... 5 1. Područja ispitivanja... 5 2. Obrazovni ishodi... 6 2.1. Obrazovni ishodi za osnovnu razinu ispita...

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu u školskoj godini 2017./2018.

Ispitni katalog za državnu maturu u školskoj godini 2017./2018. Ispitni katalog za državnu maturu u školskoj godini 2017./2018. MATEMATIKA Sadržaj Uvod... 5 1. Područja ispitivanja... 5 2. Obrazovni ishodi... 6 2.1. Obrazovni ishodi za osnovnu razinu ispita... 7 2.2.

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu u školskoj godini 2013./2014. Matematika

Ispitni katalog za državnu maturu u školskoj godini 2013./2014. Matematika Ispitni katalog za državnu maturu u školskoj godini 2013./2014. 1 Matematika 3 Sadržaj Uvod...5 1. Područja ispitivanja...5 2. Obrazovni ishodi...6 2.1. Obrazovni ishodi za osnovnu razinu ispita...7 2.2.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

> 0 svakako zadovoljen.

> 0 svakako zadovoljen. Elektrotehnički fakultet u Sarajevu akademska 0/3 ŠIFRA KANDIDATA _ Zadatak Za koje vrijednosti parametra ( ) + 3 = 0 m x mx oba iz skupa i suprotnog znaka? m su rješenja kvadratne jednačine a) m > 3 b)

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a

Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a Zadatak 8 (Nina, gimnazija) Skup svih vrijednosti funkcije f() = + c jest interval, 3 ]. Tada je: Rješenje 8 A. c = B. c = C. c = 3 D. c = 4 Polinom drugog stupnja (kvadratna funkcija) iznosi f = a + b

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

MATEMATIKA. viša razina MATA.15.HR.R.K1.24 MAT A D-S015

MATEMATIKA. viša razina MATA.15.HR.R.K1.24 MAT A D-S015 MATEMATIKA viša razina MAT A D-S5 MAT5.HR.R.K.4 344 Prazna stranica MAT A D-S5 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

MATEMATIKA. viša razina MAT A D-S005 MATA.05.HR.R.K1.28. MAT A D-S005.indd :31:16

MATEMATIKA. viša razina MAT A D-S005 MATA.05.HR.R.K1.28. MAT A D-S005.indd :31:16 MATEMATIKA viša razina MAT A D-S5 MAT5.HR.R.K.8 MAT A D-S5.indd 8.. 3:3:6 Prazna stranica MAT A D-S5 99 MAT A D-S5.indd 8.. 3:3:6 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

MATEMATIKA. viša razina MAT A D-S004 MATA.04.HR.R.K1.24. MAT A D-S004.indb :56:26

MATEMATIKA. viša razina MAT A D-S004 MATA.04.HR.R.K1.24. MAT A D-S004.indb :56:26 MATEMATIKA viša razina MAT A D-S4 MAT4.HR.R.K.4 MAT A D-S4.indb 6.. :56:6 Prazna stranica MAT A D-S4 99 MAT A D-S4.indb 6.. :56:6 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

Zadaci i rješenja sa nacionalnih ispita i državnih matura

Zadaci i rješenja sa nacionalnih ispita i državnih matura SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Osnovna (B) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

MATEMATIKA. viša razina MATA.19.HR.R.K1.24 MAT A D-S019

MATEMATIKA. viša razina MATA.19.HR.R.K1.24 MAT A D-S019 MATEMATIKA viša razina MAT A D-S9 MAT9.HR.R.K.4 6657 Prazna stranica MAT A D-S9 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Skupovi brojeva Materijali za nastavu iz Matematike 1

Skupovi brojeva Materijali za nastavu iz Matematike 1 Skupovi brojeva Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 32 Podsjetnik teorije skupova Operacije sa skupovima: A B = {x : x A x B} A B = {x : x A

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= * POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina MAT A D-S Prazna stranica MAT A D-S 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Repetitorij matematike zadaci za maturu 2008.

Repetitorij matematike zadaci za maturu 2008. Repetitorij matematike zadaci za maturu 008 Izračunaj : 7 : 5 + : = 5 5 8 Izračunaj : a ( 05 y ) = y b 8 n 7 9 n+ n n Rastavi na faktore : 5 a + a 8a 6= Skrati razlomke : a ( ) + + a b a b a + a b+ ab

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.

Διαβάστε περισσότερα

4 Elementarne funkcije

4 Elementarne funkcije 4 Elementarne funkcije 4. Polinom Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

MAT A MATEMATIKA. viša razina MATA.32.HR.R.K1.24 MAT A D-S032. MAT A D-S032.indd :02:26

MAT A MATEMATIKA. viša razina MATA.32.HR.R.K1.24 MAT A D-S032. MAT A D-S032.indd :02:26 MAT A MATEMATIKA viša razina MAT3.HR.R.K.4 MAT A D-S3 MAT A D-S3.indd 9.3.6. 4::6 Prazna stranica MAT A D-S3 99 MAT A D-S3.indd 9.3.6. 4::6 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Small Basic zadatci - 8. Razred

Small Basic zadatci - 8. Razred Small Basic zadatci - 8. Razred 1. Izradi program koji de napisati na ekranu Ovo je prvi program crvenom bojom. TextWindow.ForegroundColor = "red" TextWindow.WriteLine("Ovo je prvi program") 2. Izradi

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Zadaci i rješenja sa nacionalnih ispita i državnih matura

Zadaci i rješenja sa nacionalnih ispita i državnih matura SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Osnovna (B) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα