I. dio. Zadaci za ponavljanje

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "I. dio. Zadaci za ponavljanje"

Transcript

1 I. dio Zadaci za ponavljanje

2 ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu s bazom.. Dokaži n(n + ) = n(n+)(n+), n N. 4. Dokaži da je izraz (5n + ) 6 djeljiv s 5 n N. 5. Nadi - sve prirodne brojeve izmedu i koji pri dijeljenju sa i 8 daju isti ostatak Pokaži da je broj 9. Riješi jednadžbe: a) + = ; b) = ;c) + + = Riješi nejednadžbe: a) + + < + ; b) 5 6; c) sin <. ( ) iracionalan. 7. Izračunaj: ( ) ( 0 : 4 9 ) Izračunaj: ( ) [6 ][ ( ) ].. SKUP KOMPLEKSNIH BROJEVA: Računske operacije u skupu C i svojstva. Konjugirano kompleksni brojevi. Apsolutna vrijednost kompleksnog broja.. Izračunaj: + i 997 i Izračunaj: z z z z ako je z z z = + i, z = i.. Odredi Im z6 z+ i 98 ako je z + z z = + i. 4. Odredi modul broja z = 5+ i (+ i)( i) + i5 + i 5 + i 40 + i Odredi z C takav da je z z = i. 6. U kompleksnoj ravnini prikaži kompleksne brojeve z za koje je broj z z+ čisto imaginaran broj. 7. Prikaži u kompleksnoj ravnini skup kompleksnih brojeva z za koje vrijedi: a) z i = ;b) z i+. 8. Dokaži: a) z + z = z + z ; b) z z = z z ; c) ( z z ) z i = z z, z 0, z, z C ; d) (z) =z, z C.. TRIGONOMETRIJSKI OBLIK KOM- PLEKSNOG BROJA: Računske operacije s kompleksnim brojevima u trigonometrijskom obliku. Moivreova formula.. Napiši kompleksan broj z u trigonometrijskom obliku: a) z = + i ; b) z = 4i ; c) z = 4 ; d) z = i ; e) z = + i ; f) z = ( cos π 4 i sin ) π 4.. Napiši kompleksan broj z u trigonometrijskom obliku:

3 4 I. DIO a) z = + cos π + i sin π ; b) z = i cos π i sin ; π c) z= ( sin π 5 +i sin 4π 5 d) z = i ( i i cos π 5 sin π 5 ) ( cos π 5 i cos 4π 5 ) 4.. Izračunaj: a) + i) 5 ; b) ( + i ) 0 ( i) Odredi: a) 6 64i ; b) + i ; c) 6 i. + i 5. Odredi sva rješenja jednadžbe z 6 + = 0 te ih prikaži u kompleksnoj ravnini. 4. POLINOMI S JEDNOM VARIJAB- LOM: Definicija polinoma. Jednakost polinoma. Operacije s polinomima. Nultočke polinoma. Tok i graf polinoma.. Koristeći se teoremom o jednakosti polinoma, za zadani polinom f ()= + odredi polinom g takav da je f ()=g(+).. Odredi realne brojeve a, b tako da polinom f () = + + a + b bude djeljiv polinomom g() = + + ab.. Polinom f () pri dijeljenju s polinomom g () = daje ostatak, a s g () = + ostatak -. Koliki je ostatak pri dijeljenju polinoma f polinomom g = g g. 4. Odredi kratnost nultočke = polinoma f () = Odredi nultočke polinoma: a) f () = , ako je jedna njegova nultočka = i ; b) f () = Odredi intervale monotonosti funkcije f () = 6 +. ) ; 7. Opiši tok i skiciraj graf polinoma f () = Odredi točke ekstrema, točke infleksije (ako ih ima), te skiciraj graf polinoma f () = (4 ). Uputa: U zadacima 6 8 koristi se derivacijom polinoma. 5. POLINOM PRVOG STUPNJA S JED- NOM VARIJABLOM: Definicija i svojstva (rast, pad). Graf polinoma. stupnja. Jednadžba pravca dvjema točkama. Jednadžba pravca s poznatim koeficijentom smjera kroz jednu točku.. Ispitaj tok i nacrtaj graf funkcije f : R R zadane formulom: a) f () = + ; b) f () = + ; c) f () = ; d) f () = +.. U skupu funkcija f () =(m 4) (m 0), m R odredi funkciju f tako da točka T(, ) pripada grafu funkcije f. Ispitaj tok i nacrtaj graf te funkcije.. Vrhovi trokuta su A(, ), B(, 5), C(7, 5).Nadi: - a) duljine stranica AB i AC te jednadžbe pravaca na kojima leže; b) duljine težišnica iz vrhova A i B te jednadžbe pravaca na kojima leže. 4. Zadana su tri vrha A(, ), B(5, 4), C(7, 8) paralelograma ABCD. Kako glasi jednadžba pravca na kojem leži stranica AD? 5. Odredi inverznu funkciju funkcije f () = Dokaži da je inverzna funkcija polinoma prvog stupnja takoder - polinom prvog stupnja.

4 ZADACI ZA PONAVLJANJE 5 6. KVADRATNA FUNKCIJA: Definicija, graf, toki nultočke kvadratne funkcije. Viéteove formule.. Prikaži grafički funkciju f () = +. Odredi intervale pada i ekstreme funkcije f. Za koje R je f () 0?. U skupu funkcija f () =(m ) +(m 4) m odredi onu funkciju koja postiže najmanju vrijednost za =. Opiši tok i skiciraj graf te funkcije.. Za koje vrijednosti realnog parametra m,rješenja kvadratne jednadžbe ( m) + m = 0 zadovoljavaju uvjet + <? 4. Za koji a R je funkcija f () = a 5 + 9a pozitivna za sve R? 5. Napiši kvadratnu funkciju s racionalnim koeficijentima ako je = jedna nultočka te funkcije. 6. Kako rješenja jednadžbe (a ) (a + ) + a = 0, a ovise o realnom parametru a? 7. Riješi nejednadžbe: a) 4 0; b) + 5 < ; c). 8. Nacrtaj graf funkcije f () = Riješi jednadžbu =. 0. Riješi nejednadžbu + >. 7. RACIONALNE FUNKCIJE: Definicija, prirodno područje definicije. Linearna kombinacija racionalnih funkcija.. Odredi prirodno područje definicije i nultočke racionalne funkcije f () = Racionalnu funkciju h() = 4 prikaži kao linearnu kombinaciju racionalnih funkcija f () = i g() = +.. Zadane su funkcije f () = + i g() =. Odredi kompozicije g f i f g,tenadi - domene tih funkcija. 4. Dokaži da je kompozicija racionalnih funkcija oblika f () = a+ b, a, b, c, d R c+ d i ad bc 0 opet racionalna funkcija tog oblika. 5. Ispitaj tok i skiciraj graf funkcije f () = Odredi d. 8. EKSPONENCIJALNA FUNKCIJA: Definicija, svojstva i graf eksponencijalne funkcije.. Izračunaj: ( ) 0... Pojednostavni: [( ) a) ( ) : 9 ] ; b) [ ( ) 4] ( ) : 7.. Neka je f () =, g() =, h() =. Odredi kompozicije f g, h g, h f, f h. Skiciraj grafove dobivenih funkcija.

5 RJEŠENJA 5 Rješenja zadataka za ponavljanje.. M(846, 46) =6.. = Dokaz se provodi matematičkom indukcijom po n N , 776, ( ) = a) = 7, = ; b) =, = 0, =, 4 = 4; c) =, =. 0. a) 4, 7 ;b) [, ] [, 6] ;c) π 6 + kπ, 7π 6 + kπ.. k Z. i.. i z = 4 + i. 6. z = + i, + =. i 0 Sl.. 7. a) z = +i, ( ) +( ) = 9. i 0 r= S(,) Sl.. b) z = + i, Sl.. =--. a) z = ( cos π + i sin ) π ; b) z = 4 ( cos π + i sin ) π ; c) z = 4 (cos π + i sin π) ; d) z = cos 5π + i sin 5π ; e) z = ( cos π 4 + i sin ) π 4 ; f) z = ( cos π 4 + i sin ) π 4.. a) z = cos π + i sin π ; b) z = ( cos π + i sin ) π ; c) z = 4sin π 5 cos π 5 (cos π + i sin π) ; d) z = ( ) 6 sin 4 π cos π π 0 + i sin a) 6( + i) ;b) 6( + i) ; 4. a) 6 64i = [cos ( π 4 + ) kπ + i sin ( π 4 + ) ] kπ, k = 0,,,, 4, 5;

6 6 I. DIO b) i sin ( π + i = [cos ( π 4 + kπ i c) 6 i sin ( 9π 7 + kπ ) ], k = 0,, ; [ cos ( 9π 4 + kπ +i = ) ], k = 0,,,, 4, kπ ) + ) + 5. z 0 = + i, z = i, z = + i, z = i, z 4 = i, z 5 = i. 4 Sl U = f ima maksimum, a on je f () =7. Točka infleksije je = 0. Γ f i z 7 z z 0 z 0 z 5 z 4 Sl Sl g() = a =, b = 0.. r() =. 4. Kratnost je.. b) 5. a), = ± i,,4 = ± i ; b) =,, = ±. 6. f raste na, 0 4,,a pada na 0, Sl f maks. min.

7 RJEŠENJA 7 d) 8. b) _ Sl. 9. Sl. 8.. m =, f () = a) AB = 5, AC = 0, AB = 0, AC = 0; b) t A = 5 5, t B = 5, t A = 0, t B = AD... =. 5. f () = f pada na, ;u 0 = ima minimum 0 = ; f () 0 za [, ].. f () =.. m, 0, a 5 6, f () =a( ), a R, a Za a > 5 jednadžba ima dva različita realna rješenja, za a = 5 ima dvostruko realno rješenje, za a < 5 ima dva konjugirano kompleksna rješenja. 7. a), [0, [4, + ; b),, ; c), ] [, = [, 4.. D f = R \{0}, nultočke: =, =.. h() = f ()+ g().. (g f )()= +, D g f =R \{ }; (f g)()= +, D f g =R \{0, } f () Sl ln ( + ) + C.

8 II. dio Maturalne zadaće

9 MATURALNE ZADAĆE 4 Zadaća... Zadan je polinom p() = a) Zadani polinom rastavi na faktore. b) Riješi nejednadžbu c) Riješi jednadžbu = Zadan je trokut ABC stranicama AB = 8cm, BC = 7cmi CA = 5cm.Pravac koji siječe segment AB utočki D,asegment AC utočki E, dijeli zadani trokut na trokut ADE i četverokut BCED.NekajeAD = i AE =. a) Odredi vezu izmedu - i ako trokut ADE i četverokut BCED imaju iste opsege. b) Odredi vezu izmedu - i ako trokut ADE i četverokut BCED imaju iste površine. c) Za koje vrijednosti od i trokut ADE i četverokut BCED imaju i jednake opsege i jednake površine? d) Izračunaj obujam tijela koje nastaje rotacijom zadanog trokuta ABC oko stranice AB... Zadane su funkcije f () = i g() =( )+. a) U istom koordinatnom sustavu nacrtaj grafove funkcija f i g. b) Riješi jednadžbu f () =g(). c) Izračunaj površinu onog dijela ravnine koji je ome - den grafovima zadanih funkcija i pravcem =..4. Kružnica s jednadžbom ( = ) 0 je upisana jednakokračnom trokutu ABC s kracima AC i BC, te vrhom C 5,. a) Odredi ostale vrhove trokuta. b) Pod kojim se kutom iz središta kružnice vidi stranica AB trokuta?.5. Zadana je krivulja = +. a) Nacrtaj graf zadane krivulje. b) Odredi jednadžbu tangente krivulje u njenoj točki T( 0, 0 ). c) Odredi T( 0, 0 ) iz uvjeta da trapez odreden - tangentom na krivulju u točki T,te pravcima = 0, = i = 0 ima najmanju površinu.

10 44 II. DIO Zadaća... a) U skupu kompleksnih brojeva riješi jednadžbu z = 0 i skiciraj njena rješenja u Gaussovoj ravnini. b) Nadi - moguće vrijednosti izraza z + z + akojez rješenje gornje jednadžbe. c) Ako je z ono kompleksno rješenje jednadžbe iz a) koje nije realno, { pojednostavi a b = 6 izraze a =( + z + z ) i b =( + z + z ) i dokaži da vrijedi a + b = 4... Zadana je parabola = 4. a) Pokaži da tetiva PQ, gdje je P(, > 0) i Q(, ), prolazi fokusom parabole. b) Na - di sjecište normala povučenih na parabolu u točkama P i Q i provjeri da se ono nalazi na paraboli =. c) Na - di površinu lika ome - denog parabolom i tetivom PQ... Od kocke brida a odsijeku se ravninama vrhovi tako da od svake strane kocke nastane pravilni osmerokut. a) Nadi - stranicu tog osmerokuta. b) Nadi - oplošje nastalog tijela. c) Nadi - obujam nastalog tijela..4. a) Odredi domenu i skiciraj graf funkcije f () =log ( ). b) Nadi - zadanoj funkciji inverznu te i nju nacrtaj u istom koordinatnom sustavu. c) Riješi nejednadžbu f () > (g f )(), gdje je g() = U jednakokračnom trapezu zadana je veća osnovica a = 0 cm, a kut uz nju neka je α. Dijagonala trapeza okomita je na bočni brid. a) U ovisnosti o kutu α izračunaj duljinu dijagonale i visinu trapeza. b) U ovisnosti o kutu α izračunaj površinu trapeza. c) Za koji α je površina najveća? d) Nadi - najveću površinu.

11 MATURALNE ZADAĆE 45 Zadaća... a) U skupu kompleksnih brojeva riješi jednadžbu z + = 0iprikaži njena rješenja u Gaussovoj ravnini. b) Dokaži da je z k z k = zasvakorješenje z k zadane jednadžbe. c) Izračunaj A k =(z k +4z k i) za svako rješenje z k zadane jednadžbe i pokaži da je Im A k = 0. k.. Zadan je trokut svojim vrhovima A(, ), B(, 5) i C(4, ). a) Provjeri da je trokut pravokutan. b) Odredi mu kutove. c) Izračunaj mu površinu. d) Napiši jednadžbu kružnice koja je opisana trokutu. e) Izračunaj površinu kružnog odsječka izmedu - stranice BC ikružnice... Pravac = 0 je zajednička tangenta elipse a + b = i konfokalne parabole = p. a) Odredi jednadžbe krivulja i nacrtaj ih. b) Pokaži da se dio tangente izmedu - dirališta vidi iz zajedničkog fokusa pod pravim kutom. c) Izračunaj površinu dijela ravnine omedenog - zadanom tangentom, osi i lukom parabole..4. Zadan je krug polumjera 0 cm, a AB je jedan njegov promjer. Tetiva AC zatvara s tim promjerom kut α. a) Izračunaj duljinu tetive AC u ovisnosti o α. Tetiva AC rotira oko promjera AB. b) Izračunaj visinu nastalog stošca u ovisnosti o α. c) Izračunaj obujam stošca u ovisnosti o α. d) Za koji α je obujam stošca najveći? e) Koliki je najveći obujam?.5. a) Zadana je funkcija f () =. Zakoje vrijedi f () 0? b) Odredi prirodno područje definicije funkcije g()= ln(+ ). c) Napiši jednadžbu tangente na graf funkcije g utočki 0 = 0.

12 46 II. DIO Zadaća Točke A(0, ), B(, 7), C(, ), D(, 0) pripadaju grafu polinoma f trećeg stupnja. a) Odredi polinom f i nacrtaj graf tog polinoma. b) Odredi jednadžbu pravca AB. c) Odredi površinu ome - denu grafom polinoma f i pravcem AB. 4.. Zadana je elipsa = 5. a) Izračunaj duljinu njezine tetive MN ako je M( e, 0) i N( 0, 5 ), e je linearni ekscentricitet. b) Odredi sjecište S tangenata te elipse povučenih u točkama M i N. c) Pod kojim se kutom iz točke S vidi zadana elipsa? d) Trokut, što ga tangente elipse u točkama M i N zatvaraju s osi, rotira oko te osi. Koliki je obujam tako nastalog tijela? 4.. a) Kompleksni brojevi z i w zadovoljavaju jednadžbu w = z 6i.AkojeRew = 0, z+8 pokaži da kompleksni brojevi z leže na kružnici i nadi - njenu jednadžbu, koordinate središta te radijus. b) Ako je Im w = 0, pokaži da kompleksni brojevi z leže na pravcu i nadi - njegovu jednadžbu u segmentnom obliku. c) Odredi površinu koju taj pravac zatvara s koordinatnim osima i kut kojeg pravac zatvara s pozitivnim smjerom osi Pravilni šesterokut stranice a rotira oko jedne svoje stranice. Na - di oplošje i obujam dobivenog rotacionog tijela Zadane su funkcije f () =( + ) i g() =. a) Odredi domenu funkcija f, g i funkcije h = f g b) Prikaži funkciju h kao zbroj četiriju pribrojnika. 9 ( +) c) Primijeni rezultat zadatka b) i izračunaj I = d. d) Odredi I koristeći supstituciju u = +. 0

13 MATURALNE ZADAĆE 47 Zadaća a) Dokaži da za bilo koje realne brojeve a, b, c i d uvijek vrijedi relacija: (ac bd) +(ad + bc) =(ac + bd) +(ad bc) =(a + b )(c + d ). b) Koristeći izraz pod a) ili drugačije pokaži da za kompleksne brojeve z, w vrijedi: zw = zw = z w, gdje je w konjugirano kompleksni broj broja w. c) Pokaži da svi kompleksni brojevi z koji zadovoljavaju jednadžbu z + = z i, z C leže na pravcu u kompleksnoj ravnini; na - di jednadžbu tog pravca i nacrtaj ga. 5.. Rješenja jednadžbe log + log = [log( 4 + 5)+log 0] su deseti i jedanaesti član rastućeg aritmetičkog niza. a) Odredi te članove, te prvi član i razliku danog niza. b) Koliko članova niza treba zbrojiti da se dobije 64? c) Odredi domenu funkcije f () =log( 4 + 5). d) Zapiši funkciju pod c) pomoću logaritma u bazi e. e) Pokaži da funkcija pod c) ima ekstremnih vrijednosti i na - di ih. 5.. Kvadrat stranice a rotira oko pravca koji prolazi jednim vrhom tog kvadrata okomito na dijagonalu koja prolazi istim vrhom. Odredi obujam i oplošje nastalog rotacionog tijela Zadana je funkcija: f () =sin cos. a) Napiši f () u obliku f () =r sin( ϕ). b) Odredi amplitudu i period funkcije f. c) Skiciraj graf te funkcije na intervalu [ π, π]. d) Nadi - sva rješenja jednadžbe f () = na tom intervalu a) U pravokutnom koordinatnom sustavu skiciraj dio ravnine odre - dene nejednadžbama: + > Odredi vrhove nastalog ravninskog lika. b) Odredi obujam tijela koje nastaje rotacijom tog lika oko osi i rezultat zaokruži na najbliži cijeli broj. c) Odredi jednadžbu kružnicenakojojleže vrhovi dobivenog lika te odredi njeno središte i radijus.

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= *

POPIS ZADATAKA: 1.Odredi modul IZI iz kompleksnog broja Z=4+3i 2.Riješi zadatak:izi= * POPIS ZADATAKA:.Odredi modul IZI iz kompleksnog broja Z=+i i i.riješi zadatak:izi= * i i.izračunaj:(8+6i)(8-6i)=.odredi realne brojeve i y za koje vrijedi:(-i)+(+i)y=i.riješi kvadratnu jednadžbu :9²-=0

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Pitanja za usmeni dio ispita iz matematike

Pitanja za usmeni dio ispita iz matematike PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet

Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet X. GIMNAZIJA Zbirka oglednih zadataka iz matematike za pripreme za upis na Ekonomski fakultet Pripremila Vesna Skočir PREDGOVOR Zbirka sadrži zadatke koji su se zadnjih nekoliko godina pojavljivali na

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE 1 Ivica Gusić Lekcija 1 Realni i kompleksni brojevi Lekcije iz Matematike 1. 1. Realni i kompleksni brojevi I. Naslov i obja²njenje naslova U lekciji se ponavljaju osnovna svojstva

Διαβάστε περισσότερα

Vježbe iz matematike 1

Vježbe iz matematike 1 Vježbe iz matematike B. Ivanković N. Kapetanović 8. rujna 005. Uvod Vježbe su tijekom dugog niza održavanja nadopunjavane. Osnovu vježbi napravila je Nataša Kapetanović, ing. matematike, a podebljao ih

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

( pol funkcije), horizontalna ili kosa.

( pol funkcije), horizontalna ili kosa. 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

Priprema za popravni ispit. Matematika 7. razred

Priprema za popravni ispit. Matematika 7. razred Matematika 7. razred Priprema za popravni ispit 1/8 Pažljivo pročitaj ovaj tekst: 1. Ovo su zadaci koji predstavljaju ono najosnovnije što treba znati na kraju 7. razreda. Nije dovoljno riješiti samo njih,

Διαβάστε περισσότερα

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita?

SKUP REALNIH BROJEVA BROJEVI I RAČUNSKE OPERACIJE. Koja je vrijednost izraza : ? A. B. C. 5 D. 7. Koja je od navedenih tvrdnji istinita? SŠ AMBROZA HARAČIĆA MALI LOŠINJ ZBIRKA ZADATAKA IZ MATEMATIKE Viša (A) razina Zadaci i rješenja sa nacionalnih ispita i državnih matura 006.-0. Prikupio i obradio: Ivan Brzović,prof. Mali Lošinj,rujan

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

GEOMETRIJA KUGLE I SFERE

GEOMETRIJA KUGLE I SFERE Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Ružica Korać GEOMETRIJA KUGLE I SFERE Diplomski rad Voditelj rada: doc.dr.sc. Maja Starčević Zagreb, rujan 2015. Svaki dan je

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Matematika Zbirka zadataka

Matematika Zbirka zadataka Matematika Zbirka zadataka Kristina Devčić Božidar Ivanković Veleučilište Nikola Tesla u Gospiću Uvod Unaprijed se zahvaljujemo na svakom komentaru o propustima i nedosljednostima, a svaka primjedba glede

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela.

Primjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela. S. Varošanec, Nacrtna geometrija, 4. Mongeovo projiciranje 90 Primjer 4.56. Osnovka ABCD uspravne četverostrane prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Primene kompleksnih brojeva u geometriji

Primene kompleksnih brojeva u geometriji Primene kompleksnih brojeva u geometriji Radoslav Dimitrijević 07.1.011. 1 Neki osnovni geometrijski pojmovi 1.1. Rastojanje izmed u tačaka Neka su tačke A i B u kompleksnoj ravni odred ene kompleksnim

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

Dr. Miljenko Crnjac, Mr. Dragan Jukić, Dr. Rudolf Scitovski MATEMATIKA. Osijek, 1994.

Dr. Miljenko Crnjac, Mr. Dragan Jukić, Dr. Rudolf Scitovski MATEMATIKA. Osijek, 1994. Dr. Miljenko Crnjac, Mr. Dragan Jukić, Dr. Rudolf Scitovski MATEMATIKA Osijek, 994. M. Crnjac, D. Jukić, R. Scitovski Matematika Udžbenik U-6 Recenzenti: Prof.dr.sc. Hrvoje Kraljević Prof.dr.sc. Harry

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

MATEMATIKA 6. razred osnovne škole

MATEMATIKA 6. razred osnovne škole Matematika 6. razred osnovne škole 1 MATEMATIKA 6. razred osnovne škole OPERACIJE S RAZLOMCIMA 1. Svođenje razlomaka na zajednički nazivnik Zajednički nazivnik dvaju razlomaka. Provesti heuristički razgovor

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Vjeºbe iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama

Διαβάστε περισσότερα

Matematika 2 za kemičare Drugi kolokvij svibnja 2016.

Matematika 2 za kemičare Drugi kolokvij svibnja 2016. Napomene. Dozvoljena pomagala za rješavanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama i pribor za pisanje. Neće se bodovati nečitko pisani dijelovi testa. Napišite svoje ime,

Διαβάστε περισσότερα

Riješeni primjer testa iz matematike i kemije za razredbeni ispit (slovo ispred točnog rješenja je podebljano) a ± b, jednak:

Riješeni primjer testa iz matematike i kemije za razredbeni ispit (slovo ispred točnog rješenja je podebljano) a ± b, jednak: Riješeni primjer testa iz matematike i kemije za razredbeni ispit (slv ispred tčng rješenja je pdebljan). 0% d. + 0.7 4 je: 0 ; B: 4 ; C: 0 ; D:. Izraz a 7 a iznsi: 8 7 a ; B: a ; C: a ; D: a a b a b.

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Poglavlje Integral. Neodreženi integral Neka je zadana funkcija f : (a, b) R: Funkcija F : (a, b) R za koju je F () = f() za svaki (a, b) naziva se

Διαβάστε περισσότερα

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična. Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b

Διαβάστε περισσότερα

3. Masa soli i čiste vode u moru kod Protarasa (Cipar) je u omjeru 7 : 193. Koliko kilograma soli ima u 1000 kg morske vode?

3. Masa soli i čiste vode u moru kod Protarasa (Cipar) je u omjeru 7 : 193. Koliko kilograma soli ima u 1000 kg morske vode? MATEMATIČKI KLOKAN C RJEŠENJA Pitanja za 3 boda: 1. Na slici je veliki jednakostraničan trokut koji ima površinu 9. Dužine paralelne stranicama dijele stranicu na tri jednaka dijela. Kolika je ukupna površina

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina MAT A D-S Prazna stranica MAT A D-S 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Uvod u aritmetiku eliptičkih krivulja

Uvod u aritmetiku eliptičkih krivulja Uvod u aritmetiku eliptičkih krivulja 1. Uvod i motivacija - 1. lekcija Začetci ideje o eliptičkim krivuljama mogu se nazrijeti kod Diofanta (vjerojatno u 3. stoljeću) u postupku rješavanja jednadžba u

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

MATEMATIKA 7. razred osnovne škole

MATEMATIKA 7. razred osnovne škole Matematika 7. razred osnovne škole 1 MATEMATIKA 7. razred osnovne škole KOORDINATNI SUSTAV 1. Koordinatni sustav na pravcu Koordinatni sustav na pravcu, ishodište, jedinična dužina koordinata točke. Pridruživanje

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO MINISTARSTVO ZNANOSTI, OBRAZOVANJA I SPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja 2016. 4. razred-osnovna

Διαβάστε περισσότερα

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto?

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Franka Miriam Brückler Igor Pažanin Zagreb, 2012. Sadržaj 1 Uvod 7 1.1 Varijable i konstante............................

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 29. siječnja 2007.

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 29. siječnja 2007. Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. razred osnovna škola 9. siječnja 007.. U brojevnom

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα