r q s r 1t r t t 2st s
|
|
- Γερασιμος Παπαγεωργίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 r q s r 1t r t t 2st s ss rt t 3 r r s s r s s t r r r r tr r r r r r sí r s t t r Pr r Pr r ã P r st s st Pr r sé r t s r t t s ö t s r ss s t ss r urn:nbn:de:gbv:ilm
2
3 t t t t rs 2 s r t t rs t2 r sí r r ã P r st s st r 2 t t s st t r rt t s Pr r 2 s r t t r s s rt t s r st t t t 2 s r t t t t r r r r s t t t ts t s r Pr r ré érr r r s str t ts s rt Pr r 1 tr r t t r r s t r r s t t t q s Pr r s P t r t s r s s rt r s r ts 2 r s s r t r t r t t s t t s2st s Pr r r s 2 r tr t t rr 2 s r ss r r 3 s r tr t t s t tr s r t t t t s s rs r çã r ç t P ss í r r P r t P r t r r t s rs r t s P sq s s tí ó Pq r t s rs r r 3 2 r t r t s rt çã à P sq s str t r P r t tr r ts r t t 2 2 r r r s s r t r t s rt rst r t t 2 ts
4
5 t t s t r ss r t r t t ss t rt t r s t2 s s q t r t t s2st s s r s rr t 2 t r s t t s s r t s r r t t t st rt r t t r s s r t s r 1 t r r r t s t t r q r t r t s s rt r t2 r s r s t s2st s s s t r s s t t s t r t t s r t r s s s s t t r str t r t s s rt t s r s t r t s s r s r q r t r t r t r t st r s s 2 t st rts s r 2 s t 2 t s t r tt r 1 t t t s r s tr s t r r t t rr 2s t t s rt r t s r s r t q s t t rt 2 t t rr t tt r t t rr 2 s r r t 2 t s s r s r r t t t t t r r r t r s r r r r s t s t s r t t s r s s r t s s tr s t t t r t r r t s r r t q s r r s t t r s s r s r r t r rr 2s r s r s r r r s s r s r t t q s r r t t q s tr s r t r s r t t r s r s t s r t t s t t r t r 2s s P t s r s t s s t r q 2 r t r rs s 2 t t st t t t t s s t s t tr s r t s
6
7 t t st r rs r 3 s t s t s s r r s s t r s t 3 r t r t s2st 3 r t3 r3 t s s t r t t t r 3 r t st t r rt r t ör s s s t r t t r ür r s r r r t r s t3 öt 3 rt tätss t r r s s t ss2st s t s st r t t s r t r s t r t r r t r s s s 3 r3 3 r3 r3 3 r str t r t r rt r t r stüt3 3 ö r st r t ü rtr sr t r röÿ r r3 t s r r ür t r s r ü t r t r ts s t3 s s t tr t t ss r s t3 s tr s 3 r ö t t s r r t s2st t s rät s üss t r r t t r t s rs r s tr s st r s r t s2st r t rät rt ss ö s s r r ü s t t 3 rstär 3 s s tör s t r 3 tr s r r r ö t s t rä r r r ss tr t s r t r tr s tör r t r r 3q 3 s ä r r r t r r r r r r s t t t rs ä s r s 3 s r t s2st r t 3 t rs ür 2st t r s r Pr t t r s r t r t ür r t 2st r s r rst t3t st s r3 r r P r t r 2s s P 3 s t r q 2 r t
8 r rs s r t r t3t r tt s r s t r s r t t r t s t t t
9 çõ s t s s r 3 s s st tâ s í tr t ú í s t r r rt ss s r s q ê r s st s ç s çã stá t t t s r s çã ó tê t t õ s ss t r s t s q s ã rt à r s q rt r çã P r sã s r s õ s ss t r s s õ s ss t r s é ss t é sã r st s çõ s q r q r t t 1 tr s ssã r rt s s st s çã t é r r s t çõ s áq áq t r t s s s r s r s s s r s í í çõ s í r str t r P r s rt r st t s 3 s stá s s r r q s t r s rõ s çã t r q t r çã à q t s r r st r s t s s r r t r r 1 r çã s rç s tr é r r çã rr s t s s s s t s çã P rt r t st tr t té s r çã 1 q rt t t r rã rr çã rr t s r r s s s r çã s r s s s tr s â s P rt t r r s 1 r s r çã s ú t s t s s q rt s s tr é ss t é s r s r t çã t r rê st tr té s r r s r r s 1 sã s s t r í r rr s r s r t r s s s s r P r ár s r í s r s té s r q t r çã st tr s r çã sã t 3 s P r s s r é t 3 t çã t s r s çã r á s t r s r s P é t t r r s 1 r t s r q ê s P r ét çã 1 st t é s r tr s r rt 3
10
11 t ts t ts t r tr t r 1 t2 rr 2 t t s r tr t s t t t r r r s r s t t t t rt r rs t st q r s st q r s Pr s t s r 2 t st 2 Pr t P r r r s r t s P t r st Pr t P s t st r t t t 1 t2 2s s t s s ts r2 t r t s r r r r rr 2s t t r t s s Pr s R s t s s ts
12 r2 t r r r r q 2 r r s r t P s t r r t s rs r r r s r r q 2 r t r r s s s rt rr 2 st t s 1t r s s r s t r t r tr 1 st t t P s r s t t r t st q r s r t r tr 1 st t Pr s t r r r r s t s s ts r2 t r r r P r r ss ss t t s t r s r t t s t r s r t r t t r t Pr s P r r ss ss t rr 2 s s r t s t t r st t rr r t r t s t t r t t s t rr r t s ts P r r t t r t P r r t t t r t r2 t r s s r s s t s r t r s r 1 tr 1 t t 1 r t t s t t s r t st s
13 st r s 2 s r 2 s r 2 r är
14
15 t s 2 2 r r s t2 r st t s st t t t s rs r t t t t r r t s s rs r s rt s s r t s r t s s s r t s t t t st t r t r rt r t t 2 t t s s r r 2 r t 2 q t s t r r t r t tt r t r 2 r t2 st r t st t t 2 r t s 1 t t r t r s s r t s 2 r r 1 t 2 s r 2 t r t s s r rs s s 1 t t r s 2 s t r t r r t t r t r s s r t t s r t s t t s s s rs s s r tr s t t t r r t s t r t t s t s rt t t r rt r t2 r r t r s t r t t rr 2s r t r t t s2st s t s s t t s rr t r t r s r r r s 1 t r s2st s t r t t rr t 2 s s tr r 1 t 2 t 3 3 s t s t s r 1t r t r ss t s2st s s s tr 2 r s t s t r t 3 r r t r s t t 1t r t st r s s st t s r q 2 s tr 3 t t s r q 2 r t t s r r2 s 2 t rs t s s t t s 3 r t s 3 r s t t r r 2 t t t t ss s r t r t t s r q 2 r r r t s t r t t s 3 r t t ss t rr 2s s s 1t r t t r s 1 t t st rt ts 2 t t s t s r r s t s s r s ss t t s r r s t t t s t
16 s2st s t t t t t t s2st t r t s s t s2st s ss s2st s t r t s s r s t r s ss t t r s t s tr s ss s t r s s rs s r s s 2 t 2 t rr 2s s r ss r rs r r 2 s r t s r r t r t str t t r r t r s s r s r t str t t r r t r s s r s s t s t 1tr r t t t r r s t r st t st r t 1tr t r r s s s t str t str t t r r t r s t s r s r t s r rs r t t s st s s s s s s r t s s r rr t 2 s tt r 2s t t rr 2s r r s s t s s r t t s t r s t s t s t s tr t t r rs t r s t 2 r 1 t t s r t s r s t rt t rr 2 s2st t t s r t s ss rt t t t s t r r t t t s r s t s r s t s s t s t t t t r r rs r r t s s s r r s r r t t s t t r r s tr 2 r t 2 st r t str t str t t r r r r t r s t s r s s q t2 r s s s r r str t t r r t s s st s t 2 s r r s ts s sts r r 2 2s t s q r 2 t s s t r r t r str t t r r t r t t s r s r s st t r s t s r t r t r 2 str r s s t r r t r 3 s r r rs st t r rs r q r t st t t rr t tr s r s r r t t t r t rs t s2st s t s r rs r r t s s rr t t s r r t t 2 s rr t s t r r t s r t s r s s r s r r 2 s r t t q s t t r r t t q s s r s t s2st s t t 1 t2 r r s
17 r r t r r t r r t r s s r r t t 3 rt 2 st r r t s s 3 t t r str t tt r s r r 2 s r r r r t s t r r 1 t2 tr t s2st s 1 t2 2 s s 3 r t r t s s r s s t t t rr 2 s s s r str t r s s r r t r rr 2 r rs s t s r t 2 t str t r s s r t t t rr 2 r r s s s t t r t t y r t r s s s t t s s t x r t s rt 2 r s s t r s s ts t t r r s t t t 2 s r ss s r s s r s s s t t s s r s t r s s ts t r r rr t tr 1 st t t s t s r tr s st r s r t t t t ss t t r r t s r st r rs t s t rr ss t s s r t
18 r r s s s r t rr s r r s t s s r t t s rt r s s t t s r s r s rr t r s 1 t2 1tr t s s s t s s s s s t r t r q 2 r t r rs s t t s r t s t s st t s 1t r s s r t t s rr s r s r r t s t ts s r s t t rr r t s r t r t r Pr s r s s s t t rr r st s t t 2s s r t s r t 2 s s t s r t ss t2 t rt s s t t tr t t r t r t r s t rt s s t r s r t r t t t s s t ss t2 s s t s r t t s s t t st r t r ss str t s s 2 t t ss t2 s r t r s t s t s s t t ss t s s s rr t t r s t 2 t ts s s t s s s t t s ts s tr s t t s r r r q s t r s t rr t t s s t t r s t t t s r t ss t2 s r r s 2 t s r t t t 1 ts t ss t t ss s 1 t rst 2 2 st t rr t tr s t s t t r r r t r t r s r r s t t t s t s r s str t r 2 t s t s r s s t r t rs 2s s P t r s t s s t s t P s s t r s ts t r tr s t t t st t rs r t s r r ts r str t tr 1 s 3 M N s t s r s 3 M N P t s r r r t r ts t 1 t2 t t t s t r s s r t r s r 2 r s t
19 P s s t t ts st t st r t r st s r t st t r2 t s r r s s t r t t P r t s t r r t t r 2 1 t t t ss r rt2 1 t2 rr 2 t r t q s s t r r t s r s r st s r s t r s s t rr rs t rr 2 ss 2 s t t t t t t t s s r t st 2 t t t t r t s r q t s t r r s t s r 2 r q r t t t r 2 t r t s 1 t2 s t s r 2s s t s 2 t t t s t rt t r t s t t r s s r r t t t r rs s t st t t r t rr t t r rs rs s 2 s r t s r r t t st t s t r t s rr rs ss t t t t s r t st t t t s t 2 s t s t tr s r t r t r r2 t t 1 t2 r t r2 r t r s t s t r s ts t r r r rr 2 t t s t t t rr 2 ts t t s r s s t t s t s t rr rs r r t ts r t s t t t r s q t t r rr 2 ts s t s r r t t r t r r t t t t r t 1 t2 s r s t s r s s t t t t s 2 t s r t s t r t s t 1 t2 t t s t s st t s t s 1t r t t s2st s r r t t r s r t ts r t t s r s t r s rr t r ss s2st s t r t s r r s r tt r s t s r t t r r t t t t r rs r s r s s s s t s t t r r t r r s r s s r s t s r t s rr t t t t r s t t t t s t r r t rr 2s r r t rst s t t s r s t
20 r t q s t t r r r s s r s t s r t s t r t t q s t t t t r r t r st s t s s r s t r t st r s s t 1 t2 s r ss r t q s r s t r s t s2st s 1 t2 t r s 1 t2 t r t s r s s t t t 1 t2 s r s r r t s s t t s r s t r t t 1 t2 r t s s 2 t t t r r t t r t t t s s r r s rst r t s s r rr t tr s r s rr s r r s t t r rs r s r s s s rs r s r rts t t rr 2 s s t t t s s s s t r t rr t t s r s s t r t s 1 tr 1 t t s s t r r r r 2 r rs s r st st st t rr rs t s r r t rr r t s t t t rr 2 ts r r ss ss t r rs r r t s r s t r r t s t s t r t 1 t2 t t r t r s st t rr r s t st t rr r t s r t t s t r t s r s r tr t s s t s s s t t rs t s tr t t r t s s r t t rr 2s r s s r s t r ts ts t r r r r 1 t2 s s t r r s t t r t tr t s t r r t s t r st st st r t r r t t r r t s t r r t tr s r t t r s r r 2 t r t s r t t 1 t2 r t t r s r s t t r r s r rr 2s t t s r s t t s r t t r r t t s ts s 2 t s t s t t t t s str t r s s t rt 2 r s t t s s r r t r q t2 r t t 1 t2 t r t tr t s t t t t rr 2 s r t2 r t t t s r t s t rt 2 r s t r s s s t t s r t s r t r s r rr t tr s st t r r t t 1 t2 t r t s
21 t r r s t t s ts t s s s P s t s s r t s t t s t tr t t r s r t r r t t s s t t P s t r r s s 2 t r t t t t s r t t r st t st s t t t P tr r t r st r r r r 2 t r t s t t r t s r rs t r t ts t s r t s r r 2 s t s t tr s r t r s s t ss ss t s s s r r t t t t r t rr 2 s2st s 2 t r r s t s s t t s r t t t s r t t t s s rs r t 2 r s tt rs (a,b, ) t rs r r tt s r s tt rs (a,b, ) tr s s t s(a, B, ) t s rs s r tt rs (A, B, ) s rs r ts, r r s t tr s s r t tr s s 1 t tr 1 r s t 2 t t A(:, ) C R 1 r r s ts t r t t i t A C R I r t r (A) r s ts t r 2 t t t s t tr 1A t t t r t t [T ] (r) s t r tr 1 T T r A s t r t r t t t t s r T t tr 1 A r r t r r r t t r r t r t rs r t 2 r s t 2 tr r t r t s s s t s r r r t r t r E{ } st s r t 1 t r t
22
23 r ss s rt t 2 r s s s s t t t s t s 2 t s2st s t rr 2 t s r 2s rt t r t t r t r t r r s r t t s r t rr st t s s r r s s r s s t r t s r r t r r t s str ts t t t r rs s s t r t r Pr ss r P s t r 2 str r r 2 str st t s t r 3 r r r t t s t ss t2 r t r t s r s t t s t rs s t r r s r r r s r t r ts s s r rr 2 s t s s t t t r r r t s t t r r t s rs t r t r s t s r t s s r r t t 1 t2 r s r r r t 2 t r r P s s r s r s r r t r t s t2 t t t rs r r t st s s s r t t s s r r s r s s t st t s st t t ts r r 2 r st t s s t t r t q s s t s 2 ss rr t t s t r rs s t r st s s s s 2 r s t 2 rr t r r s s r s r t s s s ss 2 t t st t s r ss s s r t s s r t st st t r st r t t r st r t t s 2 s str t r 1 t
24 t st st r t str t r s ss r r t r r s t s r t s s r t s t t t t s t s r str t r t s r t st sq r s t r 1t r r s s r s 2 r r t r t st r t s s s r t t r st r t t st st r t r r s r s s s 2 tr t rt r t r r t rt r t t r r r s r t s s s r r ss st r s s tr t s t t s r s r t t r r r t st s s st t st st r t s t t t t t r t r r t r t 1 t2 t st st r t t s r r st st r t r r s r s s t r s t r s t s t s tr t t s r s t s t t t st t t rt r rs r r t r 2 1 t2 s s r r s 2 r r t r t st s t s t r r s s r s t s t s r s t r s ts r r 2 t s t s s t ss t t d s r s r tr s tt r t s2 s t t n t t st t t s r s r r 2 r t r r t rr r ts r s r r r r rr 2 s ss t s M s tr s s r ts t t r t s t s r r t r s2 s r t t 2 r r s t s x(t) = a(θ 0 )s(t)+a int (θ int )s int (t)+n (c) (t), r x(t) = [x 0 (t),...,x M 1 (t)] T s t t r t t r s2 s t t st t t s(t) s t s r s s int (t) s t r t t t r r s2 s r t d 1 t r r s n (c) (t) t s r s s s t t s s r ts t t t n (c) (t) = Ln(t) r n(t) t s s s s t r r 2 s2 tr 1 ss str t s tr 1 L C M M st s r t rr t t r tr 1 r t s s r L s t t t2 tr 1 t s s t t t s s rs t r a(θ 0 ) s t st r t r t r str t r a(θ 0 ) = [1,e jφ 0,e j2φ 0,...,e j(m 1)φ 0 ] T,
25 r θ 0 s t 3 t t j = 1 tr 1 A int (θ int ) s t st r tr 1 t t st r t rs t t r r s s e jφ 1 e jφ 2... e jφ d 1 A int (θ int ) = e j2φ 1 e j2φ 2... e j2φ d 1 C M d 1, e j(m 1)φ 1 e j(m 1)φ 2... e j(m 1)φ d 1 r t r rr s s r r s t t r θ int C d 1 1 t s r r r s t 2 t s t r q s s t 2 r t s 2s φ 0 = 2π sinθ 0 φ int = 2π sinθ int C d 1 1 r r 2 ss s t t t s s t t rr t t N 1 r s 2 tr s tt s2 s r t t t r s t t t r r s s t tr 1 S int (t) C N d 1 t s r r tt t r t X(t) = a(θ 0 )s T (t)+a int (θ int )S T int(t)+n (c) C M N, r X(t) = [x(t N +1),...,x(t)] N (c) = L N C M N tr 1 N C M N t s t N t s s s r M s s rs t s r s X t s N s s s s s r t M s s rs r s(t) C N 1 s t N t st s s r t s r s S int (t) C N d 1 s t N t st s s r t d 1 t r r s r s r t r s2 s X(t) t t s r s θ 0 r ss s 2 t r r t s s r t ŝ(t) s st t s(t) t t r r s r rr t r t r t 2 t s ss t t t s t t tr s tt r t r s t t t r r s t t t rt r rs t r t t r s str r t str 2 tr tr 1 s t rt t t str t a(θ 0 ) t s s t str t s r s t st r t r t s r s r t t st t ss r s t r
26 + - + r t r rst t r rt r t s d(t) = a H (θ 0 )x(t) s 1tr t 2 2 s t r a(θ 0 ) t t s t t s r s st r t r t t s s(t) s s s s r t s r s t s t t t d(t) t r d 1 s s r t t r r s s r t t t tt rt r tr 1 B C (M 1) M s t tb a(θ 0 ) = 0 s s t 1tr t t t r r s s x B (t) = B x(t) s q t 2 B s t s r s ts 2 2 A int (θ int )s int (t) ss t s t t t t tr 1 B r s 1 s2st t t r w s t s t r s t d(t) w H x B (t) 2 t t r r r r s r t r w = R 1 x B r xb d, r R xb r xb d r t rr t tr 1 x B (t) t r ss rr t t r t x B (t) d(t) r s t 2 t t t r s w gsc = a(θ 0 ) B H w, t s t t rt r rr s t a(θ 0 ) B r t st t rt t s2st t r t rt rr s t w s t t s t s r t r s t rr t r ss rr t t t r st t s s N s s ˆR 1 x B = 1 N BX(t)XH (t)b H, ˆr xb d = 1 N BX(t)d(t), r d(t) = [d(t N+1),...,d(t)] T t r t t r t s s t 2 s s t s r s r 2 st r s s ts
27 st q r s st q r s s s r t t t 1 t t t t rr t r ss rr t r r 2 st t t s s s t t t s x(t) ss s t r t t t s r s r t θ 0 r t d(n) = a H (θ 0 )x(t) s t s s ss s t r tr 1 B s t rt t t str t a(θ 0 ) t r w s t st s t t t r t s t t r r s y(t) t t s s tr t r t s r s d(t) adaptive algorithm r r y(t) s 2 y(n) = w H x B (n), r x B (n) = Bx(t) s s t rr r s e(t) s s 2 t t r t t st w w r s ŝ(t) = e(t) t t t e(t) s r r t r r s s t s2st s t t s t t w s t st st r t t st t J lms (w) = E { d(t) w H x B (t) 2} s t t r r t t rt w(t+1) = w(t)+µ lms w J lms (w) t µ lms t st s 3 r t s t st t s st t s ˆR xx = x(n)x H (n) ˆr dx = d(n)x(n) t t st st r t ˆ w J lms = 2Bx(t)x H (t)b H w 2Bd(t)x(t).
28 t st st r t s s rt t t r r t w(n+1) = w(n)+µ lms Bx(n)x H (n) ( a(θ 0 ) B H w ). st q r s r r t s r rt t s r r r s s r ts M r t s r s r r t r t r t s s s t adaptive algorithm r r r ss s s r t t t s r t 1 t t t t s ss s t r tr s r t tr 1 T C (M 1) r t t r r s s t2 r t r r r t r 2 r t r s r x(t) = e rr(t)x(t) s s st x(t) r t t s r e rr (t) = w H (t)x(t) s t t t s r t r t s t 2 t s s r t w(t) = a(θ 0 ) B H T(t)w(t) rr r ts q r t s r s t st t J cm (w) = E { w H x(t) ν 2}, r ν s st t s t t r t r s s t r w r r s t t r s t T(t) w(t) r t t t r ss s t 1 st t s J cm ( T(t),w(t) ) = E { [a(θ0 ) B H T(t)w(t)] H x(t) ν 2}, t w(t) t r r t r s 3 r r d r < M r r t r 2 s t t t r s tr t t r r s 3 t r t r s r s s t r r s q r s t 2 d s t st r s ts r t st t d r r 2 s r t s st st r t t r s st t t r s t t
29 P P T(t) w(t) s t r t r s r s t 2 T(t+1) = T(t)+µ T e cm(t) x B (t)w H (t), w(t+1) = w(t)+µ w e cm(t)x B (t), r e cm = 1 w(t) H x(t) s t rr r s t t t r s tr rr s s t t t r t s x B (t) = T H x B (t) t r t s tr s r t Pr s t s t s s t r t r t s r t r t t r t t r r s r 2 t st Pr t P t t t s s r s s s t s s s t P t r t t P s t t s rs t t s t r str t r s r r t s t r t s t t r r t s r s r t s t r s s t ts s r r s r r t r t t r st r s t r t r r t s r s ts rt rr 2 t t s rt r s 2 t t t r t r t s r s tr t s t t s t t s r s t r t st r q r t s r t P t t t r st Pr t P t s s r t s s r t rr t str t r t s s t r t st r q r s r s r s s t r t s s r r st st r t r r r q r s 2 r s s r s t r 2 t st 2 Pr t P st rt t t tr t st st r t t r st t t s rr t t r tr 1 r t t ts r s s r s 2 rst t s ss t t s s r r r s ts 2 t s s t t t s s rr t tr 1 s ˆR NN = 1 N sf N (c) (N (c) ) H, r N sf st s r t r s r s s N (c) s t r s s s ts tr 1 ˆR NN s r t s t t t s 2 s t
30 r r s t t ˆR NN = ˆL ˆL H, t t st t rr t t r tr 1 ˆL r r r t tr2 t r rt t ts t rr t s 2 s 2 t 2 t t 2 t rs t st t rr t t r tr 1 X (t) = ˆL 1 X(t), r X (t) s t r t tr 1 X(t) t r s s d s r r 1 t X (t) r s t t X [s] (t) r r t st t d t r r s r rr t r r s t s s t s rt t t t t t t s r r 1 t s t r t t t r r t st r r 2 t t r t s 2 t s s s s r s r t s t t st s t 2 t 2 t st t rr t t r tr 1 ˆL s s t t t t X [s] (t) = ˆL X [s] (t). s s s t t s2st r t P s t t s t r t t t r s t s r s ts t t t r x [s] (t) t t s rt t t t r t t t t r t r noisy samples prewhitening SVD low rank approximation dewhitening 4 adaptive GSC beamforming filter r r 2 st st r t r t r t s t s t t 2 t t st t s s t x [s] (t) s s t t t r t t t X [s] (t) = [x [s] (t N +1),,x [s] (t)] s s s t r t 2 s rt t t t r t r s s t t t s s t N s s ts
31 P P r r r s r t s P r s t s t tr s r t t s 2 t t t r str t r s r s r t r r 2s r t s t rr 2 t r r s r rr t r rr 2 t r t r r t s t s r t s rst t tr 1 T vit C M M s t s t t t r t t s r str t r v = [1,e jφ,...,e j(m 1)φ ] T t s s t t ˇv = T vit v = ( ) M 1 e jφ κ 1 κ 1 e jν e j(m 1)ν, r κ s 1 r t r t t r t s s r q t s rr t t t r s φ s t s ν t t r str t r s st r s t r s 2 t rt s s ( ) 2K sinφ ν = arctan, 1 K 2 +(1+K 2 ) cosφ r K = (κ+1)/(κ 1) r t s r t t t s r s t s r φ = 0 t t s s s t t s t r q s φ 0 φ int s s t t s r s r r t 2 t 2 t 2 t t s 2 P φ0 = diag([1,e jφ 0,...,e j(m 1)φ 0 ]) s t t t s r s rt 2 s r o s t s t r r t s t tr s r t r t t ˇx(t) = T vit P φ0 a(θ 0 )s(t)+t vit P φ0 A int (θ int )s int (t)+t vit P φ0 n (c) (t) = ǎ(θ 0 )s(t)+ǎ int (θ int )s int (t)+ň (c) (t). t r ǎ(θ 0 ) t tr 1 Ǎ int (θ int ) st r str t r ň (c) (t) s st r s t ts r r 2 t s t t ň (c) (t) = L n(t) L = T vit P φ0 L s s q t s t t t v t φ = 0 t t s r φ 0 2 s tt K < 1 t t 2 r 0 o s s t t r t s r r s t t r r s t t r t t s r s s r s st ts r s t t s r s t s 2 rt 2 r 2 t r r t s r t s st t t tr s r s rr t t P r t 2 s t
32 st t ˆL = T vit P φ0 ˆL. r s r 3 s t P r ss rst t s2 s s s t 2 P φ0 t noisy samples Phase shift VIT HASP 4 adaptive GSC beamforming filter r P r t t s r r t t r t t t s s r 2 t ss t r t P r ˆL s s ˆL r s t s t t ˇx [s] (t) t s s t t t t r t s t s t t t T vit r t r st Pr t P s t s t str t r t s r tr 1 s r r 2 rr t r ts r r str t r t r st r t P 2 t t 1 s s s r s 1 s r s s r rst s rt t t s2st r r t st t t s str t r t ts rr t t t s str t r rr t st t r t tr 1 st t t st st t t t s t 2 t r t tr 1 t r t t t r t s ss t t t s s rr t s r s 2 n (c) m+1(t) = ρ n m (t)+ 1 ρ 2 n m+1 (t), r 0 ρ < 1 st s r t s rr t t t s rr t
33 P P signal-free samples find prewhitening equation estimate equation parameters build prewhitening matrix D data whitening whitened data 4 r t r st r t r str t r s t rr t t r L s t ρ 1 ρ L (k) = ρ 2 ρ 1 ρ 2 1 ρ 2 0 ρ M 1 ρ M 2 1 ρ 2 ρ M 3 1 ρ ρ 2. r t rr t str t r t s rs r t (k) s s rt s t tr 1 D t t rr t t s t s r t s ss t t t s str t r t s s s r r t r t tr 1 s 2 D = J 2 ρ J 1, r J 2 J 1 r t s t tr s [0 (M 1) 1 I M 1 ] [I M 1 0 (M 1) 1 ] r t st M 1 s s rs t rst M 1 s s rs r s t t tr 1 t r s tr 1 t r t s s t t t s r r r rt t t t r 1 ρ 2 N = D N (c) = D L (k) N = J 2 L (k) N ρ L (k) J 1 = 1 ρ 2 J 2 N. q t s s t t t s s t 2 t t s ts r r t
34 s r t t t r str t r t st r t rs t r t r t s r s r r s r tr 1 J 2 t st s s t t s s r s s r s st r t t r ss r 2 t P t t t r s t 2 t P tr 1 s r s ts t r t t t t r x (t) = D x(t). s t st r t t s s t t r t 2 t t t r r r r s s 2 s t r t t t st t t 1 t s rr t tr s t s 2 t t s s t r t t 1 t2 t r t st s r t r q r s t t t t s s t t t s r s t t s t r rst t t s s s X m = X m diag(e m ), r X m = X(mN), e m = [e rr (N(m 1) + 1),...,e rr (mn)] H m t s t 1 r s t s r s t r t t st t s t r tr 1 1 t s x(t) ˆR x x = 1 L X m X H m, Ê { x } = 1 L X m 1 N, r 1 N s t r s t N s rt t st t s t t r t r t t st st r t r t T w ˆ T J cm = 2 L B X m ( em +1 L ) w H, ˆ w J cm = 2 L TH B X m ( em +1 N ). 2 r t rr r e m = e m +1 N rt r s
35 t r t t t r s T(t+1) = T(t)+µ T X B e m w H, w(t+1) = w(t)+µ w T H X B e m, r X B = B X m r t 1 r t s s t t s r t s r r t s r t 2 r s t t t t r t t t tr 1 s s t P P s t s t r s s t s t q r st t t t s s r t s t2 s t t 1 t2 2s s t s s t t t t 1 t s t ss r s s t s r r s t t s r s r r t t t t 1 t2 st s t t t t s s t t s r s r s s t s s r t2 r s r s t s t r t s t t s r r r s t r t s s s t 1 t2 r s t s r t s t s t r t r t s r t s r s tr t t q r t r r t s 2 s P tr 1 t r r t s r s t 2M 2 2M s t s t q r t 1 t2 s s s P P r t P r t s r s t tr 1 t t s r r q r s s t t t t t st s sts 4M 2 N +22N 3 t s t st t t t r s t s 2 2 r s i b t r t s r r s t t s r ss r i b /N s r s s s P P i b = N t t rs s r r st 2 t t t st t s s ts r t s t s t ts s s r r r 2 s tr t s s t t r2 l 2 r r s s r s r r t r t t s r s s t s 1 r t t t t r r s s r t r r s r
36 t t sts s r t st 4M 2 +4M 4 t t P t s P t s P t s P t s P t t P t s P t s i b t r t s r P t s i b t r t s r P t s N t r t s r P t s N t r t s r 8M 2 +4M +14Mr 10r +2 6M 2 +2M 4 8M 2 N +2dMN +22N 3 +2dM +4M 2 + 4M 4 8M 2 N +2dMN +22N 3 +2dM +4M 2 + 4M 4 10M 2 +2M +14Mr 10r +2 8M 2 N +22N 3 +2dMN +2dM +8M 2 + 4M +14Mr 10r +2 8M 2 +8Mr +4MN +2M 6r 2N 8M 2 N +22N 3 +2dMN +2dM +8M 2 + 4M +14Mr 10r +2 1 i b (8M 2 N +22N 3 +2dMN +2dM)+ i b N (8M2 +8Mr+4MN+2M 6r 2N) 1 i b (8M 2 N +22N 3 +2dMN +2dM)+ i b N (8M2 +8Mr+4MN+2M 6r 2N) 16M 2 +22N 2 +2dM +2dM/N +8Mr+ 4MN +2M 6r 2N 16M 2 +22N 2 +2dM +2dM/N +8Mr+ 4MN +2M 6r 2N s t t o o o o o o o r s t 2 r s t s s s r r t s t ss s s r t s tt r rr t 2 s t str t r s rr t s s t t ρ = 0.2 ρ = 0.9 t s t s r t s 1 t r r s s t t r = 10 t r s ts r t r t t r t sq r rr r RMSE(t) = E { s(t) ŝ(t) 2}. s r 3 s t t t s t s r s t s s t t s rt t t t 2 t r s s s t ss s s s t t r t s s r tt t r t r t r s ts r s t r s t r tr s r r s r t r t t t r s s r t r s s s t t st r t r s st t t rt r r
37 RMSE RMSE r r s r ts r r t s str t r 2 s ss Pr s r s s r s s r t t r r r r rs s t t r r r t st s 3 s s t t µ lms = r r t s r r s s 2 t t t r r s s r s s µ lms s t r t t r s t s t s s t s s r s s r st s 3 t t r s t s s t s s t t 3 t µ lms r r s s r s s t r t r r s ts r t r t s r s r 10 2 Batch GSC white noise LMS-GSC white noise LMS-GSC colored noise Proposed DP-LMS-GSC 10 1 Proposed HASP-LMS-GSC Proposed VIT-HASP-LMS-GSC 10 2 Batch GSC white noise LMS-GSC white noise LMS-GSC colored noise Proposed DP-LMS-GSC 10 1 Proposed HASP-LMS-GSC Proposed VIT-HASP-LMS-GSC samples samples r ρ = 0.2 r ρ = 0.9 r t t2 r t s rs s s s r N = 50 t t t r t r t r r t t s t t 2 r t t r s s t t t s t s rr t s t s rr t s s 2 s s r t r s P s t r r s t 2 t r r s t P s s r st 2 r r s t t st r r P s t rt r r t s r r r s t t s t s tt t t s t s t s s t st t r t r s t s2st s t t r s P r r s s r st r s t t t s r 2 t r s P r rr t
38 r t t t s t s t t t s s t r s s r t t t t rt s s s t st t w t s s r t t t rt t t s s r t t t rt t r s s r Pr s P t t t r st r t r s s r Pr s P t t r 2 st st r t r s s r Pr s P t t r r tr s r t s r 2 st st r t r s s r t s t t t rt r r t t s s r P P Pr s t s Pr s P Pr s P t t t rt r r t r s s r t r r t r 2 st st r t r s s r t r r t r r tr s r t s r 2 st st r t r s s r s r r t t s s r s r r t t r 2 st st r t r s s r s r r t t r r tr s r t s r 2 st st r t r s s r
39 RMSE RMSE RMSE str t r s t r t r r s tt r t t s r t s t s s r r t s t s r t r t s r r r st s 3 s r s t t µ w = µ T = s t st r s s r r s r t s r t µ w = /N µ T = /N r t P s s t st s 3 s r s t 2 r s t µ w = µ T = r s t t st t2 r t s s s t t t t s s s r r r r r t r s r s r r t r r s s r ss t2 t t s t r st r t s s t t t r t 2 r s r s P s s t t r r t t r t s P s s r t r r t P samples samples r ρ = 0.2 r ρ = 0.9 Batch GSC white noise RR-LMS-GSC white noise 10 0 RR-LMS-GSC colored noise Proposed HASP-RR-LMS-GSC Proposed VIT-RR-LMS-GSC 10-1 Proposed DP-RR-LMS-GSC Proposed HASP-BW-RR-SG-GSC Proposed VIT-HASP-BW-RR-SG-GSC samples r t t2 r t s rs s s s r N = 50 t r s s s t 2 t t t 1 t2 t r t s s P s t t s s s s t r t t t r s t s t 2 t t s s t t st r s s t s 3 s s t N = 50 t r t r t s t
40 RMSE RMSE s 2N t s r r s t t P ts s t t P t s t 2s rt t r r t s s t s st t t r t s t t t s s r st s t s t rst s s t P r s s 2 t t t r r t r r 1 t t t r s ts t r s t t t r s st st t samples 10-1 Proposed BW-RR-LMS-GSC white Proposed HASP-RR-LMS-GSC Proposed VIT-RR-LMS-GSC Proposed HASP-BW-RR-LMS-GSC Proposed VIT-HASP-BW-RR-LMS-GSC samples r ρ = 0.2 r ρ = 0.9 r r t2 r t s t r2 N r t t s s r s s r t t P t P P t P r s r t r r r s t r r s s r t ρ = 0.9 r t P s s r r t t t s r t t P s s r t t P r t t t t r s s 3 s s r t r r t s P s tt r t t P N > 80 t P s ts st r N > 50 r t t t t r s s 3 s s r t r r r t s s s r t s 3 2s rt t r t r r r t s s 2 r t P 2 r t s s s P r t s t st r r r s t t t r s s ts s s t t r s ts r r2 rr t ρ r r
41 Final RMSE Final RMSE Final RMSE Final RMSE Batch GSC white noise Proposed DP-LMS-GSC Proposed HASP-LMS-GSC Proposed VIT-HASP-LMS-GSC RRGSC colored noise Proposed DP-RR-LMS-GSC Proposed HASP-RR-SG-GSC Proposed VIT-RR-LMS-GSC Proposed HASP-BW-RR-SG-GSC Proposed VIT-HASP-BW-RR-SG-GSC N N r t2 r t s r t2 r t s r r r t s t r2 N ρ = 0.9 s s t t t r t r s P r s s 2 st t t t r s ρ r s P s r2 r s s t t r s ρ t st t r t t t t t s s r s s t r t r r r t s r t s s Batch GSC white noise LMS-GSC white noise LMS-GSC colored noise Proposed DP-LMS-GSC Proposed HASP-LMS-GSC ; r t2 r t s 10-1 RRGSC white noise RRGSC colored noise Proposed DP-RR-LMS-GSC Proposed HASP-RR-SG-GSC Proposed HASP-BW-RR-SG-GSC Proposed VIT-HASP-BW-RR-SG-GSC Proposed VIT-RR-LMS-GSC ; r t2 r t s r t r N = 600 s s ts t r2 ρ t t s s t P s t r s s s r t t s t t t t s s
42 r2 t s t r t t t r r t r 1t r r s r s s s t s t r t r s r s s t 2 t r r t r t s r t s s r s t P t P t P r t s r t r t t P P r t r r t r r s s r t s r s t P t st st r t t P s s t rr t str t r t s s t st st r t t s ts s r r r r t r t t s t r t t s r s st st r t r q r s t t t s r t r t t s s s r s r t ts ts t r 2 2 r ss r2 r t t st s r s s r s t t t t P r t s r r t r t s s tr s r s t r s t t s s t r t t s t t s r r t s r r s r r s s r s s r t s r s t r t r t t s t r 2 s s t r s t r s t r t t s s t s
43 P t 2 r r t s st r s 2 r t 2 r t s s t rr 2s str t r s t t 1 t t s t q s t rr 2 s s t s r t t r t r r ts s rr 2s t r tt t r t r r t 1 t t s str t r s t r r t r rr 2 ss r t r r s t t s t r t t 2 t r 3 t rr 2 r r t 2 t r t t t 1 t t t t s r str t r t t r s r t r s t t rr r t r s 2 r2 tt r r r t 1 t t t s t2 r r tr s t r t rr 2 s s r r r t t s r r t r P s t s t t t r ts str t r r t s r t r 3 s r s s s s str r 2 t str ts s t t t t rt t t r s str r r t s r t s r t r rr ts s r t 2 s t r 2 1 t t t s s r str t r s r s t s t t R s r s s r t r s2st 1 t2 2 t s r s r s t r t 2 r s t r s s t s t q t2 t r r r t r t r t r s R s R s t r s t s 1 s t s t s tr t t s s t t t s r s t ss r t t r s ts t r s R r t s rr 2 r ss t s r s ts r
44 P s t 2 s r2 s t t s r t r s i = [s i (1),...,s i (N)] T t t tr s tt s2 s s i (t) ss t t t i t s r s s2 s r t t s R s rr 2 r r t2 str t r r t r rr 2 s s s t r t r t s s t t 1t s r r s rr 2s r t φ i 3 t θ i t r t rr t i t s r r r t r t i t s r r s t rr 2 t 3 t θ i t φ i s t t r t s 2s a (m 1,m 2 ) i = e j(m 1ϕ (1) i +m 2 ϕ (2) i ), ϕ (1) i = x cos(θ i )cos(φ i ), ϕ (2) i = y sin(θ i )cos(φ i ), r m 1 m 2 r t rr s t s t s t x y r t s r s t 2 x y r t t r t s s s s r s 3 M 1 M 2 r r t tr 1 A i C M 1 M 2 t s s 3 t r s d s r s t r s r r s t 2 d 1 X(t) = A i s i (t)+v(t) C M 1 M 2, i=0 r V(t) t s 3 r 1 t ss s s s t ss s2st s r q t 2 s t t r 3 r X(t) x(t) = vec(x(t)),
45 P s t t s2st r r t s s2st s tr s r t s t r 3 t t r t t t d st r tr s A i st t rd s t r st r t s r A C M 1 M 2 d s s t s s2 s r rt r r t tr 1 S = [s 0,...,s d 1 ] T C d N r s t 1t t t s r X = A 3 S T +V C M 1 M 2 N, r V s t M 1 M 2 N s t s r t s r str t s t r ss r t t r t s r URA r s t r t t s r r t t t rr 2 st s r s s q t s 2 t t t st r tr 1 A i r 2 t t r r t t t t rs r q t t s s r t t s s r str t r s A i = a i (ϕ (1) ) a i (ϕ (2) ) r a i (ϕ (1) ) = [a (0,0) i,...,a (M 1 1,0) i ] a i (ϕ (2) ) = [a (0,0) i,...,a (0,M 2 1) i ] r t t rs r 2 r2 s 3 r t t rs r 3 t r t s t t s 1t t rr 2s t R s s A i = a i (ϕ (1) ) a i (ϕ (2) )... a i (ϕ (R) ) t r t s r q t rt r 1t t X = A R+1 S T +V C M 1 M 2... M R N, r t st r t s r A s s 3 M 1 M 2... M R d P s t t t t s t rr 2s R 3 t r t s s t s s t t t t ss t t t s t rr 2 s s s t s st s s t r r t t s t
46 P t t t s rt t s t ss r s t r r ss r R s s rst t r rt r t s d(t) = a H (ϕ (1) 0,...,ϕ (R) 0 )x(t) s 1tr t 2 2 s t r a(ϕ (1) 0,...,ϕ (R) 0 ) t t s t t s r s st r t r t t s s 0 (t) s s s s r t s r s t s t t t d(t) t r d 1 s s r s r t r r s 2s ϕ (1) 0 r t r t st t r t rr s θ 0 φ 0 r st t t t r r s r rr t t tt rt r tr 1 B C (M 1M 2...M R 1) M 1 M 2...M R s t t B a(ϕ (1) 0,...,ϕ (R) 0 ) = 0 s s t 1tr t t t r r s s x B = B x(t) s2st t t r w s t s t r s t d(t) w H x B (t) 2 t t r r r r s r t r w = R 1 x B r xb d, r R xb r xb d r t rr t tr 1 x B (t) t r ss rr t t r t x B (t) d(t) r s t 2 t t t r s w gsc = a(ϕ (1) 0,ϕ (2) 0,...,ϕ (R) 0 ) B H w, t s t r rt r rr s s t t st t rt t s2st t tt rt s t r r t r t s t r s t q t s t r st t r t s s t st t R xb 2 t r N s s ts s s q t t s t (R+1) t t t s r X s vec ( X(:,:,...,1) ) T vec ( X(:,:,...,2) ) T [X] (R+1) = vec ( X(:,:,...,N) ) CN M 1M 2...M R. T
47 P P R t st t s t s ˆR xb = 1 N B[X]H (R+1)[X] (R+1) B H, ˆr xb d = 1 N B[X]T (R+1)d, r d = [d(1),d(2),...,d(n)] T Pr s R s ss s s t t r 3 r x(t) X t s r ss t s s ts t s str t r t t t t s r str t r t t 23 t s X s s t t t r t t s s r s 3 tr 1 rs s t rt 2 r s t r s s t s t s 23 t t t st s r [X] (1) = [X(:,1,1),..,X(:,1,N),X(:,2,1),...,X(:,M 2,N)], [X] (2) = [X(1,:,1),..,X(M 1,:,1),X(2,:,2),...,X(M 1,:,N)]. t s t s 2s r r s r t t r r r r t s s t s r t 2 t R ts t r s t s ss s t r s s ts s rt 2 r s t r NM r st N s s ts t ss s t t R s t s t R+1 s t t s r X t t t t t s r str t r t t r s s t R r t t t s t r 1-D GSC 1-D GSC 1-D GSC r r t R r t
48 P rst t t s r X s t ts R+1 s R ss s s 1 t r s t t r t s [X] (r) 1 2 k (r) s tr sts t t t t r 2 t s s r s r s t t t s2st s 2 t r s t s d (r) (k r ) [w (r) ] H x (r) B (k r) 2 r r t s w (r) = [R (r) ] 1 r (r), r x (r) B (k(r) ) = B (r) [X] (r) (:,k r ) R (r) s t rr t tr 1 x (r) B (k(r) ) r (r) s t r ss rr t t r t x (r) B (k(r) ) d (r) (k r ) r 2 s t d (r) (k r ) s t t t t 2 s t r rr s t t s r s 1tr t r t r t t t t rs r t s s w (r) gsc = a(ϕ (r) 0 ) [B (r) ] H w (r). st t t rr t tr s t r ss rr t t rs r t t r t s t s [X] (r) r t t t s r s 1 t 2 t r t tr s s t s ˆR (r) = 1 N B(r) [X] (r) [X] H (r)[b (r) ] H, ˆr (r) = 1 N B(r) [X] (r) [d (r) ]. t R t rs r t t 2 s t r t t r t t M 1 M 2...M R s r rr 2 s s r t t r t s t r r r t t st t t rt s r s w rd = a(ϕ (1) 0 ) a(ϕ (2) 0 ) a(ϕ (R) 0 ) [B (1) ] H w (1) [B (2) ] H w (2) [B (R) ] H w (R). s s rt 2 r s t r s s t s s s t t t r [ˆR (r) ] 1ˆr (r) t t s r t 2 s s t ss t2 r t t s r rs t s t2 t s r t t t s t r s t t t s t t s str t r t 1 t2 tr 1 rs s ss r q r s t rs tr 1 t s 3 M 1 M 2...M R M 1 M 2...M R 2 1 t t t s t2 t t t R r q r s R tr 1 rs s s 3 M r M r
49 r r t r r r s2 st t t rr 2 s2st s tr 1 rs r t r t2 2 ss r2 t rr 2 s2st t r s s ts s s r s t t r t s t r tr 1 st t t s t t r t t rs t r tr 1 s s s r tt r t r t t r q t2 t s t s t 2 st t r t t ts t t t r tr 1 st t ss s r s s s t s str r t t s r s s ts r s t t t t s 2 rr t tr 1 s r t 2 s tr 1 t t rr t tr 1 R L = R+I l, r I s t t t2 tr 1 R s t rr t tr 1 l s t r s t s r 2 t s r s r r2 r t 23 t t t s t s t r s s t t t r s t t r s P(θ,φ) = w H gsca(θ,φ). t t s s t r r s s s s r Elevation Azimuth Elevation Azimuth t r s s t t t r s s t l = 0.8 r t t s t r s s t t r r t s s t t t t r s s r r r t t r r str t s s ts P(θ,φ) = 1 t s r s r t r t r r t r s t r r s s s t r t s r s r s r s t t r s q t2 r r t 1 s t t t s r s r t
50 P t s t r s t r s s P(θ, φ) t r s r t s t r r s s s s 1 t t 1 t t s r s r t r2 r t t r r s r t s r s r s s t s s r 2 r t s r s r t s t rr t tr 1 t s t r t 2 t t s2st s t2 t t t r r s s t t s s t s r s q t2 s t s 1 t t s t r r s s s s r t t t s r r r t s t q s t t s s ts r t s t s t s s s P s s r r t rr t s s t t r2 r r s rt t t s t s r s r t r r rs t (θ i,φ i ) {(0 o,45 o );( 75 o,55 o );(35 o,80 o );( 20 o,10 o ); (80 o,35 o )} s r s (θ 0,φ 0 ) s s r r r ϕ (1) 0 ϕ (2) 0 r t t t t ss R r s s s t s t s r t s s t t r 2 t r t s t s t t r r s r t r rr t s s t t r2 r s t s SINR = w H rd [A] (3)(:,1)[A] H (3) (:,1)w rd w H rd ([A] (3)(:,2 : d)[a] H (3) (:,2 : d)+σ2 vi)w rd, r σv 2 s t s r s t ˆR xb ˆR (r) t l = 0.8 r t l = 0.8 r R rr t tr 1 t t r t ss R s s r t r2 r s s N ss s s r s N t R s t N = 20 t s s r s r s 2 s t t t s s s 1 t N = 100 t s r r t r s t s s r r s s t t t s tt r r t R t s r2 r t t s t r t t r s t t r s s r s t t r s s s 1 t N = 50 s s t s 3 t rr 2 s r t s s t s t M 1 = M 2 r s ts r s r r t s s t t ss st rts t s tt s r 2 t s t r t s s r s r t R s t s s t t r w rd r t s r t 2 t r r s r s t t t M r 1 r s
51 SINR SINR (db) Classical GSC optimal Classical GSC 2-D GSC N r t t r 2 t ss r s r r2 r t r s s ts N Classical GSC 2D-GSC SNR r t t r 2 t ss r s r r2 s s t t t r t r r 2 tt t s t t r r s r s M r > d s s r r r M 1 = M 2 5 t R s r r M 1 = M 2 > 5 t R r s r t r 2 t t t t r t t s s t s s r s t s r s t s s r s r t s r r 2 s 2 r r t s t2 s r t s r t s t r r s ts r t r
52 SINR (db) P Classical GSC 2D-GSC M 1,M 2 r t t r 2 t ss r s r r2 rr 2 s 3 t s s t s r t q Classical GSC 2D-GSC Classical GSC plus unfolding 2D-GSC plus unfolding 1.2 time (s) N r t t t rs s N r t s r s s t t t t s r t t t s r t s t r R s s t t t st r t t ss s r t t t s s r r r 2 2 t r r t R s s t t t r t t ss
53 r2 s t r t s rr 2 s s t t r rs r s t ss t2 s t s s s r s s s t r s s t t t t s t s t2 r r t t r r r rs s 2 s R s s r r t t s r s 3 tr 1 rs s r t t 1 t2 t t s2st t t s t R s s r s t s s s s R s t t t t t s t2 t s t r s ts s t t r2 t r s s r t ts r s ts s r s s s t 2 t r t s s s r t t r s r s s t t r t t t t t r r s r t r t s s s r t t r s r s s s r ss s t R s 1t t ts t r r 1 t2 tr t2 t t r r
54 P
55 P P r q t 2 r rs ss rr s s r t t t r s t t rt st 1 t t s r r q 2 s ts r q r r r r r t r t s2st s s s t r s s 2 s2st s ss 2 s t s s t t t ss s t r r r r r r t t s2st s r r t r s t r t r t t t t t r q 2 s ts t r s r t t 2s t s r s r s 2s t s t 2s r r s t 2 t t s s t s s r t s t q s s r rr s s r t s t r r s r s r r r q 2 r t r rs s s r r s r s t t s s s s r r r s t s st t s 1t r s s s q s r s r t t q s r st t s 1t r s s s t r r s s r r s s t t P t s r s t s r r t r r 1 ts t t P r rs st sq r s tr t q r r t t 2 tr t P s t r P r rs st sq r s tr t q r s s s t 1 t t r t s r r q r t s r s t st t r2 t s t r t rr t t s r s t 2 r s t t
56 P P t P s t r t s r s s t 2 2 r rs s rs t st t st r tr 1 s r s t sr t r t s rs t t s r t t 2 s sq r rr r s r t r s 2 r st r r str t s s r t t r s st t s q t t rr 2s s s t s t rs t r s t URA ULA Interference r r t s s s t t t SOI t s t r st t t r r s s t B s t r r t s rr r r t t r r t 2s r r t r t r r t r s t t m t t r tt s s t 2 s s d 1 x m (t) = s i (t τ i,m )+v m (t), i=0 r τ i,m s t r t 2 t s r i t t m v m (t) s t ss t s r s s r s t r rs t
57 r s s r t t rs r r s t r 2s d 1 x m (t) = s i (t) δ(t τ i,m )+v m (t), i=0 r t s t t r t r δ(t = 0) = 1 δ(t 0) = 0 r r t r t t s t rs s t t t 2 s s 2 t t t δ(t τ) st t t t 2 s s t t r s r rs t s t st t ŝ i (t) r s i (t) s r t t t ts y i (t) t r r rr s r r t r t 2 s s 2 t r r s 2 r s r q 2 t s s t s r s s B = [ω min,ω max ] r q s t B s t t s r t 2 t t s t t s t r 1 t t t 2 s r t t r r ss t r s s t 2 s s s r r 2 t m r s r s t r 2 t r t L t s r s s r 2 r ts w m,l r l = 0,...,L 1 M = 0,...,M 1 r t s M t s r s s t rs t L t t ts t r str t t r s s tt t y i (t) = M 1 m=0 L 1 x m (t lt s ) w m,l, l=0
58 P P r T s s t s r t M s t r t s L s t t t t t 2 r t t t r s tr 1 s tr s x 0 (t) x 0 (t T s )... x 0 (t (L 1)T s ) x 1 (t) x 1 (t T s )... x 1 (t (L 1)T s ) X(t) = x 1 (t) x 2 (t T s )... x 2 (t (L 1)T s ) C M J. x M 1 (t) x M 1 (t T s )... x M 1 (t (J 1)T s ) t t t t q t s r t r r s t r 2 st s s t t s t 2 s s t r t t s s 2 r r t r st r t r x(t) = vec(x(t)) r t r vec( ) t r 3 s ts r t 2 st ts s s r r t r w i t t r ts w m,l s r t t r t t t r q t y i (t) = w H i x(t). r t r q 2 r r s t t q t r r tt 2 r r t r t 2s s r t s 2 r r q 2 d 1 X m,l (ω) = a m,l (p i,ω)s i (ω)+v m (ω), i=0 r ω s t r r q 2 t rr 2 s t t r t r t s2st t i t s r s t s t p i a m,l (p i,ω) r ts t st r t r s a(p i,ω) = vec ( A(p i,ω) ) C ML 1, e jωτ i,0 e jω(τ i,0+t s)... e jω(τ i,0+(l 1)T s) e A(p i,ω) = jωτ i,1 e jω(τ i,1+t s)... e jω(τ i,1+(l 1)T s) CM L. e jωτ i,m 1 e jω(τ i,m 1+T s)... e jω(τ i,m 1+(L 1)T s) r a(p i,ω) s t t s θ i st t t r s r t p i s 2 t t ωτ m = m x λ 1 2πsinθ r r 3 t t tr r q 2 2 s s t r 3 r q 2 Ω = ωt s t
59 s st t t µ = x /(ct s ) t r r t q t s 1 e jω... e jω(j 1) e A(θ i,ω) = jµωsinθ i e jω(µsinθ i+1)... e jω(µsinθ i+(l 1)) CM L. e jµωsinθ i(m 1) e jµω(sinθ i(m 1)+1)... e jµω(sinθ i(m 1)+(L 1)) t q t s r t r t r t r t s t s r s t 2 r s r t t t t s t r q 2 r s s t s t r w P(θ,ω) = w H a(θ,ω). s 1 t s s r t r s s t t r w = 1[ ] T r r M = 4 L = 5 2 t 2q st t r T s = 0.5T min x = 0.5λ min r T min s t r t st r q 2 t λ min ts t t s µ = 1 r r 2 s s t r q 2 2 r t r q 2 r s s w st r t 0 t r r r t r s t q r t str t r q 2 r t r rs
60 P P t s rs r r r s r r q 2 r t r r s t s s t t r rst r s t t s s t s rs s r t 1t s s r r s s r t t t s rst s r t r r tr s r s r s s t s s t r r w(x, t) r P(θ,ω) = w(x,t)e jω1 c sinθ x e jωt dxdt, r c s t s x r r s ts s s r t r 1 s s s t s t r w(x,t) 2 r q 2 r t r s s P(θ,ω) t ts s rs r r tr s r t t s r t 2 ts r ss t t 2 t s st t t s ω 1 = ωc 1 sinθ ω 2 = ω r r t t s t t r s tr t t s r t t t rs s r r tr s r P(ω 1,ω 2 ) = w(x,t)e jω 1x e jω 2t dxdt t q t2 r r ω 1 = ω 2 c 1 sinθ t s s 2 r t t 1 c ω 1 ω 2 1 c. t t s s t t 1 r q 2 ω max 2 rt r t t s t t r s tr t t r ω 2 ω max s t 2 ω s t t s t t t r s s s r q 2 t s t t s tr 2s t r t P(ω 1,ω 2 ) = P(cω 1 /ω 2 ) s r s ts cω 1 /ω 2 = sinθ t s ss rt t t t s t t r s tr s 2 t θ r t s r t s t r q 2 s r 2 t r 3 r q 2 Ω = ωt s t t r 2 s r t s s P(θ,Ω) = w[m,n]e jωmµsinθ e jωn, m= n=
61 r m s t t 1 n s t s r t t 1 t r ts r s t t t t s r t t t s r s s st t t s r r Ω 1 = Ωµsinθ Ω 2 = Ω t t s r t s t t r r s s P(Ω 1,Ω 2 ) = w[m,n]e jω1m e jω2n. m= n= 2 s x = 0.5λ min T s = 0.5T min t s t t µ = 1 Ω max = π r r t r s t 1 (Ω 1 /Ω 2 ) 1 s r 1 st s t r r 1 st t s t t r r s s s r s t t r r s s t r r s F(Ω 1 /Ω 2 ) Ω 1 /Ω 2 1, P(Ω 1,Ω 2 ) = α(ω 1,Ω 2 ) Ω 1 /Ω 2 > 1, α(0,0) Ω 1 = Ω 2 = 0. r F(Ω 1 /Ω 2 ) s t rr 2 s t r s r t t2 t r F(Ω 1 /Ω 2 ) = 1 M prot M prot/2 m= M prot/2 e jmπsinθ, r s t r r t r t t st r t r s t r r t r t t s st r t r α(ω 1,Ω 2 ) s ts t r 1 st P(Ω 1,Ω 2 ) t s r tr r 2 t t t Ω 1 = Ω 2 = 0 t t
62 Magnitude response [db] P P s s 2 r s t rr s s t r t t r r t s t t 3 r r s t t r r s t s rs s r t r r tr s r P(Ω 1,Ω 2 ) s Ω 1,Ω 2 s t t r r s α(ω 1,Ω 2 ) ts t r 1 st s 1 t IDFT2(P(Ω 1,Ω 2 )) s s t r M = 10 L = 20 s t α(ω 1,Ω 2 ) = 0 r r ts w[m,n] r t tr s t tr t t r s t t t t s r M L s 3 t r ss t ts r r 2 s t t r w t r s s s t s q t r s t s s r /: DOA 3 [deg] r t r q 2 r s s r t s r t t t r q 2 t s t r t Ω = 0.4π r r r t ts r s r s s rt rr 2 st t s 1t r s 2 s t ts t t s s s r t r s t t r r s s 2 r t s t t s t r s s s s t t t r s rt rr 2 t r t r q 2 2 r r t r st s s r t t t r t s s r s rt rr 2 t st t s 1t r s st t s r t t s t t r s s s s
63 w[m, n] w[m, n] m n n m r t r s t t r w[m,n] r r s r s t sin(θ) = 0 s t sin(θ) = 0.4 r s s s s s t r q 2 r t r t sin(θ) = 0.4 s st t sin(θ) = 0 t t sin(θ) = 0 s r 2 t sin(θ) = 0.4 r t s s t r q 2 r s s r t r t r q s r s t sinθ = 0 r s s t r q 2 r s s r t r t r q s r s t sinθ = 0.4 t s s t rr 2 r t s 1 t s s r s r s t r s s s r r t 2 r q 2
64 P P r t r t s s tr t t t r s st t s s t s r s s x fib:0 (t) = P 0,0 s 0 (t)+p 1,0 s 1 (t), x fib:1 (t) = P 0,1 s 0 (t)+p 1,1 s 1 (t), r x fib:k (t) s t k t t t s r 3 r K s r r t t tr 1 r x fib (t) = P s(t) C K 1, r P s t tr 1 t t ts P i,k s s r2 s r t s 2 rr s r s s s t t t 2s s 1t r r r rr r t s 2 t tt r t s r s s r rr r t r s r t s r q 2 r tr s r t Bank of FIBs FIB 1 Virtual array FIB 2 FIB 3 adaptive algorithm FIB r r t r s s s rr t r t r t t 1 r s t t s st ss r s K max = M/3 t t q t s t t r s s s
65 Magnitude response [db] r r t 2 t str t t s t r s r t t s rt t s r s r s t t r s s s s r s t t 1 t2 t t t r r t t s s t t t 1 r r s r t r t t2 t r s M prot = min{ M/3, L/3 } s t t r t r s s s s sts s t t r q 2 1 s t k t 2 2πk K 2πk j s s t t t r q 2 2 t ts e K s 3 K 2 t s t r s t s t t r t t2 t r r 2 F(Ω 1 /Ω 2 ) = 1 M prot M prot/2 m= M prot/2 e jmπ(sinθ sinθ 0), r θ 0 s t r t t t s s t s t t t k t r q 2 r t r t t2 t r s F k (Ω 1 /Ω 2 ) = 1 M prot M prot/2 m= M prot/2 e jmπsinθ e jm2πk K, s 1 K = 5 s s t t s r tt s t s 2 r r s r q 2 s t r r sin( 3) r s s s t r q 2 s t r t r
66 P P s r s t r t r tr 1 st t t s s t t P t s r s t s r t t q t st t st r tr s s s s r s t t P s r s t r t s r s t s t s r 2 rs r s r 1 t st s s t s s t P s t t r r s t s s t s s s t 2 t s2 tr s r t s t P r P s r d P s t s s t t r r ts t rs r t s rs s s X = d r=1 f (1) r f (2) r f (3) r, r f (l) r C M l 1 r ss s s str t r = r str t P s t s r t r 2 rr 2 t s s rt t t t t r t t s r s t r t 2 r t t t r tr 1 r ts 1 r s d max = min{m 1,M 2 } r t s r 2 r s st t s t t d max min{m 1,M 2,M 3 } t s rr 2 s r ss t s s r 2 r r t r s r ss t tr s r t s s 2 st t t r s 2 t r t t
67 P P s t s r r t t t X = I 3 1 F (1) 2 F (2) 3 F (3) C M 1 M 2 M 3, r I 3 s s t t2 t s r s 3 r F (l) r t t r tr s t r t rs ts s t r s t t t t s r s r ss s ts s st tr s rs X = [F (1) diag([f (3) ] 1,: ) F (2) 3 3 F (1) diag([f (3) ] M3,:), F (2) ] r [F (3) ] m,: r t r s F (3) 3 t s t t r t r s t r t st q r s r t r tr 1 st t tr2 t r2 s r t st t t t r tr s t P s t s t s t t r t st sq r s r t ts s t r t t s t s r t tr 1 r s s 2 t st sq r s s t s t r r r r t s r t s tr s [X] (1) = F (1) (F (2) F (3) ) T C M 1 M 2 M 3, [X] (2) = F (2) (F (3) F (1) ) T C M 2 M 3 M 1, [X] (3) = F (3) (F (1) F (2) ) T C M 3 M 1 M 2, r s t tr r t r s r r r t t r r t 3 t t t rs t t st sq r s s t r t r t r t r F (1) = [X] (1) [(F (2) F (3) ) T ] +, F (2) = [X] (2) [(F (3) F (1) ) T ] +, F (3) = [X] (3) [(F (1) F (2) ) T ] +. t s t r t r t 2 t t r s t ǫ s r X I 3 1 F (1) 2 F (2) 3 F (3) 2 H ǫ, r 2 H s t r r r q t t r s r t s q t t r s r 2 t s t r t s t s tr s s r r 2 s t t s
68 P P r s ts [X] T (1) = (F(1) F (3) ) [F (2) ] T C M 1 M 3 M 2, [X] T (2) = (F(2) F (1) ) [F (3) ] T C M 2 M 1 M 3, [X] T (3) = (F(3) F (2) ) [F (1) ] T C M 3 M 2 M 1, r [ ] (r) s s t r r s t t r r 2 r t r t s r s s 2 s t r t tr r t s t P s t s 1 t t s r t t s t 2 rr t tr s t s ss t R(τ) = 1 N X fib(t)x H fib(t τ) C K K, R(τ) = P R s (τ) P H. r X fib (t) = [x fib (t) x fib (t 1)... x fib (t N +1)] R s (τ) s t s t 2 rr t tr 1 t s r s s t s t t t s r s s r t s s r t rr t s t J t 2 rr t s r tt R(τ 1 ) = P R s (τ 1 ) P H, R(τ 2 ) = P R s (τ 2 ) P H, R(τ J ) = P R s (τ J ) P H. 2 s r t t R s (τ) s r 1 t 2 r t t t P 2 s r F (1) = P,F (2) = P H F (3) = C r [C] j,: = diag ( R s (τ j ) ) q t r tt t s r r s R = I 1 P 2 P H 3 C C K K J. r t s rr t t r t R s t t R noisy = R + V r V s s t 2 s t r t s r r t r 1 t s t t r tr s
69 P P P Pr s t r r r r s t r s t s s t s s t P r rs st sq r s tr r t r s 2 r s r t s s t r st t r2 rr s s r r t r t s r s s st t r2 2 t t r t ss 1 r s r s r s t s r r t t s t t s r t t2 t r s r s s t s t s t t rr t t s r r r2 2 q r s s t s t r t s s t r rs t r s r r r t st t t t s r t rs s t t t r t t s r s t t t s s s t t t r r 2 t t s s t r r 2 r rs 2 r q t t r r 2 s r r t t s t r rs st sq r s r t s t t t t r s t s RLST update updated factors r t t s t s s r t s r t s s t rr t t s r r s t t s t s s r s r r st t r2 t r s r t s t rr t s r r2 t r t s r t rr t t s r s r t 2 st t r2 r s 2 r2 r r t s s r t r t t 2 rr t s 1tr t rst r r s s r t r s s t st rr t tr s 2 t r t t t st t s 1t r s s r s r t t t t t t ss s 2 r t J t 2 t r r t t s r r r s t s s
70 P P r r t s t rst r s 2 t t rr 2 t t s 1 t rt rr 2 t st t s 1t r s x fib (t) s t r t t s s r 3 s rr 2 s x(t) r st t r2 s s t P r t s r t 2 2 s r x fib (t) s ts s t r t s r t P r s t t t r r t t t s s t s r t J t rr t tr s r t t r r r2 s s t x(t+1) R(t+1,τ 1 ) = λ r R(t,τ 1 )+x(t)x H (t τ 1 ), R(t+1,τ 2 ) = λ r R(t,τ 2 )+x(t)x H (t τ 2 ), R(t+1,τ J ) = λ r R(t,τ J )+x(t)x H (t τ J ), r λ r s r tt t r r t rr t tr s st t r t t s r s t s s rr t tr 1 t t t s r r r t st t s t P rr t tr 1 s 2 2 t t t s r ts r t tr 1 s r s t q t s t s 1 t rr t t s r s t s r ss s str t r R(t 1) = [R(t J,τ J ) 2 R(t J +1,τ 1 ) 2 2 R(t 1,τ J 1 )], R(t) = [R(t J +1,τ 1 ) 2 R(t J +2,τ 2 ) 2 2 R(t,τ J )], R(t+1) = [R(t J +2,τ 2 ) 2 R(t J +3,τ 3 ) 2 2 R(t+1,τ 1 )], r R(t j,τ j ) s s 3 K 1 K t s rt t t t t rst t 2 s t 1 t τ J t s 2 rt t t t t t 1t s s t t 2 s ts 2 2 t t P r t s r s t 2 t s s s t s t t t r t rst t tr s s r r 2 st t t s r R s t [R(t)] T (1) = ( F (1) (t) F (3) (t) ) [F (2) (t)] T. t rs F (1) (t) F (3) (t) s 2 r r s t t tr s s s 2 r2 H(t) = F (1) (t) F (3) (t) 2 s r rt r r t s t s
71 P P P select remove append r Pr ss s t r s t t P t rr t t s r t r R(t+J 1) s t t r ss s r st rt t t s r s t t t rr t tr 1 r t rst t 2 τ 1 [R(t)] T (1) r 23 t s r t t [ [[R(t)] ] [R(t+1)] T (1) = T (1) ]:, 1 r(t+1), r [ ] :, 1 rr s s t t r t r t rst tr 1 r(t+1) = vec ( R(t+1,τ j ) ) τ j s s 2 2 r {τ 1,τ 2,...,τ J } r t st st t r t r st s H(t) t s t t [ [[F [F (2) (t+1)] T (2) (t)] T] ] :, 1 [f(2) (t+1)] T C J d. t H(t) t tr s s t t r [F (2) (t)] st t s t st sq r s s t [f (2) (t+1)] T s st t t tr 1 H(t+1) s st t t st sq r s s t t s [f (2) (t+1)] T = H + (t)r(t+1), H(t+1) = [R(t+1)] T (1) [F(2) (t+1)] T+.
72 P P t 1t rt t s s r rs t t r H(t) 2 r t t st sq r s st t r tr t t s t t J H,f (2) = J r(u+1) H(t+1)[f (2) (u+j)] T 2 F, j=1 r u = t+1 J t r r t r tt t r s s s t s r s r r s 2 t st rr t s tr s r t r st t r r r st t s r s s q t t s r r t r r r t 3 t st t t r t t r s t t H(t + 1) s t! t r s t s s r J H,f (2) = 0 H J H,f (2) = 2 J j=1 ( r(j) H(t+1)[f (2) (u+j)] T) [f (2) (u+j)]! = 0, ( J )( J ) 1. H(t+1) = r(u+j)[f (2) (u+j)] [f (2) (u+j)] T [f (2) (u+j)] j=1 t s r t s t t s r t s s t r rs 2 s j=1 H p (t+1) = H p (t)+r(t+1)[f (2) (t+1)] r(u)[f (2) (u)], H q (t+1) = H q (t)+[f (2) (t+1)] T [f (2) (t+1)] [f (2) (u)] T [f (2) (u)], t r r H(t+1) t r tt s H(t+1) = H p (t+1)h 1 q (t+1). t r t t st tr 1 rs r s s r r t st r tr 1 rs s r tt H(t) s t t s s t t [f (2) (t)] T 2 s [f (2) (t+1)] T = H q (t+1)h + p(t+1)r(t+1), r rs r r s s r t t s t t r t s rs H + p(t + 1) r t t r rs t t 2 tr 1 rs r tr 1 A C M M A 1 (t+1) = (A 1 (t)+bc H ) 1 = A 1 (t)+ A 1 (t)bc H A 1 (t) 1+c H A 1 (t)b
73 P P P 2 t s rs t 2 t t rs F (1) (t+1) F (3) (t+1) t s r H(t+1) 2 23 t tr r t t t r s H(t+1) t s t t ts r t s f r (1) (t+1) f r (3) (t+1) = vec ( f r (1) (t+1)[f r (3) (t+1))] T) r f r ( ) (t + 1) s s t r t F ( ) (t + 1) 2 t r t r tr 1 H r (t + 1) = unvec ( ) [H(t + 1)] :,r r s r r r t s r t f r (1) (t+1) f r (3) (t+1) r H(t+1) s t t t r t t t r t s s f (1) r (t+1) = H T r(t+1)[f (3) r (t)], f (3) r (t+1) = H r(t+1)f r (1) (t+1). H r (t+1) 2 F t t r t st r = 1,...,d t t r tr s F (1) (t+1) F (3) (t+1) r st t t rr s t t r s t s r t s t t ˆP = F (1),F (2) = C P ˆH = F (1) tr 1 P t s ts r s r t r r s r t r s t r r r t t r s ˆP s t s ts s rs r W = ˆP + r t t 1tr 1 t2 t s rt t 2 t rs P s t r t s r s 2 s s r s s t s t 2 t r t t sr r t t t t t st t r t s W(t+1) = W(t) ( 2I K ˆP(t+1)W(t) ), s rs r tr 1 A C M N,M N A + (t+1) = (A + (t)+cd H ) + = A + (t)+ A+ (t)h H u H β β pq H, σ r β = 1 + d H A + (t)c h = d H A + u = ( I M A(t)A + (t) ) c p = ( u 2 /β A + (t)h H + k ) k = A + (t)c q H = ( h 2 /β u H +h ) σ = h 2 u 2 + β 2 sr t r t t st t s t s rs A C M N t r r t s r s  + (0) = αa H r α s s t t r  + (t+1) = Â+ (t) ( 2I M AÂ+ (t) ), 0 < α < 2 max [(A H A)] i,j. i j t s st t A + s r 2 t s t t 3 t r t
74 P P r I K s t t t2 tr 1 s 3 K W(0) t 3 t st t P + 2 t t s rs r t t 3 t t P r r s t r t s t t t t 2 s t 2 t r r ˆP(t+1) W(t+1) = W(t) ( 2I K ˆP(t+1) t W(t) ), r t s r s s ˆP(t+1) t = λ tˆp(t+1)+(1 λt )ˆP(t) r 0 < λ t 1 s t s t s t r t 2 r r t r t r r r t t t 2 t 2 2 rr t r r r r s r r str t s r t s t r st r t t t r t w (fr) i (t+1) = [ˆP(t+1)] :,i [ˆP(t+1)] H :,i [ˆP(t+1)] :,i +Q i ( w (fr) i (t) µ fr e (n)x fib (t) ), ( ) r Q i = I k [ˆP(t + 1)] :,i [ˆP(t + 1)] H :,i [ˆP(t + 1)] :,i 1[ˆP(t + 1)] H :,i µ fr s t st s 3 s t s t s t r st t s s rt t t t t t r [ˆP(t + 1)] :,i t s s rt t s t s st ss st t s t t t r t r s r2 t s s t r s 2 r t str t t rr t t s r s t s r s s t r t s r t 2 tr t r t r s tr t t s r r t 2 t t P t r t t tr t t s r s t t t r t 2 r st s r t sr s r t s r r s s 1tr st t t r t s r 3 s t t r r st r ss t s s ts t s s t s t s r t t r s s r t rst s t t r s r s r r s t s s P s t s s r s2 t r 2 r s s t r t r t r s t r st s t t s ts t r r q 2 s t t t r 3 r q 2 Ω = 0.65π t r r s r t r t Ω = 0.75π Ω = 0.85π r s t 2 s s r r 2 s 3 M = 17 t t 2 s t L = 80 s s str t r P = 5 rt s s rs
75 Pr s r st t s r t 1 t2 t 3 t t s s s r s t st t s r F (1) F (2) F (3) r t W = [F (1) ] + rst t [f (2) (t+1)] T = H q (t)h + p(t)r(t+1) [f (2) ] T 8K 2 (R+1)d t H p H p (t+1) = H p (t)+r(t+1)[f (2) (t+1)] r(u)[f (2) (u)] 14d 2 t H q H q (t+1) = H q (t)+[f (2) (t+1)] T [f (2) (t+1)] [f (2) (u)] T [f (2) (u)] 14K 2 d t H 1 p 2 t rs tr 1 t t t r s t t t H 1 p (t+1) 48d 2 +20d t H + q 2 t s rs tr 1 t t t r s t t t H + q (t+1) 96K 2 d t H H(t+1) = H p (t+1)h 1 q (t+1) 8K 2 d 2 t F (1) F (3) r r = 1,...,d f r (1) (t+1) = H T r(t+1)[f r (3) (t)] 8K 2 d f r (3) (t+1) = Hr(t+1)f(1) r (t+1) H r(t+1) 2 F 8K 2 d+10kd t [f (2) ] T [f (2) (t+1)] T = H [ q (t+1)h + p(t+1)r(t+1) 8d 2 +8K 2 d [[F t F (2) [F (2) (t+1)] T = (t)] T] ] :, 1 [f(2) (t+1)] T t W W(t+1) = 2W(t) W(t)F (2) (t+1)w(t) 2Kd+16K 2 d ( ) r s r s r s r r w (fr) i (t+1) = [ˆP(t+1)] :,i [ˆP(t+1)] H :,i [ˆP(t+1)] :,i + Q i ( w (fr) i (t) µ fr e (n)x fib (t) ) 10K +8K 2 ( ) 10dK +8dK 2 ( ) s r t rs r s r 3 t r s t r r s t s s s r P r t rs r t rst s r P r t r M t s L t s N s s ts P rt t s M prot P λ r λ t ǫ 10 5 r t t P st t t r t s s r r s t t st t t rt r t r st r t 3 t N = 1000 s s ts tr s t t P
76 SINR [db] P P Batch PARAFAC TW-RLST PARAFAC Frost TW-RLST PARAFAC Ben samples r r P s s r2 t 2 r 2 r st st s t t t r r r t r r r t s r ts s r r 2 s t 2 ts t t 1 t2 r t r s s s s t t r r t t t r s t r t r t r st r r t r r t s s t s t s r 1 ss s s t t t r Ω > 0.4π r r t s s r t s tr 2 st t r t t r q s t [ ]π [ ]π [ ]π r s t 2 t r r s st rt t t s s t t 2 r t s r t t t rs s s ts t t r s t s s s r r s t tt r s r tt r r t r s t r t r N = 5000 s s ts t r N = s s ts r t s t t r s t s r t t t r s s s t ss ss t2 3 t r r t s t t s r s r s t t r s r t s P s t s s r s2 t r 2 t s r s s t r s t rst s t r s ts t r r q 2 s t t t r 3
77 SINR [db] Magnitude response [db] Magnitude response [db] theta [deg] theta [deg] t r s r t r st r s r t r t r s s r t r t r q Batch PARAFAC TW-RLST PARAFAC Frost TW-RLST PARAFAC Ben samples r r r2 r q 2 Ω = 0.65π s s s r s t s t r st s s t r r s str t ts s t t t r Ω > 0.45π t r r r r t rs r r s r s 2
78 Magnitude response [db] Magnitude response [db] P P theta [deg] P t r t r t r q 2 t r s s r r s s t r N = 5000 t r s t r theta [deg] P t r t r t r q 2 t r s s r r s s t r N = t r s t r s t r t r s s t r r t t s s r rt s s t t r r s s r rt s s t r ts t t s t t t s s t r ss 2 rt s s s r t r r s t t t P r2 s s ts t r s t s s P r t s r t 3 t r s s ts s t t r s t s s r r s t t t P r t s st r s t tr t P r t s t t t ts st r
79 Magnitude response [db] Magnitude response [db] SINR [db] ICA Batch PARAFAC Proposed TW-RLST Frost Proposed TW-RLST PARAFAC samples r r s t t P s r t s r s t s t r 2 r t r r t2 r ts 1 t2 t r ss s r s s rs s s tr t P s t s r t 2 t s s r s r st t r s r s r t t t s r 2 r s s t tt r s t r st r t s t r t t t r r r t theta [deg] theta [deg] P t r t r t r q 2 t t r P t r t r t r q 2 t r st t r r tt r t r s t r r
80 P P r2 r s 2 t 1 t2 r t s s t r q 2 r t tr s r t t t tr s r s t 1t r s t st t s s t t s s rr r rt s r t t s r t q s r s r t st t s 1t r s t s r r r r s r t t s s t t s s s t P s t s r s r t s r s s t t s ss t str t t rr t t s r s t r r s t r r t s t t r t r t P s t t t 1 tr s rst r t s t t 1 t2 t s s t t s r t t r t s 2 t r s r r t r r s st t t rt s r s t t r s t r s st r r
81 P t s s s s q s t r ss t s s rr 2 s r ss r r t t r t s t st s s t rr 2s s s t t r 2 t s r rs r st ss t s s s r t rr t s r s r r t 2 s rr 2 ts r s 2 r r r r ss ss t t r s t s s s r r r t t t s tr2 s r rs 2 s r 3 s rs r st rt ss r s s t r r s s t r t rs t ss t t 3 t r st t s 2s r t rt r rr r r r t s t t t ts s t 2s r t 2 t 2 t t r r s q t2 t s r t q t2 s s r s t r t s t t r r s r t r s rt t s t r t r t s rt r t s t r s t t 2 s s r s ts r 1 s t r r s r 2 r s t t t s r t t t s t ss r r t s s r2 r t t r s t s2st s r r s 1 t t s2st s s t t rt r rr r t r t s 2 s s t t q r t t t t r t ts s t2 s ss t t r t r q r s r r tr s t r t s t s t r2 r s t 2
82 P s t t rr t 2 r r ss ss t s2st s t s t t t t r s t r r r t 2 r r ss ss t t s s r r t sts r s t s st r t t r t Pr s r s r 2t 1 r ss s t ss ss t s2st s q t2 2 s rst r r 1 s s t rt r r t rs s 2t 1 r ss t t rt r t t s r 1 t r s t s r t s t t 2 t r s t t r s s t s r t t t r t2 rt r t s r st r r s 2 t st t rr r t t s t rr r t t s s t t t s s s t t t s 2t 1 r ss s s r r t r t t s t s t tr s r t t r 2 t t s r s s t s r t2 str t t s r t t t s st t st ts r t s t t str t t s s t t t r s ts s t r s t t tr t r 2 t t t t t r r t rt r t s t rt r t s t r t rr r t s t t t t 1 t2 r s 1 t 2 t t r t s r r t 1 t2 s st r t t t s 1 t2 r s r t s r t r r r r t s r r t t t t t rr 2 s rt r t s t t r r s r rr t t s r t rt r t s r s r st t rr r rr 2 t s t rr r ss rr t q r s r s s t t t s r s r s t t2 tr 1 t r tr 1 t s 1 t t t s rt r t s s r s t r t t r t r s t 2 r t s str t t2 rt r t s s r r s t r r t 2 s r t r t2 s rt r t s s s r q 2 s t t t rr r s rr r s t r t r t t s s s t q r t r t r tr s r s s tt r r s ts t t r t r r s s t t q r t r t r tr s r s t s s r r s s r rr 2 r r ss ss t r r t s t r r s t s t2 s t t t r r t s r s s s t s s t t t t s r rt r t s t r s ts t t r s t r r ss ss t r r s t t r s ts t s t s r s ts 2 t r s t s s t s r
83 t st rt t t r s r r rr 2 t M t ts x(t) = i a(θ i )s i (t)+v(t) C M 1, r a(θ i ) s t st r t r θ i s t 3 t i t s r s s i (t) v(t) s t t s t r r t t st r t r t s t s 2s a m,i = e j2πµ i r µ i = (m 1) d cosθ λ i m s t t t 1 d s t t r t s t s d s t s t t r r t s 2 µ i t s s r t s r t s t rr rs r r s t s t r wavefront r str t r t t rr 2 t t s t rr rs r s s t t r t r s t t θ i s s t t t t r r s t 2 t ss str t r r Θ N(0,σ 2 θ ) s r r t r s t r s st t rr r x (Θ) (t) = a (Θ) (θ 0 )s 0 (t)+ i 0 a(θ i )s i (t)+v(t) C M 1, r a (Θ) (θ 0 ) = a(θ 0 +Θ) s t st r t r rt r 2 r r Θ t s t r st rr s s t t i = 0 s r s t t t s t st t rr r s 2s t s s r t s r t s ts r r s t t t t s t s rst
84 P t s t r r t rt s 1 s r ts r s t t (m 1)d t x 1 s t ts 1 t t r r t s s t t s t rr r t s s s x,y z r 2 t r r s D x D y D z r s t 2 t t r s s r s r t 2 t 3 t θ i t t s ts t φ i tt rs 1 t s 2s r t t r s s t µ m,i =(m 1)dcosθ i cosφ i +D x,m cosθ i cosφ i +D y,m sinθ i cosφ i +D z,m sinφ i, r t s s r t m t s t t 1 s t r r s r t t r s t t t r r s r r rr 2 s t r tt s x (D) (t) = i a (D) (θ i,φ i )s i (t)+v(t) C M 1, r a (D) (θ i,φ i ) = [e jµ 1,i,e jµ 2,i,...,e jµ M,i ] T s t st r t r rt r 2 t r t r D = [D x,1,d y,1,d z,1,d x,2,...,d z,m ] s t r s r t s t r s r t s s t t s r t2 str t t s r t s t t t ts r tr s r t s r r r t 2 s ts r t s t s r t s r r q r s r t t rts t r 2 t t t 1 t2 r t t s s t r t ts t r s r r s r t ts 1t s r t r r s s r t r s t 2 r t t s t k t t t s str t µ (κ) = E { U κ} = f U (u)u κ du,
85 r f U (u) s t r t2 s t2 t P t r r U s r t r 1 t f U ( ) f U (u) ω(p n ) = n ω n δ(u p n ), r p n s t n t s t ω n s t n t t δ(u) u=0 = 1 δ(u) = 0 r 2 t r s u s r t t s r t rs ˆµ (κ) ut = n ω n p κ n, s r 3 ω(p n ) s s r t r 1 t f U (u) t t ω n t t s t p n r s ts s s r t t t t s r r 2 ts s ts r t 2 s t r s2st r t r t 1 s q t 2 s tt r t s r κ s s ω 1 +ω = 1 ω 1 p 1 +ω 2 p = E { U } ω 1 p K 1 +ω 2 p K = E { U K}, r K s t st r r s r t t t s ts r t r K s t r s ts t t2 str t t t t s ts t 3 r t str t r st t s ss r r t 3 r t t s2 tr2 ω 1 = ω 3 p 1 = p 3 p 2 = 0 s t s s2 tr2 s ts r r t t r t rs r s t p 1 = p 3 = 3σ 2, p 2 = 0, ω 1 = ω 3 = 1/6 ω 2 = 2/3 r r s t s P t ts r 1 t s t t t t t t r s ts tr s t s t tt r P r 1 t s t t t t t s ts s q t t t t s P ts ts t s ts s f U ( ) t t st s s r κ r r r t t s s t 2 t t r t r r E { g(u) } = n ω n g(p n ),
86 probability P Continuous PDF UT3 UT x r r s t t s P t t P r 1 t r g( ) s r t s t t s r t s t t st st 2 t q t s t 1 g(u) ts 2 r s r s E { g(u) } { =E g(0)+ dg(u) du u+ 1 u=0 2! d2 g(u) du 2 u 2 u= ! d3 g(u) } du 3 u u=0 = a 0 +a 1 E{U}+a 2 E{U 2 }+a 3 E{U 3 }+..., r a i s t i t 2 r s r s t r r t ts r q q t s 1 t r 2 t t s tr t t t K t t s t g( ) s t t t r t s s t s s t t t t r t2 str t t r t s 2 ts st t st ts r t t t t r t t s r t r r s r r s t t s2st r t r U = [U 1,U 2,...,U M ] T s s r r r r s t 1 t s t r ss r ts r 3 r s t 1 t s U r s t s t
87 r t t r s E[U κ 1 1,...,Um κm,...,u κ M M ] = f Um (u m )u κm m du m, R r κ m {1,2,...} and κ j m = 0 r r t t r r r s s s t s t 1 t g(u) : R M R s 1 r ss s E[g(U)] = f(u 1,u 2,...,u M )g(u)du R M = f Um (u m )g(u)du. R M m t t r t 2 r tt s t r t r t 2 s 2 s r t t g(u) s r 1 t 2 t r t 2 q t s 2 t U s s r t r t t r s t t r s t q t r t 2 r 1 t r 2 s t ss t t t t t r t P f U (u) ω nm δ(u m p nm ). m n m 2 E[g(U)] t t t t 2 ss t t E[g(U)] g(u) ω nm δ(u m p nm )du R M m n m = g(u) ω nm δ(u m p nm )du R M n 1 n M m = g(u) ω nm δ(u m p nm )du. n R M 1 m n M s t t s s t r rt2 t s r t t r r s E[g(U)] ( g(p n1,...,n M ) ω nm ), n 1 n M m r p n1,...,n M = [p n1,...,p nm ] T s t t r s ts
88 P Pr s P r r ss ss t rr 2 s s t s s t r r r t t q t r s s t t s s t s r s r t r r t ss 2 t q s s t r s w = a(θ 0 ) t s t t t s t t r r s s r t r rr t s s s SINR = w H R ss w w H (R int +σ 2 I)w, r σ 2 s t t s r r rr t s s t rr t tr 1 R ss t t r r rr t tr 1 R int R ss = a(θ 0 )a H (θ 0 ), R int = i 0 a(θ i )a H (θ i ). r s t s rt rt r t s s s t r t a(θ i ) r a (Θ) (θ i ) r t s r st t rr r s s r rt r t s t t t s t s r s r a(θ i ) s r 2 a (D) (θ i ) r t r t r a (Θ) (θ i ) a (D) (θ i ) t s r t t t s s r r t s 1 t t t t r s r2 r s s r r 2 t s2st s r t r 2 t t t st t rr r t s t rr r t t t t s t ss r t r s r r r s t r t t t t t s r t r t s SINR r t s t t r st t rr r rst t r t s s s r st t rr r s r s t s rr r s r t s t s rt r t q 2 ts t ts a Θ (θ 0 +Θ) t r r s t r t t st r t r t s s t t r t s t tr t t r t t s t t t t r
89 Points P P P P N r 3 t s Θ r s t 1 r ss s SINR (Θ) MC = 1 N N n=1 w H R (Θ) ss (Θ[n])w w H (R (Θ) int (Θ[n])+σ2 I)w, r Θ[n] s t t r 3 t Θ t r s t rr t tr s r 2 R (Θ) ss (Θ[n]) = a(θ 0 +Θ[n])a H (θ 0 +Θ[n]), R (Θ) int (Θ[n]) = a(θ i +Θ[n])a H (θ i +Θ[n]). i 0 t t t t s r r2 t s s t t t s s r 3 t s t r t t r s r r t r t t t r s t s t s t r t r t t 2 t 2 s r s 2 2 ss t s s t r t r r st 2 t t t t r s t s t s t t rst ts t r r Θ t ts s ts r t r st 2 t s s r t r t s t 2 r g( ) q t 2 t Θ n 2 p (Θ) n SINR (Θ) N UT UT = n=1 ω n w H R (Θ) ss (p (Θ) n )w w H (R (Θ) int (p(θ) n )+σ 2 I)w. t2 2 N UT N MC q t t r s t t t 2 t t t r r s s t r s t N UT N MC r t t N MC r r 10 2 t 10 5 r 3 t s 10 5 UT3 UT5 MC MC10 3 MC10 4 MC Method r r r t r s s
90 P t r t s t t r t t s t rr r t s t t s r r s2st s rt r 2 t t s t rr r s s r t rt r t rs t 2 t t r t s s t t t s r t tr t t r t s sts t t r N r 3 t s t r t r D 2 SINR (D) MC = 1 N N n w H R ss (D) (D[n])w w H( R (D) int (D[n])+σ2 I ) w. s r r s t t r r rr t tr s t r s t s t rt r t s r r tt s R (D) ss (D[n]) = a (D[n]) (θ 0,φ 0 )[a (D[n]) (θ 0,φ 0 )] H, R (D) int (D[n]) = a (D[n]) (θ i,φ i )[a (D[n]) (θ i,φ i )] H. i q t t q t r t s s t t s r r r s s r r t r s t s s r t t r s r t t SINR (D) UT = N UT n z,m =1 N UT N UT N UT N UT n x,1 =1 n y,1 =1 n z,1 =1 n x,2 =1 ω nx,1 ω ny,1 ω nz,1 ω nx,2...ω nz,m w H R ss (D) (p nx,1,...,n z,m )w w H( R (D) int (p n x,1,...,n z,m )+σ 2 I ) w,... r p nx,1,...,n z,m = [p nx,1,p ny,1,p nz,1,p nx,2...,p nz,m ] T t ss str t s 3 r t s t t r t r2 r r r2 s rs s 2 s r s r t s s ss str t s t t rr 2 ts s t rr rs r r t s 2 t t r2 tt t r s t t t r ss r t r t 2 r r s str t t r r s r rr t t r r r str t s s t s s str t r t r st ss str t s s t s 2 2 s r D x D y D z s 3 r ss r r s t r σ 2 d t s ss r r s r s ts ss str t t r q t t s t r r s t
91 Points P P P P s rt r s 2s r s r µ (D) m,i = (m 1)dcosθ icosφ i +D m, r D m N ( 0,σ 2 D) t t r σ 2 D = σ 2 d (cos2 θ i cos 2 φ i +sin 2 θ i cos 2 φ i +sin 2 φ i ) s t 2 q t σd 2 t t t s s t r t s s s q t t r t s tr tr t t s r r t t t r rt r t s t s t SINR (D) N UT UT = N UT n 1 =1 n 2 =1 N UT n M =1 w H R ss (D) (p n1,n 2,...,n M )w w H (R (D) int (p n 1,n 2,...,n M )+σ 2 I)w. ω n1 ω n2...ω nm t t r t s t t ts t r 2 t r s t 2 t t t s ts t s t t t t ts r s t t r ts r t r s r s r UT3 UT MC10 2 MC10 3 MC10 4 MC MC Antennas r r s t t r ts r t 2 t t r2 r rr 2 ts t t r ts t 2 t r s 1 t 2 NUT M r t s r r t r t t s s s t s 2 r q r s r 2 r t ts r t s s t t t s t t t s r t t s r t 10 6 r t s t s s s s tr r t ts t
92 Sample variance (db) P t s t s ts t t s s t SINR s t s t t r ts r q r r t t s t s t s s t t r s r s t tt t q st t t r s s r r s t s r 2 ts t t s r s t str t r r r s t s s r t t t r s t s t s s t t r tr t r tr t s r t t t s s t r r t r s s t r r t 2 s r t t t rr r t t s r r t t s s ss t r rs t s r t r t tt r t st t str t t st t t t t r 2 r s s t t s r t r q t t r s s r r2 r tr s s r s t s s t s s s r rt r t s 10 0 univar multivar Monte Carlo trials r r rs s t r tr s t r s t s s t r t s s t t t t s t s s tr s r s t t t r s 10 3 s r s t t r t t s s t s r r s s t r s t r t t r t s q t r s t s s t t t r s s t 2 r r
93 SINR (db) t t r t s s t r ts r s s r r 2 s t r t s r t t t r t s r s r s s t st t s t t r st t t s s 10 3 r t s t s t ts s s r s r s s s t t t t r r s s r s t t r s t 2 s r t r s t s t t 10 6 r 3 t s r s ts r s r r r t MC variance MC10 6 UT3 UT < # (degrees) r SINR s σ Θ t st t rr r r t r s st t t t r s t r 10 6 r 3 t s r s s r r r r t s s t t t SINR st t s t t s st 1 t 2 t 10 6 r 3 t s SINR r t st r t s s r t t r t σ Θ = 4 t tt r st t r ts r r st r t s r 2 r r st t s t s s rt t t r t t t t t s r t s r t t t t st t s t s r t s t s t s ss t t t r 10 6 r 3 t s r r s t 2 SINR MC10 6 s r2 s t t r tr t r r t rr r s s Error = SINR SINR MC10 6. q t s s t s r t t t r s s t s t t t rr r t t t t t r t r
94 Error (db) P t t t t rr r t t t t r t r t t r t s P r r t t r t r t r t t r t r t st t s s 2 t s r r s st t r tr s 10 5 r t ts r t r t tr s s t 10 6 ts r s r s r t st t t t tt t r r t r s 3 t r r t s t r r r s s t r t rr r t t s t r r s t t r 10 6 r 3 t s r r t s s t t t t st s t 10 6 SINR t σ Θ = 6 t ss t rr r r t s s rt t t t t rr r s t r t 2 r t r t tr r 2 s σ Θ s r t s tr s r t s s t t t r t 2 3 r rr r t t s t r r t t s t t t SINR UT3 UT < # (degrees) r rr r s σ Θ t st t rr rs st r t s t 1 t s σ Θ = {1,6} r2 t s s r r r ts s t SINR r σ Θ = 1 t r t r s r r σ Θ = 6 r s st r t t s t s t 1 t 2 r r r t t ts t SINR t r t t r t t r s s t t r s t s r t
95 SINR (db) t r q t s s r t r t t t r t r s t t t t rr r t st t MC10 6 < = 1 UT3 < # = 1 UT5 < # = 1 MC < # = 6 UT3 < # = 6 UT5 < # = SNR r SINR s t 1 σ Θ = {2,10} t 1t s t t t t t s ss ss t r s ts r s r t t t r r r r2 r tr s r s ts s t t t t t t t t t r s t t s t s 2 t s tr s r r r t s r 2 s t t t s r s ts r t t t r ts r t s s r P r r t t t r t r t t r t s t 1 r2 σ D s s t r r t s t s t s r s t t s t r r2 s 2 r s t s r r r t s t t ts t SINR r t s r r r t r rr 2 t r r ss s r t t s r r t rr 2 t r rt r 2 r s t r ts t r s t t t r r s 1 t2 t r t s r s s r r r s r t t 1 t2 t t r s s s r t r t t r s s s s t t 3 r s r s t t r t r r s t t r t s t s r r λ
96 SINR (db) time (s) P 10 2 MC UT UT number of MC trials r t t t t r t t r s st t rr r MC variance MC10 6 UT3 UT < D (6) r SINR s σ D t rr 2 t s t r t s r s s t rr r r t t r t s r r t s r t t t rr r s rt 2 3 r r t t t st r t t r s t 2 s t t rr r r s st r t t t s 1 t r 2 s t r s s r 2 t 1 t t r t t rr r t t r r s σ D rr r r t r 3 t s r r s r 2 r r t s t ss t t rr r s r t st r t σ D s 1 t 4 6 t s r
97 SINR (db) Error (db) UT3 UT < D (6) r rr r rs s σ D t rr 2 t s t r t s r 2 s t r t s t SINRs t r t s s t s t rr r s t SINRs t r t r t s t s s t s t rr r s st t r t t s MC 10 6 < = 0.03 UT3 < D = 0.03 UT5 < D = 0.03 MC 10 6 < D = 0.12 UT3 < D = 0.12 UT5 < D = SNR r SINR s t 1 σ D = {0.03,0.12} s t ss ss s t t t t t t r t t r s ts r t r t t t r r r r2 r tr s r s ts t t t t t s t t t r s t t s t s r 2 r t
98 time (s) P tr s r t s t s r t t t t r 2 r t tr s r r q r s r s t s r t t r ts t t t r t r t s t s s s r 10 2 MC UT3 UT number of MC trials r t t t t t r t t s t s t rt t s r2 s t r s s t t t s t r ss ss t r r r t s s t t t t t r t t r r r t 2 r t t r t2 t s t s st t rr r r t s t rr 2 ts s t s r s r r t ss ss t r r r s t r s t r t t tr t s t s s t s s s t t t s r2 r 2 ts r t r s t rr r
99 r s s rr 2 s r ss s r 2 r s t t r2 2 r s t2 s r s r s st r str t t t2 t s r t t r t t s Pr s r q r ts r t 1t r t t r s s sts t t t s t r s s rt t s t r s t s s t r t s s s t t s t t r r t t t t r s r s rr t t r s t s t r t s t r r t r s 2 s rt s t t s t t s t r s s r s r t s t rr 2 s r ss r s 2 t r s r s s 2 2 s st s r s t 2 t s r s r r r t s t s s s 2 t t s t s r rst st t r t t q s t t t t tr t r s t t s r r t r t q s t t r r t t r s s s r r t t s t q s tt r t t r t s s r t 2 s r s ss 2 1t r t s2st s 2 r t t s t rr 2s t t s s 2 t r 3 r r t t r st t 2 t r 3 t t s t2 t t s t 1 r t s r t t s t2 t t s 1 r r rs t s s t t t ss r s q t t s t st r t R t s t r s r t t R 1 s t tt r t r r t t t s ss t 2 r q 2 r t tr s r t s t r r s r ss 2 s s t tr s r t s t 1tr t s r ss P s t s t s 1 r s t t ss t s s r q r r t str t rr t t s rs s
100 t t t r t P s t tr r t s s ts tt r r t st t t rt t t 2s s t s r t r s r r t r r s r t s r t t t2 t r t s r t st t2 t r t s r t r s r t 1 r r 1 t2 r r rr t r r t s 1 t2 r s 2 t t ts t t r 2 s s s t sts s r r s s r s t r r t t s t r s s r t r s r r t s s s t r P s s t s s t r st t t s r s t s r r r r t r t2 t s r t t s r r r r2 r s r t r t s s t r t t r r st t s ts r t r st s s r t t t s s s r r r t t s s s t r 2 t s s t rr 2 s s r t t r s r s t r t s r s t r t t t s t 2 s s r r r s r s s r s s t t rr t q s t t rr t t s r str t r r s s t r q 2 2 s s t 2 s s r s t r t s s t r t t r r r r q 2 1tr 1 t2 t t r t r t r s r t ts 2 rt 2 r s r r 1 t2
101 P s 1 r s r t s r t t tr s t rs tr 1 s ts r t s r s t s r ss t ts t r r 2 s ss t r t s2st s t t t t r t r r t r s t t r r r t s tr 1 s s t rt t t s r s s st r tr 1 2 BA(θ) = 0 r B s t tr 1 A s t st r tr 1 θ s t r t t s t s r s s r t r s str t s t rr 2 s t t s s s ss t r t s r str s r s r s s r r s t t t s r str t r r str t tr 1 r t s r s st r t rs s r r r t t 2 r r t 2 s t t tr 1 t r st s t t t t s t r b s t q s b s s rt r t t t s t t r t s t B 1
102 t t t r t t t s t tr 1 t t t s s r s r s t st r t r a(θ 0 ) r t r t r a(θ 0 ) s P a(θ 0 ) = I a(θ 0 )(a H (θ 0 )a(θ 0 )) 1 a H (θ 0 ). r t r t r s t rs t t r rt t a(θ 0 ) t s r t s r s r t s s s r r s t s s t r x a(θ 0 ) 0.5 y 0 z z x 0 a(θ 0 ) 0.5 y t t r Pr t s tr 1 r M = 3 d = 1 s r s st r t r s r r s t t t rt s s r r r t s r t s B t r s q s t t s 2 s d 1 = 2 rt 3 t s t r t rt 3 t t r 2 t t t rt 3 t rs s t t t r t r t r s t r t s s r t rs tr 1 ss t t t r st s r s r s s str t r r str t t r t s s r t rs tr 1 ss t t t r st s r s t r s t t B s t r t 2 t t a(θ 0 ) t t t
103 s t r t s s r t rs tr 1 ss t t t s s r s s r ss s str t r r str t t r t s s r t rs tr 1 ss t t t s st s r s
104
105 s 1 s t r t t s st st r t r t r st rt 2 1 t st t r t J CM (T,w) = E { a(θ 0 ) B H Tw) H x 1 2} = E { (a H (θ 0 ) x w H T H B x) (a H (θ 0 ) x w H T H B x) H} = E { a H (θ 0 ) x x H a(θ 0 ) w H T H B x x H a(θ 0 )+a H (θ 0 ) x w H T H B x x H a(θ 0 )+w H T H B x x H B H Tw+a H (θ 0 ) x w H T H B x w H T H B x+1 } = a H (θ 0 )R x x a(θ 0 ) 2w H T H BR x x a(θ 0 )+ 2a H (θ 0 )E { x } +w H T H BR x x B H Tw 2w H T H BE { x } +1 t t r t t r s t t w w J CM = 2T H BR x x a(θ 0 )+2T H BR x x B H Tw 2T H BE { x } = 2T H B(R x x B H Tw R x x a(θ 0 ) E { x } ) t r s t t T T J CM = 2BR x x a(θ 0 )w H +BR x x B H Tww H 2BE { x } w H st r r2 tr2 t s t r t t t st st r ts t t rr t t 1 t s x
106 s ˆR x x = 1 L X X H, Ê { x } = 1 L (m+1)l 1 n=ml x(n) = 1 L X 1 L, r 1 L s t r s s 3 L tr 1 X s t tr 1 t t s s t x(n) t r 1t t t x(n) = y (n)x(n) r t tr 1 t t t t X = X diag(e m ), r e m = [e(ml),e(ml+1),...,e((m+1)l 1)] H s rt t r 1 t s t r w ˆ w J CM = 2 TH (m+1)l 1 B ( X X H B H Tw X X H a(θ 0 ) x(n) ) L = 2 TH (m+1)l 1 B ( Xy m H Xd H m x(n) ) L n=ml = 2 L TH B ( Xe ) m + X 1 L n=ml = 2 L TH B X ( e m +1 L ), r t t rs y m d m r t rs r t t s t rs t t s s r t m t t s s rt t r 1 t s t r T ˆ T J CM = 2B X X H H L a(θ 0)w H +2B X X L BH Tww H 2B 1 L [ X 1 L ]w H = 2 L B X ( e m +1 L ) w H s s t t s t t r T(n+1) = T(n)+µ T X B ( em +1 L ) w H w(n+1) = w(n)+µ w T H X B ( em +1 L ),
107 r µ w µ T r r r s t t r s 1/L e m = e m +1 L rt r s 2 t t q t s T(n+1) = T(n)+µ T X B e m w H w(n+1) = w(n)+µ w T H X B e m,
108
109 st s t t sts s t t t s s t r s Pr s r st P r t rs r t rst s r
110
111 st r s s s r r t t 3 rt 2 st r r t s s 3 t t r str t tt r s r r 2 s r r r str t tr 1 s 3 M N s t s r s 3 M N P t r r r r 2 st st r t r P r t r st r t r t t2 r t s rs s s s r N = 50 t t2 r t s rs s s s r N = 50 r t2 r t s t r2 N r r t s t r2 N ρ = 0.9 t r N = 600 s s ts t r2 ρ t φ i 3 t θ i t r t rr t i t s r s t r t t s r ss r R s s r t R r t t t s t r s s t t r t t r 2 t ss r s r r2 r t r s s ts N t t r 2 t ss r s r r2 t t r 2 t ss r s r r2 rr 2 s 3 t s s t s r t q
112 t t t rs s N r t s s s t t t 2 t m r s r s t r 2 t r t L t s t r q 2 r s s w st r t 0 1 st t s t t r r s s t r q 2 r s s s t t r w[m, n] s s s s s t r q 2 r t r t sin(θ) = 0.4 s st t sin(θ) = 0 t t sin(θ) = 0 s r 2 t sin(θ) = 0.4 r t r s s s rr t r t s s s t r q 2 s t r t r str t P s t s r t r 2 rr 2 t t s t s s r t s r t s s Pr ss s t r s t t P t rr t t s r t r R(t + J 1) s t t r ss s r st rt t t s r s t t t rr t tr 1 r t rst t 2 τ 1 r P s s t r s s r t r t r q 2 r r2 r s s t r N = 5000 t r s t r r s s t r N = t r s t r r s t t P s r t s r s t s t r 2 r t r r t2 tt r t r s t r r str t r t t rr 2 t t s t rr rs r s t t s P t t P r 1 t r r t r s s
113 r s t t r ts r t 2 t t r2 r rr 2 ts r rs s t r tr s t r s t s SINR s σ Θ t st t rr r rr r s σ Θ t st t rr rs SINR s t 1 σ Θ = {2,10} t t t t r t t r s st t rr r SINR s σ D t rr 2 t s t r t s rr r rs s σ D t rr 2 t s t r t s SINR s t 1 σ D = {0.03,0.12} t t t t t r t t s t s t rt t s str t tr 1 Pr t s tr 1 r M = 3 d = 1 str t t r t s s r t rs tr 1 ss t t t r st s r s str t t r t s s r t rs tr 1 ss t t t s st s r s
114
115 a, b, c rs a, b, c t rs A, B, C tr s A, B, C s rs t r t r tr 1 r s r r r t t s r Pr t [X] (r) [X] (r) r t t s r r t r r 2 t s r r t s t 2 F 2 H { } { } ( ) { } r s r r r r r s r s r tr Pr t r r Pr t t r 3 tr 1 t r 3 t r 1tr t t t r 1 t
116 T + r s s tr 1 Ps rs tr 1 1 rs tr 1 H t r s s tr 1 t r
117 P P P R rt r t t r t t r t st q r s st t s s r t r r r s r r t rr 2 r q 2 r t r r r 3 r t t 2s s rs s r t r r r s r s rs s r t r r r s r t r t t s r 2 str r st q r s r t t r t t t t t r st rt ss s s P r t r 2s s Pr t2 s t2 t r t r P s t 2 R s rs st q r s rs st q r s r t t r r s t
118 t s t t r st r r rr 2 r t r rr 2 s t r s r t t r str t r t r t r s r r r s r t rt t2
119 P P t s s rst r t r P st tr r r s t t 2 st t r t rr st t tr r t r 3 t r t t t t r s rt t s r P r t s r r P st P r r r t t t r t t rr 2 r r ss s s r t r s Pr t t r t r 1t r t r r ss t r t P t rs r P r P st s 2 1 t2 s r t t q t s t r t t t2 t s 1t r s Pr t t r t r s Pr ss t 2st s st r P st tr r 2 1 t2 t r 3 s rs r r s s r s s r t Pr ss r P st s r r Pr r s r t r t t st r t r s t t s Pr t 2 s t s t s P rt r Pr t 2 s t s t s r P st r P r t s s r t s t r q 2 st s2st s
120 P r st s t t r t r r t t r t s t r 2 r P st r s s r t t r s t r r t s t tr2 s t r t r r s s t t s s2s t s Pr t t t r t r r q 2 q s r P st r 3 s 1 t2 r r ss ss t s s r rr 2 s t tr s r t s r t Pr ss r r s 2 P st r r q 2 s r s r t r s s r t rr Pr P s rt t t s P s P st r t t t s t rt s s s r t s st t s Pr t t r t r Pr ss t 2st s st P s P st r s r t rt s t r t t t s ss r r r s 2s s tr t r r q 2 r s t s r t r s s r t2 ss r r s 2 t r t rs r ss r ss t2 r rt r ss s t s 3 r r r r t r t s r r t t r t tr r s t s Pr ss t s tr s t rs t2 t q r r ss t s r t r s t s ss t
121 P r s r t 2 t r t rs r s t s t t tr sr t r t t t r 3 rs s ss t r t s r r 2s s ss 3 P t ss r t r ó P r rt t s r t st t t s tt r s2s t s t t t t r s r 2 r r 2 r r 3 rs tr s r t t s 2 r s t r q 2 r s tr 2s s Pr r s r tr 1 st t rr rs t rr 2s r s r s tr 2st s 2 rr 2s s r s t s s 2 r 3 t rt 2 s t Ps2 tr st t 2 rt r r ts s r ts Pr P s r r t s r rs t s st t s s r s r t t r t 2 s t t Pr ss t s P r t s r ss 2 s P st P r t r st t t q s r t s rr 2 s r ss r P s r r 2 r P st r r t r3 t s r t r s r str t r t r st t
122 P r s t r r rr t str t r Pr ss s r s r P st r 3 r r r st t r s s r s s r t ós r s r çõ s r r t r 3 P st r r t t r st r t t r s s r t r st t t q s s r 2 r s r ts Pr t t r t t q r 2 t P st r r t s r t s r r s t P r s Pr ss 2 r r s r P st r r r t r s r r s t t q s r r s t r t r st t r t s Pr t t r t t q r 2 t 3 s 2 r st s P r s 1 tr t st t st ts t t q t t s r s r t s t s r s t t tr t s 3 s r s r s st t t r t2 s t2 t tr t r t r s t t s t tr s r t Pr s t Pr r ss t t tr t s s r q t ss t s PP rs s P r rr 2 s r t t r s s r s t rr rs r s 2 s s r s Pr s t s r rr 2 t Pr ss r s r st r t r r 2 str t rr 2 r ss Pr s t ss r s s tr st t t q s t r 2 s2st s Pr t P s rr 2s 2 s s s r rt r t t r r s r r s
123 P r t t rr 2s t t s rt r r t rr s r t s Pr s t r s tr 1 t t s Pr ss t 2 str r t r 2s s r s r Pr t t r t r t r t t 2 r t s t r t r t r 2 str t r r s t s Pr t r Pr t2 r r ss s r tr t r rs st r rs t2 Pr ss r r s rr 2 s r ss r s r t r tr r Pr ss 3 ss r t r r r r s s s s st t t r t r t r st t r 2 t s r r tr r s r s Pr ss 2 r t ä t r t s r s t r t r st t t t s t s s t st Pr ss s r t r P s s Pr t r r t s s s t s r s r t r s Pr ss t rs t s t r r r s t s r 1 t r2 t t r 2s s r rs t s 2 t t r t r2 r t Pr t r r t r t r r s q s t r r r t t ss t t s s str t r s t s t t t r t
124 P 2 är r t t 2s s 2 r P ss r r tr s r t Pr P t t2 2 r r t r r 1 t r tr s r t s r t2 str t s r rt t 1 r r s t t r r st t Pr s t r r s r s t s t s t2 r str t t s rss t t t s t 2 r t r t s Pr ss 3 2 rss rs ss r3 tt ss r 1t r t r ss 2st s t s 3 t r st t t r t r 1t r s 2 s t s tr 1 3 t r s t s Pr ss r t rr 2 r t r st t s r r s s r s t rr rs Pr s r r t r P r r 2s s r st t r t s t s t s s r t s r s r s tr 2st t P t r st r r s t s Pr ss 2 r s t r r s r t Pr t r t r Pr ss Pr s P r st r r t s t st t s t r t r t r t t r t tr r
125 P P s r s r t r t 1t r s s r q 2 r t tr s r t Pr t r t r st s Pr ss P ss r ts t q s 2 r s r ss t s t 2 2 2s s s t s r t rr 2 Pr Pr r ss tr t s s r 2 s r r tr P st ss s t rr 2 t r t r t r tr s r t s r st t 2 rr t s s t r t r st s Pr ss P 2 r r P st tr 3 s s t tr s r t s rr 2 t r t Pr t t r t r st s Pr ss P r s str r r st t r r r s rr t t r s Pr t r t r t r 2st s t s r r t r t rs r r r t r t 3 Pr t r t r 2 s 2 r s t r t s t tr t r s t t r r r t s r r s t s Pr ss ss t str s s ss s t s s2st s r 2 2 r t P r t r P s Pr t2 r r s st st r ss s r r r r r ts r t t s r ss P s s rs t2 2
126 P r r t 2t r r ss ss t t s tr 1 t s r s s r t t2 r t s r s t s Pr ss 2 s P rss rss r3 tt rs ss rt t s s t r2 r rr 2s Pr ss 3 r s s t rr 2 t 3 r t rs r t r r s t s Pr ss ss tt 1 tr t r r3 r r s t r r s rt Pr t s r Pr s P st r 2 s t r q 2 t t r t r s t2 r s s r r s Pr t t r t r Pr ss t 2st s P st P tr t r t s s s tr r t s r s t s Pr ss 2 r r r s t s r r Pr t r r r r s r t s s2st t r r r t t t2 s r r s 2st s t rs 2 r rs t r t s t t r P 3 ss r s r r s t t t rr t tr 1 r ss s s r t r s Pr t r Pr ss r P rr 2 s r ss r t s r r r t P ss rt t rs t2 r r t r r str st t s r t s s t t r t t 3 t t rs r r r s Pr ss
127 P r P st r s r s t r t Pr t r t st 2 s r ts 2st s r r r 3 st r t t r 3 s r r t t r r r r r r t t st Pr ss r s t s st t r2 s t s r ss Pr ss
128 P
129 rs r ss r r t 3 äss r tt r t3 r r s r s tt rt t s r r t r r t ü r t 3 t s t r r 3 t t r P rs r r t t r rst r r r t t t t s s r r ür t t t r tt s 3 r t s st Pr t s r t r r r r P rs s r t r tt r r tt r rt st ür r t r t s t t r r t ss rt t st r t r s r r s r r ä r r r Prü s ör r t r s r ss r t t r rst r är s ä s s rs rt t r äÿ ➓ s r Pr t s r r s Pr t s r r s 3 r t r sí r r r r
r q s r 1t r t t 2st s
r q s r 1t r t t 2st s ss rt t 3 r r s s r s s t r r r r tr r r r r r sí r s t t r Pr r Pr r ã P r st s st Pr r sé r t s r t t s ö t s r ss s t ss r urn:nbn:de:gbv:ilm1-2017000099 PPGEE 117/2017 UNIVERSIDADE
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
UNIVERSITE DE PERPIGNAN VIA DOMITIA
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
❷ s é 2s é í t é Pr 3
❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t
Pathological synchronization in neuronal populations : a control theoretic perspective
Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Langages dédiés au développement de services de communications
Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
La naissance de la cohomologie des groupes
La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.
Bandwidth mismatch calibration in time-interleaved analog-to-digital converters
Bandwidth mismatch calibration in time-interleaved analog-to-digital converters Fatima Ghanem To cite this version: Fatima Ghanem. Bandwidth mismatch calibration in time-interleaved analog-to-digital converters.
A hybrid PSTD/DG method to solve the linearized Euler equations
A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Logique et Interaction : une Étude Sémantique de la
Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Review of Single-Phase AC Circuits
Single-Phase AC Circuits in a DC Circuit In a DC circuit, we deal with one type of power. P = I I W = t2 t 1 Pdt = P(t 2 t 1 ) = P t (J) DC CIRCUIT in an AC Circuit Instantaneous : p(t) v(t)i(t) i(t)=i
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Conditions aux bords dans des theories conformes non unitaires
Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.
1 (008-003) * (ITU-R 54/4 ITU-R 6/9 ). 1. 4. 3. GHz 14,5-14,0 1,.90 (WRC-03) ( 4.4 ( - ) MHz 6 45-5 95 GHz 14,5-14 ( 4.4 " " ( ( ( ( ITU-R SF.1585 ( ( (ATPC) ( (.ITU-R SF.1650-1 " " * ITU-R SM.1448 / (
Une Théorie des Constructions Inductives
Une Théorie des Constructions Inductives Benjamin Werner To cite this version: Benjamin Werner. Une Théorie des Constructions Inductives. Génie logiciel [cs.se]. Université Paris- Diderot - Paris VII,
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Das Pentagramma Mirificum von Gauß
Wissenschaftliche Prüfungsarbeit gemäß 1 der Landesverordnung über die Erste Staatsprüfung für das Lehramt an Gymnasien vom 07. Mai 198, in der derzeit gültigen Fassung Kandidatin: Jennifer Romina Pütz
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel
Piégeage et accumulation de positons issus d un faisceau pulsé produit par un accélérateur pour l étude de l interaction gravitationnelle de l antimatière Pierre Grandemange To cite this version: Pierre
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a
M M - - - - q -- x - K - W q - - x x - M q j x j x K W D M K q 6 W x x A j ˆ K ė j x ˆ D M [ 6 C ˆ j ˆ ˆ ˆ ˆ j M ˆ x ˆ A - D ˆ ˆ D M ˆ ˆ K x [ 6 ˆ C + M D ˆ ˆ + + D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + x 9 M S C : 4 R 9
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Αντίστροφος μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Voice over IP Vulnerability Assessment
Voice over IP Vulnerability Assessment Humberto Abdelnur To cite this version: Humberto Abdelnur. Voice over IP Vulnerability Assessment. Networking and Internet Architecture [cs.ni]. Université Henri
AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Measurement-driven mobile data traffic modeling in a large metropolitan area
Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo
VISCOUS FLUID FLOWS Mechanical Engineering
NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and
5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.
ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. (α) Να βρεθεί η τιμή της σύνθετης αντίστασης Ζ(s) των τριών κυκλωμάτων στο σχήμα Π5. (β) Να βρεθούν οι πόλοι και τα μηδενικά της Ζ(s). (γ) Να βρεθεί
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH