r q s r 1t r t t 2st s

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "r q s r 1t r t t 2st s"

Transcript

1 r q s r 1t r t t 2st s ss rt t 3 r r s s r s s t r r r r tr r r r r r sí r s t t r Pr r Pr r ã P r st s st Pr r sé r t s r t t s ö t s r ss s t ss r urn:nbn:de:gbv:ilm

2

3 t t t t rs 2 s r t t rs t2 r sí r r ã P r st s st r 2 t t s st t r rt t s Pr r 2 s r t t r s s rt t s r st t t t 2 s r t t t t r r r r s t t t ts t s r Pr r ré érr r r s str t ts s rt Pr r 1 tr r t t r r s t r r s t t t q s Pr r s P t r t s r s s rt r s r ts 2 r s s r t r t r t t s t t s2st s Pr r r s 2 r tr t t rr 2 s r ss r r 3 s r tr t t s t tr s r t t t t s s rs r çã r ç t P ss í r r P r t P r t r r t s rs r t s P sq s s tí ó Pq r t s rs r r 3 2 r t r t s rt çã à P sq s str t r P r t tr r ts r t t 2 2 r r r s s r t r t s rt rst r t t 2 ts

4

5 t t s t r ss r t r t t ss t rt t r s t2 s s q t r t t s2st s s r s rr t 2 t r s t t s s r t s r r t t t st rt r t t r s s r t s r 1 t r r r t s t t r q r t r t s s rt r t2 r s r s t s2st s s s t r s s t t s t r t t s r t r s s s s t t r str t r t s s rt t s r s t r t s s r s r q r t r t r t r t st r s s 2 t st rts s r 2 s t 2 t s t r tt r 1 t t t s r s tr s t r r t t rr 2s t t s rt r t s r s r t q s t t rt 2 t t rr t tt r t t rr 2 s r r t 2 t s s r s r r t t t t t r r r t r s r r r r s t s t s r t t s r s s r t s s tr s t t t r t r r t s r r t q s r r s t t r s s r s r r t r rr 2s r s r s r r r s s r s r t t q s r r t t q s tr s r t r s r t t r s r s t s r t t s t t r t r 2s s P t s r s t s s t r q 2 r t r rs s 2 t t st t t t t s s t s t tr s r t s

6

7 t t st r rs r 3 s t s t s s r r s s t r s t 3 r t r t s2st 3 r t3 r3 t s s t r t t t r 3 r t st t r rt r t ör s s s t r t t r ür r s r r r t r s t3 öt 3 rt tätss t r r s s t ss2st s t s st r t t s r t r s t r t r r t r s s s 3 r3 3 r3 r3 3 r str t r t r rt r t r stüt3 3 ö r st r t ü rtr sr t r röÿ r r3 t s r r ür t r s r ü t r t r ts s t3 s s t tr t t ss r s t3 s tr s 3 r ö t t s r r t s2st t s rät s üss t r r t t r t s rs r s tr s st r s r t s2st r t rät rt ss ö s s r r ü s t t 3 rstär 3 s s tör s t r 3 tr s r r r ö t s t rä r r r ss tr t s r t r tr s tör r t r r 3q 3 s ä r r r t r r r r r r s t t t rs ä s r s 3 s r t s2st r t 3 t rs ür 2st t r s r Pr t t r s r t r t ür r t 2st r s r rst t3t st s r3 r r P r t r 2s s P 3 s t r q 2 r t

8 r rs s r t r t3t r tt s r s t r s r t t r t s t t t

9 çõ s t s s r 3 s s st tâ s í tr t ú í s t r r rt ss s r s q ê r s st s ç s çã stá t t t s r s çã ó tê t t õ s ss t r s t s q s ã rt à r s q rt r çã P r sã s r s õ s ss t r s s õ s ss t r s é ss t é sã r st s çõ s q r q r t t 1 tr s ssã r rt s s st s çã t é r r s t çõ s áq áq t r t s s s r s r s s s r s í í çõ s í r str t r P r s rt r st t s 3 s stá s s r r q s t r s rõ s çã t r q t r çã à q t s r r st r s t s s r r t r r 1 r çã s rç s tr é r r çã rr s t s s s s t s çã P rt r t st tr t té s r çã 1 q rt t t r rã rr çã rr t s r r s s s r çã s r s s s tr s â s P rt t r r s 1 r s r çã s ú t s t s s q rt s s tr é ss t é s r s r t çã t r rê st tr té s r r s r r s 1 sã s s t r í r rr s r s r t r s s s s r P r ár s r í s r s té s r q t r çã st tr s r çã sã t 3 s P r s s r é t 3 t çã t s r s çã r á s t r s r s P é t t r r s 1 r t s r q ê s P r ét çã 1 st t é s r tr s r rt 3

10

11 t ts t ts t r tr t r 1 t2 rr 2 t t s r tr t s t t t r r r s r s t t t t rt r rs t st q r s st q r s Pr s t s r 2 t st 2 Pr t P r r r s r t s P t r st Pr t P s t st r t t t 1 t2 2s s t s s ts r2 t r t s r r r r rr 2s t t r t s s Pr s R s t s s ts

12 r2 t r r r r q 2 r r s r t P s t r r t s rs r r r s r r q 2 r t r r s s s rt rr 2 st t s 1t r s s r s t r t r tr 1 st t t P s r s t t r t st q r s r t r tr 1 st t Pr s t r r r r s t s s ts r2 t r r r P r r ss ss t t s t r s r t t s t r s r t r t t r t Pr s P r r ss ss t rr 2 s s r t s t t r st t rr r t r t s t t r t t s t rr r t s ts P r r t t r t P r r t t t r t r2 t r s s r s s t s r t r s r 1 tr 1 t t 1 r t t s t t s r t st s

13 st r s 2 s r 2 s r 2 r är

14

15 t s 2 2 r r s t2 r st t s st t t t s rs r t t t t r r t s s rs r s rt s s r t s r t s s s r t s t t t st t r t r rt r t t 2 t t s s r r 2 r t 2 q t s t r r t r t tt r t r 2 r t2 st r t st t t 2 r t s 1 t t r t r s s r t s 2 r r 1 t 2 s r 2 t r t s s r rs s s 1 t t r s 2 s t r t r r t t r t r s s r t t s r t s t t s s s rs s s r tr s t t t r r t s t r t t s t s rt t t r rt r t2 r r t r s t r t t rr 2s r t r t t s2st s t s s t t s rr t r t r s r r r s 1 t r s2st s t r t t rr t 2 s s tr r 1 t 2 t 3 3 s t s t s r 1t r t r ss t s2st s s s tr 2 r s t s t r t 3 r r t r s t t 1t r t st r s s st t s r q 2 s tr 3 t t s r q 2 r t t s r r2 s 2 t rs t s s t t s 3 r t s 3 r s t t r r 2 t t t t ss s r t r t t s r q 2 r r r t s t r t t s 3 r t t ss t rr 2s s s 1t r t t r s 1 t t st rt ts 2 t t s t s r r s t s s r s ss t t s r r s t t t s t

16 s2st s t t t t t t s2st t r t s s t s2st s ss s2st s t r t s s r s t r s ss t t r s t s tr s ss s t r s s rs s r s s 2 t 2 t rr 2s s r ss r rs r r 2 s r t s r r t r t str t t r r t r s s r s r t str t t r r t r s s r s s t s t 1tr r t t t r r s t r st t st r t 1tr t r r s s s t str t str t t r r t r s t s r s r t s r rs r t t s st s s s s s s r t s s r rr t 2 s tt r 2s t t rr 2s r r s s t s s r t t s t r s t s t s t s tr t t r rs t r s t 2 r 1 t t s r t s r s t rt t rr 2 s2st t t s r t s ss rt t t t s t r r t t t s r s t s r s t s s t s t t t t r r rs r r t s s s r r s r r t t s t t r r s tr 2 r t 2 st r t str t str t t r r r r t r s t s r s s q t2 r s s s r r str t t r r t s s st s t 2 s r r s ts s sts r r 2 2s t s q r 2 t s s t r r t r str t t r r t r t t s r s r s st t r s t s r t r t r 2 str r s s t r r t r 3 s r r rs st t r rs r q r t st t t rr t tr s r s r r t t t r t rs t s2st s t s r rs r r t s s rr t t s r r t t 2 s rr t s t r r t s r t s r s s r s r r 2 s r t t q s t t r r t t q s s r s t s2st s t t 1 t2 r r s

17 r r t r r t r r t r s s r r t t 3 rt 2 st r r t s s 3 t t r str t tt r s r r 2 s r r r r t s t r r 1 t2 tr t s2st s 1 t2 2 s s 3 r t r t s s r s s t t t rr 2 s s s r str t r s s r r t r rr 2 r rs s t s r t 2 t str t r s s r t t t rr 2 r r s s s t t r t t y r t r s s s t t s s t x r t s rt 2 r s s t r s s ts t t r r s t t t 2 s r ss s r s s r s s s t t s s r s t r s s ts t r r rr t tr 1 st t t s t s r tr s st r s r t t t t ss t t r r t s r st r rs t s t rr ss t s s r t

18 r r s s s r t rr s r r s t s s r t t s rt r s s t t s r s r s rr t r s 1 t2 1tr t s s s t s s s s s t r t r q 2 r t r rs s t t s r t s t s st t s 1t r s s r t t s rr s r s r r t s t ts s r s t t rr r t s r t r t r Pr s r s s s t t rr r st s t t 2s s r t s r t 2 s s t s r t ss t2 t rt s s t t tr t t r t r t r s t rt s s t r s r t r t t t s s t ss t2 s s t s r t t s s t t st r t r ss str t s s 2 t t ss t2 s r t r s t s t s s t t ss t s s s rr t t r s t 2 t ts s s t s s s t t s ts s tr s t t s r r r q s t r s t rr t t s s t t r s t t t s r t ss t2 s r r s 2 t s r t t t 1 ts t ss t t ss s 1 t rst 2 2 st t rr t tr s t s t t r r r t r t r s r r s t t t s t s r s str t r 2 t s t s r s s t r t rs 2s s P t r s t s s t s t P s s t r s ts t r tr s t t t st t rs r t s r r ts r str t tr 1 s 3 M N s t s r s 3 M N P t s r r r t r ts t 1 t2 t t t s t r s s r t r s r 2 r s t

19 P s s t t ts st t st r t r st s r t st t r2 t s r r s s t r t t P r t s t r r t t r 2 1 t t t ss r rt2 1 t2 rr 2 t r t q s s t r r t s r s r st s r s t r s s t rr rs t rr 2 ss 2 s t t t t t t t s s r t st 2 t t t t r t s r q t s t r r s t s r 2 r q r t t t r 2 t r t s 1 t2 s t s r 2s s t s 2 t t t s t rt t r t s t t r s s r r t t t r rs s t st t t r t rr t t r rs rs s 2 s r t s r r t t st t s t r t s rr rs ss t t t t s r t st t t t s t 2 s t s t tr s r t r t r r2 t t 1 t2 r t r2 r t r s t s t r s ts t r r r rr 2 t t s t t t rr 2 ts t t s r s s t t s t s t rr rs r r t ts r t s t t t r s q t t r rr 2 ts s t s r r t t r t r r t t t t r t 1 t2 s r s t s r s s t t t t s 2 t s r t s t r t s t 1 t2 t t s t s st t s t s 1t r t t s2st s r r t t r s r t ts r t t s r s t r s rr t r ss s2st s t r t s r r s r tt r s t s r t t r r t t t t r rs r s r s s s s t s t t r r t r r s r s s r s t s r t s rr t t t t r s t t t t s t r r t rr 2s r r t rst s t t s r s t

20 r t q s t t r r r s s r s t s r t s t r t t q s t t t t r r t r st s t s s r s t r t st r s s t 1 t2 s r ss r t q s r s t r s t s2st s 1 t2 t r s 1 t2 t r t s r s s t t t 1 t2 s r s r r t s s t t s r s t r t t 1 t2 r t s s 2 t t t r r t t r t t t s s r r s rst r t s s r rr t tr s r s rr s r r s t t r rs r s r s s s rs r s r rts t t rr 2 s s t t t s s s s t r t rr t t s r s s t r t s 1 tr 1 t t s s t r r r r 2 r rs s r st st st t rr rs t s r r t rr r t s t t t rr 2 ts r r ss ss t r rs r r t s r s t r r t s t s t r t 1 t2 t t r t r s st t rr r s t st t rr r t s r t t s t r t s r s r tr t s s t s s s t t rs t s tr t t r t s s r t t rr 2s r s s r s t r ts ts t r r r r 1 t2 s s t r r s t t r t tr t s t r r t s t r st st st r t r r t t r r t s t r r t tr s r t t r s r r 2 t r t s r t t 1 t2 r t t r s r s t t r r s r rr 2s t t s r s t t s r t t r r t t s ts s 2 t s t s t t t t s str t r s s t rt 2 r s t t s s r r t r q t2 r t t 1 t2 t r t tr t s t t t t rr 2 s r t2 r t t t s r t s t rt 2 r s t r s s s t t s r t s r t r s r rr t tr s st t r r t t 1 t2 t r t s

21 t r r s t t s ts t s s s P s t s s r t s t t s t tr t t r s r t r r t t s s t t P s t r r s s 2 t r t t t t s r t t r st t st s t t t P tr r t r st r r r r 2 t r t s t t r t s r rs t r t ts t s r t s r r 2 s t s t tr s r t r s s t ss ss t s s s r r t t t t r t rr 2 s2st s 2 t r r s t s s t t s r t t t s r t t t s s rs r t 2 r s tt rs (a,b, ) t rs r r tt s r s tt rs (a,b, ) tr s s t s(a, B, ) t s rs s r tt rs (A, B, ) s rs r ts, r r s t tr s s r t tr s s 1 t tr 1 r s t 2 t t A(:, ) C R 1 r r s ts t r t t i t A C R I r t r (A) r s ts t r 2 t t t s t tr 1A t t t r t t [T ] (r) s t r tr 1 T T r A s t r t r t t t t s r T t tr 1 A r r t r r r t t r r t r t rs r t 2 r s t 2 tr r t r t s s s t s r r r t r t r E{ } st s r t 1 t r t

22

23 r ss s rt t 2 r s s s s t t t s t s 2 t s2st s t rr 2 t s r 2s rt t r t t r t r t r r s r t t s r t rr st t s s r r s s r s s t r t s r r t r r t s str ts t t t r rs s s t r t r Pr ss r P s t r 2 str r r 2 str st t s t r 3 r r r t t s t ss t2 r t r t s r s t t s t rs s t r r s r r r s r t r ts s s r rr 2 s t s s t t t r r r t s t t r r t s rs t r t r s t s r t s s r r t t 1 t2 r s r r r t 2 t r r P s s r s r s r r t r t s t2 t t t rs r r t st s s s r t t s s r r s r s s t st t s st t t ts r r 2 r st t s s t t r t q s s t s 2 ss rr t t s t r rs s t r st s s s s 2 r s t 2 rr t r r s s r s r t s s s ss 2 t t st t s r ss s s r t s s r t st st t r st r t t r st r t t s 2 s str t r 1 t

24 t st st r t str t r s ss r r t r r s t s r t s s r t s t t t t s t s r str t r t s r t st sq r s t r 1t r r s s r s 2 r r t r t st r t s s s r t t r st r t t st st r t r r s r s s s 2 tr t rt r t r r t rt r t t r r r s r t s s s r r ss st r s s tr t s t t s r s r t t r r r t st s s st t st st r t s t t t t t r t r r t r t 1 t2 t st st r t t s r r st st r t r r s r s s t r s t r s t s t s tr t t s r s t s t t t st t t rt r rs r r t r 2 1 t2 s s r r s 2 r r t r t st s t s t r r s s r s t s t s r s t r s ts r r 2 t s t s s t ss t t d s r s r tr s tt r t s2 s t t n t t st t t s r s r r 2 r t r r t rr r ts r s r r r r rr 2 s ss t s M s tr s s r ts t t r t s t s r r t r s2 s r t t 2 r r s t s x(t) = a(θ 0 )s(t)+a int (θ int )s int (t)+n (c) (t), r x(t) = [x 0 (t),...,x M 1 (t)] T s t t r t t r s2 s t t st t t s(t) s t s r s s int (t) s t r t t t r r s2 s r t d 1 t r r s n (c) (t) t s r s s s t t s s r ts t t t n (c) (t) = Ln(t) r n(t) t s s s s t r r 2 s2 tr 1 ss str t s tr 1 L C M M st s r t rr t t r tr 1 r t s s r L s t t t2 tr 1 t s s t t t s s rs t r a(θ 0 ) s t st r t r t r str t r a(θ 0 ) = [1,e jφ 0,e j2φ 0,...,e j(m 1)φ 0 ] T,

25 r θ 0 s t 3 t t j = 1 tr 1 A int (θ int ) s t st r tr 1 t t st r t rs t t r r s s e jφ 1 e jφ 2... e jφ d 1 A int (θ int ) = e j2φ 1 e j2φ 2... e j2φ d 1 C M d 1, e j(m 1)φ 1 e j(m 1)φ 2... e j(m 1)φ d 1 r t r rr s s r r s t t r θ int C d 1 1 t s r r r s t 2 t s t r q s s t 2 r t s 2s φ 0 = 2π sinθ 0 φ int = 2π sinθ int C d 1 1 r r 2 ss s t t t s s t t rr t t N 1 r s 2 tr s tt s2 s r t t t r s t t t r r s s t tr 1 S int (t) C N d 1 t s r r tt t r t X(t) = a(θ 0 )s T (t)+a int (θ int )S T int(t)+n (c) C M N, r X(t) = [x(t N +1),...,x(t)] N (c) = L N C M N tr 1 N C M N t s t N t s s s r M s s rs t s r s X t s N s s s s s r t M s s rs r s(t) C N 1 s t N t st s s r t s r s S int (t) C N d 1 s t N t st s s r t d 1 t r r s r s r t r s2 s X(t) t t s r s θ 0 r ss s 2 t r r t s s r t ŝ(t) s st t s(t) t t r r s r rr t r t r t 2 t s ss t t t s t t tr s tt r t r s t t t r r s t t t rt r rs t r t t r s str r t str 2 tr tr 1 s t rt t t str t a(θ 0 ) t s s t str t s r s t st r t r t s r s r t t st t ss r s t r

26 + - + r t r rst t r rt r t s d(t) = a H (θ 0 )x(t) s 1tr t 2 2 s t r a(θ 0 ) t t s t t s r s st r t r t t s s(t) s s s s r t s r s t s t t t d(t) t r d 1 s s r t t r r s s r t t t tt rt r tr 1 B C (M 1) M s t tb a(θ 0 ) = 0 s s t 1tr t t t r r s s x B (t) = B x(t) s q t 2 B s t s r s ts 2 2 A int (θ int )s int (t) ss t s t t t t tr 1 B r s 1 s2st t t r w s t s t r s t d(t) w H x B (t) 2 t t r r r r s r t r w = R 1 x B r xb d, r R xb r xb d r t rr t tr 1 x B (t) t r ss rr t t r t x B (t) d(t) r s t 2 t t t r s w gsc = a(θ 0 ) B H w, t s t t rt r rr s t a(θ 0 ) B r t st t rt t s2st t r t rt rr s t w s t t s t s r t r s t rr t r ss rr t t t r st t s s N s s ˆR 1 x B = 1 N BX(t)XH (t)b H, ˆr xb d = 1 N BX(t)d(t), r d(t) = [d(t N+1),...,d(t)] T t r t t r t s s t 2 s s t s r s r 2 st r s s ts

27 st q r s st q r s s s r t t t 1 t t t t rr t r ss rr t r r 2 st t t s s s t t t s x(t) ss s t r t t t s r s r t θ 0 r t d(n) = a H (θ 0 )x(t) s t s s ss s t r tr 1 B s t rt t t str t a(θ 0 ) t r w s t st s t t t r t s t t r r s y(t) t t s s tr t r t s r s d(t) adaptive algorithm r r y(t) s 2 y(n) = w H x B (n), r x B (n) = Bx(t) s s t rr r s e(t) s s 2 t t r t t st w w r s ŝ(t) = e(t) t t t e(t) s r r t r r s s t s2st s t t s t t w s t st st r t t st t J lms (w) = E { d(t) w H x B (t) 2} s t t r r t t rt w(t+1) = w(t)+µ lms w J lms (w) t µ lms t st s 3 r t s t st t s st t s ˆR xx = x(n)x H (n) ˆr dx = d(n)x(n) t t st st r t ˆ w J lms = 2Bx(t)x H (t)b H w 2Bd(t)x(t).

28 t st st r t s s rt t t r r t w(n+1) = w(n)+µ lms Bx(n)x H (n) ( a(θ 0 ) B H w ). st q r s r r t s r rt t s r r r s s r ts M r t s r s r r t r t r t s s s t adaptive algorithm r r r ss s s r t t t s r t 1 t t t t s ss s t r tr s r t tr 1 T C (M 1) r t t r r s s t2 r t r r r t r 2 r t r s r x(t) = e rr(t)x(t) s s st x(t) r t t s r e rr (t) = w H (t)x(t) s t t t s r t r t s t 2 t s s r t w(t) = a(θ 0 ) B H T(t)w(t) rr r ts q r t s r s t st t J cm (w) = E { w H x(t) ν 2}, r ν s st t s t t r t r s s t r w r r s t t r s t T(t) w(t) r t t t r ss s t 1 st t s J cm ( T(t),w(t) ) = E { [a(θ0 ) B H T(t)w(t)] H x(t) ν 2}, t w(t) t r r t r s 3 r r d r < M r r t r 2 s t t t r s tr t t r r s 3 t r t r s r s s t r r s q r s t 2 d s t st r s ts r t st t d r r 2 s r t s st st r t t r s st t t r s t t

29 P P T(t) w(t) s t r t r s r s t 2 T(t+1) = T(t)+µ T e cm(t) x B (t)w H (t), w(t+1) = w(t)+µ w e cm(t)x B (t), r e cm = 1 w(t) H x(t) s t rr r s t t t r s tr rr s s t t t r t s x B (t) = T H x B (t) t r t s tr s r t Pr s t s t s s t r t r t s r t r t t r t t r r s r 2 t st Pr t P t t t s s r s s s t s s s t P t r t t P s t t s rs t t s t r str t r s r r t s t r t s t t r r t s r s r t s t r s s t ts s r r s r r t r t t r st r s t r t r r t s r s ts rt rr 2 t t s rt r s 2 t t t r t r t s r s tr t s t t s t t s r s t r t st r q r t s r t P t t t r st Pr t P t s s r t s s r t rr t str t r t s s t r t st r q r s r s r s s t r t s s r r st st r t r r r q r s 2 r s s r s t r 2 t st 2 Pr t P st rt t t tr t st st r t t r st t t s rr t t r tr 1 r t t ts r s s r s 2 rst t s ss t t s s r r r s ts 2 t s s t t t s s rr t tr 1 s ˆR NN = 1 N sf N (c) (N (c) ) H, r N sf st s r t r s r s s N (c) s t r s s s ts tr 1 ˆR NN s r t s t t t s 2 s t

30 r r s t t ˆR NN = ˆL ˆL H, t t st t rr t t r tr 1 ˆL r r r t tr2 t r rt t ts t rr t s 2 s 2 t 2 t t 2 t rs t st t rr t t r tr 1 X (t) = ˆL 1 X(t), r X (t) s t r t tr 1 X(t) t r s s d s r r 1 t X (t) r s t t X [s] (t) r r t st t d t r r s r rr t r r s t s s t s rt t t t t t t s r r 1 t s t r t t t r r t st r r 2 t t r t s 2 t s s s s r s r t s t t st s t 2 t 2 t st t rr t t r tr 1 ˆL s s t t t t X [s] (t) = ˆL X [s] (t). s s s t t s2st r t P s t t s t r t t t r s t s r s ts t t t r x [s] (t) t t s rt t t t r t t t t r t r noisy samples prewhitening SVD low rank approximation dewhitening 4 adaptive GSC beamforming filter r r 2 st st r t r t r t s t s t t 2 t t st t s s t x [s] (t) s s t t t r t t t X [s] (t) = [x [s] (t N +1),,x [s] (t)] s s s t r t 2 s rt t t t r t r s s t t t s s t N s s ts

31 P P r r r s r t s P r s t s t tr s r t t s 2 t t t r str t r s r s r t r r 2s r t s t rr 2 t r r s r rr t r rr 2 t r t r r t s t s r t s rst t tr 1 T vit C M M s t s t t t r t t s r str t r v = [1,e jφ,...,e j(m 1)φ ] T t s s t t ˇv = T vit v = ( ) M 1 e jφ κ 1 κ 1 e jν e j(m 1)ν, r κ s 1 r t r t t r t s s r q t s rr t t t r s φ s t s ν t t r str t r s st r s t r s 2 t rt s s ( ) 2K sinφ ν = arctan, 1 K 2 +(1+K 2 ) cosφ r K = (κ+1)/(κ 1) r t s r t t t s r s t s r φ = 0 t t s s s t t s t r q s φ 0 φ int s s t t s r s r r t 2 t 2 t 2 t t s 2 P φ0 = diag([1,e jφ 0,...,e j(m 1)φ 0 ]) s t t t s r s rt 2 s r o s t s t r r t s t tr s r t r t t ˇx(t) = T vit P φ0 a(θ 0 )s(t)+t vit P φ0 A int (θ int )s int (t)+t vit P φ0 n (c) (t) = ǎ(θ 0 )s(t)+ǎ int (θ int )s int (t)+ň (c) (t). t r ǎ(θ 0 ) t tr 1 Ǎ int (θ int ) st r str t r ň (c) (t) s st r s t ts r r 2 t s t t ň (c) (t) = L n(t) L = T vit P φ0 L s s q t s t t t v t φ = 0 t t s r φ 0 2 s tt K < 1 t t 2 r 0 o s s t t r t s r r s t t r r s t t r t t s r s s r s st ts r s t t s r s t s 2 rt 2 r 2 t r r t s r t s st t t tr s r s rr t t P r t 2 s t

32 st t ˆL = T vit P φ0 ˆL. r s r 3 s t P r ss rst t s2 s s s t 2 P φ0 t noisy samples Phase shift VIT HASP 4 adaptive GSC beamforming filter r P r t t s r r t t r t t t s s r 2 t ss t r t P r ˆL s s ˆL r s t s t t ˇx [s] (t) t s s t t t t r t s t s t t t T vit r t r st Pr t P s t s t str t r t s r tr 1 s r r 2 rr t r ts r r str t r t r st r t P 2 t t 1 s s s r s 1 s r s s r rst s rt t t s2st r r t st t t s str t r t ts rr t t t s str t r rr t st t r t tr 1 st t t st st t t t s t 2 t r t tr 1 t r t t t r t s ss t t t s s rr t s r s 2 n (c) m+1(t) = ρ n m (t)+ 1 ρ 2 n m+1 (t), r 0 ρ < 1 st s r t s rr t t t s rr t

33 P P signal-free samples find prewhitening equation estimate equation parameters build prewhitening matrix D data whitening whitened data 4 r t r st r t r str t r s t rr t t r L s t ρ 1 ρ L (k) = ρ 2 ρ 1 ρ 2 1 ρ 2 0 ρ M 1 ρ M 2 1 ρ 2 ρ M 3 1 ρ ρ 2. r t rr t str t r t s rs r t (k) s s rt s t tr 1 D t t rr t t s t s r t s ss t t t s str t r t s s s r r t r t tr 1 s 2 D = J 2 ρ J 1, r J 2 J 1 r t s t tr s [0 (M 1) 1 I M 1 ] [I M 1 0 (M 1) 1 ] r t st M 1 s s rs t rst M 1 s s rs r s t t tr 1 t r s tr 1 t r t s s t t t s r r r rt t t t r 1 ρ 2 N = D N (c) = D L (k) N = J 2 L (k) N ρ L (k) J 1 = 1 ρ 2 J 2 N. q t s s t t t s s t 2 t t s ts r r t

34 s r t t t r str t r t st r t rs t r t r t s r s r r s r tr 1 J 2 t st s s t t s s r s s r s st r t t r ss r 2 t P t t t r s t 2 t P tr 1 s r s ts t r t t t t r x (t) = D x(t). s t st r t t s s t t r t 2 t t t r r r r s s 2 s t r t t t st t t 1 t s rr t tr s t s 2 t t s s t r t t 1 t2 t r t st s r t r q r s t t t t s s t t t s r s t t s t r rst t t s s s X m = X m diag(e m ), r X m = X(mN), e m = [e rr (N(m 1) + 1),...,e rr (mn)] H m t s t 1 r s t s r s t r t t st t s t r tr 1 1 t s x(t) ˆR x x = 1 L X m X H m, Ê { x } = 1 L X m 1 N, r 1 N s t r s t N s rt t st t s t t r t r t t st st r t r t T w ˆ T J cm = 2 L B X m ( em +1 L ) w H, ˆ w J cm = 2 L TH B X m ( em +1 N ). 2 r t rr r e m = e m +1 N rt r s

35 t r t t t r s T(t+1) = T(t)+µ T X B e m w H, w(t+1) = w(t)+µ w T H X B e m, r X B = B X m r t 1 r t s s t t s r t s r r t s r t 2 r s t t t t r t t t tr 1 s s t P P s t s t r s s t s t q r st t t t s s r t s t2 s t t 1 t2 2s s t s s t t t t 1 t s t ss r s s t s r r s t t s r s r r t t t t 1 t2 st s t t t t s s t t s r s r s s t s s r t2 r s r s t s t r t s t t s r r r s t r t s s s t 1 t2 r s t s r t s t s t r t r t s r t s r s tr t t q r t r r t s 2 s P tr 1 t r r t s r s t 2M 2 2M s t s t q r t 1 t2 s s s P P r t P r t s r s t tr 1 t t s r r q r s s t t t t t st s sts 4M 2 N +22N 3 t s t st t t t r s t s 2 2 r s i b t r t s r r s t t s r ss r i b /N s r s s s P P i b = N t t rs s r r st 2 t t t st t s s ts r t s t s t ts s s r r r 2 s tr t s s t t r2 l 2 r r s s r s r r t r t t s r s s t s 1 r t t t t r r s s r t r r s r

36 t t sts s r t st 4M 2 +4M 4 t t P t s P t s P t s P t s P t t P t s P t s i b t r t s r P t s i b t r t s r P t s N t r t s r P t s N t r t s r 8M 2 +4M +14Mr 10r +2 6M 2 +2M 4 8M 2 N +2dMN +22N 3 +2dM +4M 2 + 4M 4 8M 2 N +2dMN +22N 3 +2dM +4M 2 + 4M 4 10M 2 +2M +14Mr 10r +2 8M 2 N +22N 3 +2dMN +2dM +8M 2 + 4M +14Mr 10r +2 8M 2 +8Mr +4MN +2M 6r 2N 8M 2 N +22N 3 +2dMN +2dM +8M 2 + 4M +14Mr 10r +2 1 i b (8M 2 N +22N 3 +2dMN +2dM)+ i b N (8M2 +8Mr+4MN+2M 6r 2N) 1 i b (8M 2 N +22N 3 +2dMN +2dM)+ i b N (8M2 +8Mr+4MN+2M 6r 2N) 16M 2 +22N 2 +2dM +2dM/N +8Mr+ 4MN +2M 6r 2N 16M 2 +22N 2 +2dM +2dM/N +8Mr+ 4MN +2M 6r 2N s t t o o o o o o o r s t 2 r s t s s s r r t s t ss s s r t s tt r rr t 2 s t str t r s rr t s s t t ρ = 0.2 ρ = 0.9 t s t s r t s 1 t r r s s t t r = 10 t r s ts r t r t t r t sq r rr r RMSE(t) = E { s(t) ŝ(t) 2}. s r 3 s t t t s t s r s t s s t t s rt t t t 2 t r s s s t ss s s s t t r t s s r tt t r t r t r s ts r s t r s t r tr s r r s r t r t t t r s s r t r s s s t t st r t r s st t t rt r r

37 RMSE RMSE r r s r ts r r t s str t r 2 s ss Pr s r s s r s s r t t r r r r rs s t t r r r t st s 3 s s t t µ lms = r r t s r r s s 2 t t t r r s s r s s µ lms s t r t t r s t s t s s t s s r s s r st s 3 t t r s t s s t s s t t 3 t µ lms r r s s r s s t r t r r s ts r t r t s r s r 10 2 Batch GSC white noise LMS-GSC white noise LMS-GSC colored noise Proposed DP-LMS-GSC 10 1 Proposed HASP-LMS-GSC Proposed VIT-HASP-LMS-GSC 10 2 Batch GSC white noise LMS-GSC white noise LMS-GSC colored noise Proposed DP-LMS-GSC 10 1 Proposed HASP-LMS-GSC Proposed VIT-HASP-LMS-GSC samples samples r ρ = 0.2 r ρ = 0.9 r t t2 r t s rs s s s r N = 50 t t t r t r t r r t t s t t 2 r t t r s s t t t s t s rr t s t s rr t s s 2 s s r t r s P s t r r s t 2 t r r s t P s s r st 2 r r s t t st r r P s t rt r r t s r r r s t t s t s tt t t s t s t s s t st t r t r s t s2st s t t r s P r r s s r st r s t t t s r 2 t r s P r rr t

38 r t t t s t s t t t s s t r s s r t t t t rt s s s t st t w t s s r t t t rt t t s s r t t t rt t r s s r Pr s P t t t r st r t r s s r Pr s P t t r 2 st st r t r s s r Pr s P t t r r tr s r t s r 2 st st r t r s s r t s t t t rt r r t t s s r P P Pr s t s Pr s P Pr s P t t t rt r r t r s s r t r r t r 2 st st r t r s s r t r r t r r tr s r t s r 2 st st r t r s s r s r r t t s s r s r r t t r 2 st st r t r s s r s r r t t r r tr s r t s r 2 st st r t r s s r

39 RMSE RMSE RMSE str t r s t r t r r s tt r t t s r t s t s s r r t s t s r t r t s r r r st s 3 s r s t t µ w = µ T = s t st r s s r r s r t s r t µ w = /N µ T = /N r t P s s t st s 3 s r s t 2 r s t µ w = µ T = r s t t st t2 r t s s s t t t t s s s r r r r r t r s r s r r t r r s s r ss t2 t t s t r st r t s s t t t r t 2 r s r s P s s t t r r t t r t s P s s r t r r t P samples samples r ρ = 0.2 r ρ = 0.9 Batch GSC white noise RR-LMS-GSC white noise 10 0 RR-LMS-GSC colored noise Proposed HASP-RR-LMS-GSC Proposed VIT-RR-LMS-GSC 10-1 Proposed DP-RR-LMS-GSC Proposed HASP-BW-RR-SG-GSC Proposed VIT-HASP-BW-RR-SG-GSC samples r t t2 r t s rs s s s r N = 50 t r s s s t 2 t t t 1 t2 t r t s s P s t t s s s s t r t t t r s t s t 2 t t s s t t st r s s t s 3 s s t N = 50 t r t r t s t

40 RMSE RMSE s 2N t s r r s t t P ts s t t P t s t 2s rt t r r t s s t s st t t r t s t t t s s r st s t s t rst s s t P r s s 2 t t t r r t r r 1 t t t r s ts t r s t t t r s st st t samples 10-1 Proposed BW-RR-LMS-GSC white Proposed HASP-RR-LMS-GSC Proposed VIT-RR-LMS-GSC Proposed HASP-BW-RR-LMS-GSC Proposed VIT-HASP-BW-RR-LMS-GSC samples r ρ = 0.2 r ρ = 0.9 r r t2 r t s t r2 N r t t s s r s s r t t P t P P t P r s r t r r r s t r r s s r t ρ = 0.9 r t P s s r r t t t s r t t P s s r t t P r t t t t r s s 3 s s r t r r t s P s tt r t t P N > 80 t P s ts st r N > 50 r t t t t r s s 3 s s r t r r r t s s s r t s 3 2s rt t r t r r r t s s 2 r t P 2 r t s s s P r t s t st r r r s t t t r s s ts s s t t r s ts r r2 rr t ρ r r

41 Final RMSE Final RMSE Final RMSE Final RMSE Batch GSC white noise Proposed DP-LMS-GSC Proposed HASP-LMS-GSC Proposed VIT-HASP-LMS-GSC RRGSC colored noise Proposed DP-RR-LMS-GSC Proposed HASP-RR-SG-GSC Proposed VIT-RR-LMS-GSC Proposed HASP-BW-RR-SG-GSC Proposed VIT-HASP-BW-RR-SG-GSC N N r t2 r t s r t2 r t s r r r t s t r2 N ρ = 0.9 s s t t t r t r s P r s s 2 st t t t r s ρ r s P s r2 r s s t t r s ρ t st t r t t t t t s s r s s t r t r r r t s r t s s Batch GSC white noise LMS-GSC white noise LMS-GSC colored noise Proposed DP-LMS-GSC Proposed HASP-LMS-GSC ; r t2 r t s 10-1 RRGSC white noise RRGSC colored noise Proposed DP-RR-LMS-GSC Proposed HASP-RR-SG-GSC Proposed HASP-BW-RR-SG-GSC Proposed VIT-HASP-BW-RR-SG-GSC Proposed VIT-RR-LMS-GSC ; r t2 r t s r t r N = 600 s s ts t r2 ρ t t s s t P s t r s s s r t t s t t t t s s

42 r2 t s t r t t t r r t r 1t r r s r s s s t s t r t r s r s s t 2 t r r t r t s r t s s r s t P t P t P r t s r t r t t P P r t r r t r r s s r t s r s t P t st st r t t P s s t rr t str t r t s s t st st r t t s ts s r r r r t r t t s t r t t s r s st st r t r q r s t t t s r t r t t s s s r s r t ts ts t r 2 2 r ss r2 r t t st s r s s r s t t t t P r t s r r t r t s s tr s r s t r s t t s s t r t t s t t s r r t s r r s r r s s r s s r t s r s t r t r t t s t r 2 s s t r s t r s t r t t s s t s

43 P t 2 r r t s st r s 2 r t 2 r t s s t rr 2s str t r s t t 1 t t s t q s t rr 2 s s t s r t t r t r r ts s rr 2s t r tt t r t r r t 1 t t s str t r s t r r t r rr 2 ss r t r r s t t s t r t t 2 t r 3 t rr 2 r r t 2 t r t t t 1 t t t t s r str t r t t r s r t r s t t rr r t r s 2 r2 tt r r r t 1 t t t s t2 r r tr s t r t rr 2 s s r r r t t s r r t r P s t s t t t r ts str t r r t s r t r 3 s r s s s s str r 2 t str ts s t t t t rt t t r s str r r t s r t s r t r rr ts s r t 2 s t r 2 1 t t t s s r str t r s r s t s t t R s r s s r t r s2st 1 t2 2 t s r s r s t r t 2 r s t r s s t s t q t2 t r r r t r t r t r s R s R s t r s t s 1 s t s t s tr t t s s t t t s r s t ss r t t r s ts t r s R r t s rr 2 r ss t s r s ts r

44 P s t 2 s r2 s t t s r t r s i = [s i (1),...,s i (N)] T t t tr s tt s2 s s i (t) ss t t t i t s r s s2 s r t t s R s rr 2 r r t2 str t r r t r rr 2 s s s t r t r t s s t t 1t s r r s rr 2s r t φ i 3 t θ i t r t rr t i t s r r r t r t i t s r r s t rr 2 t 3 t θ i t φ i s t t r t s 2s a (m 1,m 2 ) i = e j(m 1ϕ (1) i +m 2 ϕ (2) i ), ϕ (1) i = x cos(θ i )cos(φ i ), ϕ (2) i = y sin(θ i )cos(φ i ), r m 1 m 2 r t rr s t s t s t x y r t s r s t 2 x y r t t r t s s s s r s 3 M 1 M 2 r r t tr 1 A i C M 1 M 2 t s s 3 t r s d s r s t r s r r s t 2 d 1 X(t) = A i s i (t)+v(t) C M 1 M 2, i=0 r V(t) t s 3 r 1 t ss s s s t ss s2st s r q t 2 s t t r 3 r X(t) x(t) = vec(x(t)),

45 P s t t s2st r r t s s2st s tr s r t s t r 3 t t r t t t d st r tr s A i st t rd s t r st r t s r A C M 1 M 2 d s s t s s2 s r rt r r t tr 1 S = [s 0,...,s d 1 ] T C d N r s t 1t t t s r X = A 3 S T +V C M 1 M 2 N, r V s t M 1 M 2 N s t s r t s r str t s t r ss r t t r t s r URA r s t r t t s r r t t t rr 2 st s r s s q t s 2 t t t st r tr 1 A i r 2 t t r r t t t t rs r q t t s s r t t s s r str t r s A i = a i (ϕ (1) ) a i (ϕ (2) ) r a i (ϕ (1) ) = [a (0,0) i,...,a (M 1 1,0) i ] a i (ϕ (2) ) = [a (0,0) i,...,a (0,M 2 1) i ] r t t rs r 2 r2 s 3 r t t rs r 3 t r t s t t s 1t t rr 2s t R s s A i = a i (ϕ (1) ) a i (ϕ (2) )... a i (ϕ (R) ) t r t s r q t rt r 1t t X = A R+1 S T +V C M 1 M 2... M R N, r t st r t s r A s s 3 M 1 M 2... M R d P s t t t t s t rr 2s R 3 t r t s s t s s t t t t ss t t t s t rr 2 s s s t s st s s t r r t t s t

46 P t t t s rt t s t ss r s t r r ss r R s s rst t r rt r t s d(t) = a H (ϕ (1) 0,...,ϕ (R) 0 )x(t) s 1tr t 2 2 s t r a(ϕ (1) 0,...,ϕ (R) 0 ) t t s t t s r s st r t r t t s s 0 (t) s s s s r t s r s t s t t t d(t) t r d 1 s s r s r t r r s 2s ϕ (1) 0 r t r t st t r t rr s θ 0 φ 0 r st t t t r r s r rr t t tt rt r tr 1 B C (M 1M 2...M R 1) M 1 M 2...M R s t t B a(ϕ (1) 0,...,ϕ (R) 0 ) = 0 s s t 1tr t t t r r s s x B = B x(t) s2st t t r w s t s t r s t d(t) w H x B (t) 2 t t r r r r s r t r w = R 1 x B r xb d, r R xb r xb d r t rr t tr 1 x B (t) t r ss rr t t r t x B (t) d(t) r s t 2 t t t r s w gsc = a(ϕ (1) 0,ϕ (2) 0,...,ϕ (R) 0 ) B H w, t s t r rt r rr s s t t st t rt t s2st t tt rt s t r r t r t s t r s t q t s t r st t r t s s t st t R xb 2 t r N s s ts s s q t t s t (R+1) t t t s r X s vec ( X(:,:,...,1) ) T vec ( X(:,:,...,2) ) T [X] (R+1) = vec ( X(:,:,...,N) ) CN M 1M 2...M R. T

47 P P R t st t s t s ˆR xb = 1 N B[X]H (R+1)[X] (R+1) B H, ˆr xb d = 1 N B[X]T (R+1)d, r d = [d(1),d(2),...,d(n)] T Pr s R s ss s s t t r 3 r x(t) X t s r ss t s s ts t s str t r t t t t s r str t r t t 23 t s X s s t t t r t t s s r s 3 tr 1 rs s t rt 2 r s t r s s t s t s 23 t t t st s r [X] (1) = [X(:,1,1),..,X(:,1,N),X(:,2,1),...,X(:,M 2,N)], [X] (2) = [X(1,:,1),..,X(M 1,:,1),X(2,:,2),...,X(M 1,:,N)]. t s t s 2s r r s r t t r r r r t s s t s r t 2 t R ts t r s t s ss s t r s s ts s rt 2 r s t r NM r st N s s ts t ss s t t R s t s t R+1 s t t s r X t t t t t s r str t r t t r s s t R r t t t s t r 1-D GSC 1-D GSC 1-D GSC r r t R r t

48 P rst t t s r X s t ts R+1 s R ss s s 1 t r s t t r t s [X] (r) 1 2 k (r) s tr sts t t t t r 2 t s s r s r s t t t s2st s 2 t r s t s d (r) (k r ) [w (r) ] H x (r) B (k r) 2 r r t s w (r) = [R (r) ] 1 r (r), r x (r) B (k(r) ) = B (r) [X] (r) (:,k r ) R (r) s t rr t tr 1 x (r) B (k(r) ) r (r) s t r ss rr t t r t x (r) B (k(r) ) d (r) (k r ) r 2 s t d (r) (k r ) s t t t t 2 s t r rr s t t s r s 1tr t r t r t t t t rs r t s s w (r) gsc = a(ϕ (r) 0 ) [B (r) ] H w (r). st t t rr t tr s t r ss rr t t rs r t t r t s t s [X] (r) r t t t s r s 1 t 2 t r t tr s s t s ˆR (r) = 1 N B(r) [X] (r) [X] H (r)[b (r) ] H, ˆr (r) = 1 N B(r) [X] (r) [d (r) ]. t R t rs r t t 2 s t r t t r t t M 1 M 2...M R s r rr 2 s s r t t r t s t r r r t t st t t rt s r s w rd = a(ϕ (1) 0 ) a(ϕ (2) 0 ) a(ϕ (R) 0 ) [B (1) ] H w (1) [B (2) ] H w (2) [B (R) ] H w (R). s s rt 2 r s t r s s t s s s t t t r [ˆR (r) ] 1ˆr (r) t t s r t 2 s s t ss t2 r t t s r rs t s t2 t s r t t t s t r s t t t s t t s str t r t 1 t2 tr 1 rs s ss r q r s t rs tr 1 t s 3 M 1 M 2...M R M 1 M 2...M R 2 1 t t t s t2 t t t R r q r s R tr 1 rs s s 3 M r M r

49 r r t r r r s2 st t t rr 2 s2st s tr 1 rs r t r t2 2 ss r2 t rr 2 s2st t r s s ts s s r s t t r t s t r tr 1 st t t s t t r t t rs t r tr 1 s s s r tt r t r t t r q t2 t s t s t 2 st t r t t ts t t t r tr 1 st t ss s r s s s t s str r t t s r s s ts r s t t t t s 2 rr t tr 1 s r t 2 s tr 1 t t rr t tr 1 R L = R+I l, r I s t t t2 tr 1 R s t rr t tr 1 l s t r s t s r 2 t s r s r r2 r t 23 t t t s t s t r s s t t t r s t t r s P(θ,φ) = w H gsca(θ,φ). t t s s t r r s s s s r Elevation Azimuth Elevation Azimuth t r s s t t t r s s t l = 0.8 r t t s t r s s t t r r t s s t t t t r s s r r r t t r r str t s s ts P(θ,φ) = 1 t s r s r t r t r r t r s t r r s s s t r t s r s r s r s t t r s q t2 r r t 1 s t t t s r s r t

50 P t s t r s t r s s P(θ, φ) t r s r t s t r r s s s s 1 t t 1 t t s r s r t r2 r t t r r s r t s r s r s s t s s r 2 r t s r s r t s t rr t tr 1 t s t r t 2 t t s2st s t2 t t t r r s s t t s s t s r s q t2 s t s 1 t t s t r r s s s s r t t t s r r r t s t q s t t s s ts r t s t s t s s s P s s r r t rr t s s t t r2 r r s rt t t s t s r s r t r r rs t (θ i,φ i ) {(0 o,45 o );( 75 o,55 o );(35 o,80 o );( 20 o,10 o ); (80 o,35 o )} s r s (θ 0,φ 0 ) s s r r r ϕ (1) 0 ϕ (2) 0 r t t t t ss R r s s s t s t s r t s s t t r 2 t r t s t s t t r r s r t r rr t s s t t r2 r s t s SINR = w H rd [A] (3)(:,1)[A] H (3) (:,1)w rd w H rd ([A] (3)(:,2 : d)[a] H (3) (:,2 : d)+σ2 vi)w rd, r σv 2 s t s r s t ˆR xb ˆR (r) t l = 0.8 r t l = 0.8 r R rr t tr 1 t t r t ss R s s r t r2 r s s N ss s s r s N t R s t N = 20 t s s r s r s 2 s t t t s s s 1 t N = 100 t s r r t r s t s s r r s s t t t s tt r r t R t s r2 r t t s t r t t r s t t r s s r s t t r s s s 1 t N = 50 s s t s 3 t rr 2 s r t s s t s t M 1 = M 2 r s ts r s r r t s s t t ss st rts t s tt s r 2 t s t r t s s r s r t R s t s s t t r w rd r t s r t 2 t r r s r s t t t M r 1 r s

51 SINR SINR (db) Classical GSC optimal Classical GSC 2-D GSC N r t t r 2 t ss r s r r2 r t r s s ts N Classical GSC 2D-GSC SNR r t t r 2 t ss r s r r2 s s t t t r t r r 2 tt t s t t r r s r s M r > d s s r r r M 1 = M 2 5 t R s r r M 1 = M 2 > 5 t R r s r t r 2 t t t t r t t s s t s s r s t s r s t s s r s r t s r r 2 s 2 r r t s t2 s r t s r t s t r r s ts r t r

52 SINR (db) P Classical GSC 2D-GSC M 1,M 2 r t t r 2 t ss r s r r2 rr 2 s 3 t s s t s r t q Classical GSC 2D-GSC Classical GSC plus unfolding 2D-GSC plus unfolding 1.2 time (s) N r t t t rs s N r t s r s s t t t t s r t t t s r t s t r R s s t t t st r t t ss s r t t t s s r r r 2 2 t r r t R s s t t t r t t ss

53 r2 s t r t s rr 2 s s t t r rs r s t ss t2 s t s s s r s s s t r s s t t t t s t s t2 r r t t r r r rs s 2 s R s s r r t t s r s 3 tr 1 rs s r t t 1 t2 t t s2st t t s t R s s r s t s s s s R s t t t t t s t2 t s t r s ts s t t r2 t r s s r t ts r s ts s r s s s t 2 t r t s s s r t t r s r s s t t r t t t t t r r s r t r t s s s r t t r s r s s s r ss s t R s 1t t ts t r r 1 t2 tr t2 t t r r

54 P

55 P P r q t 2 r rs ss rr s s r t t t r s t t rt st 1 t t s r r q 2 s ts r q r r r r r t r t s2st s s s t r s s 2 s2st s ss 2 s t s s t t t ss s t r r r r r r t t s2st s r r t r s t r t r t t t t t r q 2 s ts t r s r t t 2s t s r s r s 2s t s t 2s r r s t 2 t t s s t s s r t s t q s s r rr s s r t s t r r s r s r r r q 2 r t r rs s s r r s r s t t s s s s r r r s t s st t s 1t r s s s q s r s r t t q s r st t s 1t r s s s t r r s s r r s s t t P t s r s t s r r t r r 1 ts t t P r rs st sq r s tr t q r r t t 2 tr t P s t r P r rs st sq r s tr t q r s s s t 1 t t r t s r r q r t s r s t st t r2 t s t r t rr t t s r s t 2 r s t t

56 P P t P s t r t s r s s t 2 2 r rs s rs t st t st r tr 1 s r s t sr t r t s rs t t s r t t 2 s sq r rr r s r t r s 2 r st r r str t s s r t t r s st t s q t t rr 2s s s t s t rs t r s t URA ULA Interference r r t s s s t t t SOI t s t r st t t r r s s t B s t r r t s rr r r t t r r t 2s r r t r t r r t r s t t m t t r tt s s t 2 s s d 1 x m (t) = s i (t τ i,m )+v m (t), i=0 r τ i,m s t r t 2 t s r i t t m v m (t) s t ss t s r s s r s t r rs t

57 r s s r t t rs r r s t r 2s d 1 x m (t) = s i (t) δ(t τ i,m )+v m (t), i=0 r t s t t r t r δ(t = 0) = 1 δ(t 0) = 0 r r t r t t s t rs s t t t 2 s s 2 t t t δ(t τ) st t t t 2 s s t t r s r rs t s t st t ŝ i (t) r s i (t) s r t t t ts y i (t) t r r rr s r r t r t 2 s s 2 t r r s 2 r s r q 2 t s s t s r s s B = [ω min,ω max ] r q s t B s t t s r t 2 t t s t t s t r 1 t t t 2 s r t t r r ss t r s s t 2 s s s r r 2 t m r s r s t r 2 t r t L t s r s s r 2 r ts w m,l r l = 0,...,L 1 M = 0,...,M 1 r t s M t s r s s t rs t L t t ts t r str t t r s s tt t y i (t) = M 1 m=0 L 1 x m (t lt s ) w m,l, l=0

58 P P r T s s t s r t M s t r t s L s t t t t t 2 r t t t r s tr 1 s tr s x 0 (t) x 0 (t T s )... x 0 (t (L 1)T s ) x 1 (t) x 1 (t T s )... x 1 (t (L 1)T s ) X(t) = x 1 (t) x 2 (t T s )... x 2 (t (L 1)T s ) C M J. x M 1 (t) x M 1 (t T s )... x M 1 (t (J 1)T s ) t t t t q t s r t r r s t r 2 st s s t t s t 2 s s t r t t s s 2 r r t r st r t r x(t) = vec(x(t)) r t r vec( ) t r 3 s ts r t 2 st ts s s r r t r w i t t r ts w m,l s r t t r t t t r q t y i (t) = w H i x(t). r t r q 2 r r s t t q t r r tt 2 r r t r t 2s s r t s 2 r r q 2 d 1 X m,l (ω) = a m,l (p i,ω)s i (ω)+v m (ω), i=0 r ω s t r r q 2 t rr 2 s t t r t r t s2st t i t s r s t s t p i a m,l (p i,ω) r ts t st r t r s a(p i,ω) = vec ( A(p i,ω) ) C ML 1, e jωτ i,0 e jω(τ i,0+t s)... e jω(τ i,0+(l 1)T s) e A(p i,ω) = jωτ i,1 e jω(τ i,1+t s)... e jω(τ i,1+(l 1)T s) CM L. e jωτ i,m 1 e jω(τ i,m 1+T s)... e jω(τ i,m 1+(L 1)T s) r a(p i,ω) s t t s θ i st t t r s r t p i s 2 t t ωτ m = m x λ 1 2πsinθ r r 3 t t tr r q 2 2 s s t r 3 r q 2 Ω = ωt s t

59 s st t t µ = x /(ct s ) t r r t q t s 1 e jω... e jω(j 1) e A(θ i,ω) = jµωsinθ i e jω(µsinθ i+1)... e jω(µsinθ i+(l 1)) CM L. e jµωsinθ i(m 1) e jµω(sinθ i(m 1)+1)... e jµω(sinθ i(m 1)+(L 1)) t q t s r t r t r t r t s t s r s t 2 r s r t t t t s t r q 2 r s s t s t r w P(θ,ω) = w H a(θ,ω). s 1 t s s r t r s s t t r w = 1[ ] T r r M = 4 L = 5 2 t 2q st t r T s = 0.5T min x = 0.5λ min r T min s t r t st r q 2 t λ min ts t t s µ = 1 r r 2 s s t r q 2 2 r t r q 2 r s s w st r t 0 t r r r t r s t q r t str t r q 2 r t r rs

60 P P t s rs r r r s r r q 2 r t r r s t s s t t r rst r s t t s s t s rs s r t 1t s s r r s s r t t t s rst s r t r r tr s r s r s s t s s t r r w(x, t) r P(θ,ω) = w(x,t)e jω1 c sinθ x e jωt dxdt, r c s t s x r r s ts s s r t r 1 s s s t s t r w(x,t) 2 r q 2 r t r s s P(θ,ω) t ts s rs r r tr s r t t s r t 2 ts r ss t t 2 t s st t t s ω 1 = ωc 1 sinθ ω 2 = ω r r t t s t t r s tr t t s r t t t rs s r r tr s r P(ω 1,ω 2 ) = w(x,t)e jω 1x e jω 2t dxdt t q t2 r r ω 1 = ω 2 c 1 sinθ t s s 2 r t t 1 c ω 1 ω 2 1 c. t t s s t t 1 r q 2 ω max 2 rt r t t s t t r s tr t t r ω 2 ω max s t 2 ω s t t s t t t r s s s r q 2 t s t t s tr 2s t r t P(ω 1,ω 2 ) = P(cω 1 /ω 2 ) s r s ts cω 1 /ω 2 = sinθ t s ss rt t t t s t t r s tr s 2 t θ r t s r t s t r q 2 s r 2 t r 3 r q 2 Ω = ωt s t t r 2 s r t s s P(θ,Ω) = w[m,n]e jωmµsinθ e jωn, m= n=

61 r m s t t 1 n s t s r t t 1 t r ts r s t t t t s r t t t s r s s st t t s r r Ω 1 = Ωµsinθ Ω 2 = Ω t t s r t s t t r r s s P(Ω 1,Ω 2 ) = w[m,n]e jω1m e jω2n. m= n= 2 s x = 0.5λ min T s = 0.5T min t s t t µ = 1 Ω max = π r r t r s t 1 (Ω 1 /Ω 2 ) 1 s r 1 st s t r r 1 st t s t t r r s s s r s t t r r s s t r r s F(Ω 1 /Ω 2 ) Ω 1 /Ω 2 1, P(Ω 1,Ω 2 ) = α(ω 1,Ω 2 ) Ω 1 /Ω 2 > 1, α(0,0) Ω 1 = Ω 2 = 0. r F(Ω 1 /Ω 2 ) s t rr 2 s t r s r t t2 t r F(Ω 1 /Ω 2 ) = 1 M prot M prot/2 m= M prot/2 e jmπsinθ, r s t r r t r t t st r t r s t r r t r t t s st r t r α(ω 1,Ω 2 ) s ts t r 1 st P(Ω 1,Ω 2 ) t s r tr r 2 t t t Ω 1 = Ω 2 = 0 t t

62 Magnitude response [db] P P s s 2 r s t rr s s t r t t r r t s t t 3 r r s t t r r s t s rs s r t r r tr s r P(Ω 1,Ω 2 ) s Ω 1,Ω 2 s t t r r s α(ω 1,Ω 2 ) ts t r 1 st s 1 t IDFT2(P(Ω 1,Ω 2 )) s s t r M = 10 L = 20 s t α(ω 1,Ω 2 ) = 0 r r ts w[m,n] r t tr s t tr t t r s t t t t s r M L s 3 t r ss t ts r r 2 s t t r w t r s s s t s q t r s t s s r /: DOA 3 [deg] r t r q 2 r s s r t s r t t t r q 2 t s t r t Ω = 0.4π r r r t ts r s r s s rt rr 2 st t s 1t r s 2 s t ts t t s s s r t r s t t r r s s 2 r t s t t s t r s s s s t t t r s rt rr 2 t r t r q 2 2 r r t r st s s r t t t r t s s r s rt rr 2 t st t s 1t r s st t s r t t s t t r s s s s

63 w[m, n] w[m, n] m n n m r t r s t t r w[m,n] r r s r s t sin(θ) = 0 s t sin(θ) = 0.4 r s s s s s t r q 2 r t r t sin(θ) = 0.4 s st t sin(θ) = 0 t t sin(θ) = 0 s r 2 t sin(θ) = 0.4 r t s s t r q 2 r s s r t r t r q s r s t sinθ = 0 r s s t r q 2 r s s r t r t r q s r s t sinθ = 0.4 t s s t rr 2 r t s 1 t s s r s r s t r s s s r r t 2 r q 2

64 P P r t r t s s tr t t t r s st t s s t s r s s x fib:0 (t) = P 0,0 s 0 (t)+p 1,0 s 1 (t), x fib:1 (t) = P 0,1 s 0 (t)+p 1,1 s 1 (t), r x fib:k (t) s t k t t t s r 3 r K s r r t t tr 1 r x fib (t) = P s(t) C K 1, r P s t tr 1 t t ts P i,k s s r2 s r t s 2 rr s r s s s t t t 2s s 1t r r r rr r t s 2 t tt r t s r s s r rr r t r s r t s r q 2 r tr s r t Bank of FIBs FIB 1 Virtual array FIB 2 FIB 3 adaptive algorithm FIB r r t r s s s rr t r t r t t 1 r s t t s st ss r s K max = M/3 t t q t s t t r s s s

65 Magnitude response [db] r r t 2 t str t t s t r s r t t s rt t s r s r s t t r s s s s r s t t 1 t2 t t t r r t t s s t t t 1 r r s r t r t t2 t r s M prot = min{ M/3, L/3 } s t t r t r s s s s sts s t t r q 2 1 s t k t 2 2πk K 2πk j s s t t t r q 2 2 t ts e K s 3 K 2 t s t r s t s t t r t t2 t r r 2 F(Ω 1 /Ω 2 ) = 1 M prot M prot/2 m= M prot/2 e jmπ(sinθ sinθ 0), r θ 0 s t r t t t s s t s t t t k t r q 2 r t r t t2 t r s F k (Ω 1 /Ω 2 ) = 1 M prot M prot/2 m= M prot/2 e jmπsinθ e jm2πk K, s 1 K = 5 s s t t s r tt s t s 2 r r s r q 2 s t r r sin( 3) r s s s t r q 2 s t r t r

66 P P s r s t r t r tr 1 st t t s s t t P t s r s t s r t t q t st t st r tr s s s s r s t t P s r s t r t s r s t s t s r 2 rs r s r 1 t st s s t s s t P s t t r r s t s s t s s s t 2 t s2 tr s r t s t P r P s r d P s t s s t t r r ts t rs r t s rs s s X = d r=1 f (1) r f (2) r f (3) r, r f (l) r C M l 1 r ss s s str t r = r str t P s t s r t r 2 rr 2 t s s rt t t t t r t t s r s t r t 2 r t t t r tr 1 r ts 1 r s d max = min{m 1,M 2 } r t s r 2 r s st t s t t d max min{m 1,M 2,M 3 } t s rr 2 s r ss t s s r 2 r r t r s r ss t tr s r t s s 2 st t t r s 2 t r t t

67 P P s t s r r t t t X = I 3 1 F (1) 2 F (2) 3 F (3) C M 1 M 2 M 3, r I 3 s s t t2 t s r s 3 r F (l) r t t r tr s t r t rs ts s t r s t t t t s r s r ss s ts s st tr s rs X = [F (1) diag([f (3) ] 1,: ) F (2) 3 3 F (1) diag([f (3) ] M3,:), F (2) ] r [F (3) ] m,: r t r s F (3) 3 t s t t r t r s t r t st q r s r t r tr 1 st t tr2 t r2 s r t st t t t r tr s t P s t s t s t t r t st sq r s r t ts s t r t t s t s r t tr 1 r s s 2 t st sq r s s t s t r r r r t s r t s tr s [X] (1) = F (1) (F (2) F (3) ) T C M 1 M 2 M 3, [X] (2) = F (2) (F (3) F (1) ) T C M 2 M 3 M 1, [X] (3) = F (3) (F (1) F (2) ) T C M 3 M 1 M 2, r s t tr r t r s r r r t t r r t 3 t t t rs t t st sq r s s t r t r t r t r F (1) = [X] (1) [(F (2) F (3) ) T ] +, F (2) = [X] (2) [(F (3) F (1) ) T ] +, F (3) = [X] (3) [(F (1) F (2) ) T ] +. t s t r t r t 2 t t r s t ǫ s r X I 3 1 F (1) 2 F (2) 3 F (3) 2 H ǫ, r 2 H s t r r r q t t r s r t s q t t r s r 2 t s t r t s t s tr s s r r 2 s t t s

68 P P r s ts [X] T (1) = (F(1) F (3) ) [F (2) ] T C M 1 M 3 M 2, [X] T (2) = (F(2) F (1) ) [F (3) ] T C M 2 M 1 M 3, [X] T (3) = (F(3) F (2) ) [F (1) ] T C M 3 M 2 M 1, r [ ] (r) s s t r r s t t r r 2 r t r t s r s s 2 s t r t tr r t s t P s t s 1 t t s r t t s t 2 rr t tr s t s ss t R(τ) = 1 N X fib(t)x H fib(t τ) C K K, R(τ) = P R s (τ) P H. r X fib (t) = [x fib (t) x fib (t 1)... x fib (t N +1)] R s (τ) s t s t 2 rr t tr 1 t s r s s t s t t t s r s s r t s s r t rr t s t J t 2 rr t s r tt R(τ 1 ) = P R s (τ 1 ) P H, R(τ 2 ) = P R s (τ 2 ) P H, R(τ J ) = P R s (τ J ) P H. 2 s r t t R s (τ) s r 1 t 2 r t t t P 2 s r F (1) = P,F (2) = P H F (3) = C r [C] j,: = diag ( R s (τ j ) ) q t r tt t s r r s R = I 1 P 2 P H 3 C C K K J. r t s rr t t r t R s t t R noisy = R + V r V s s t 2 s t r t s r r t r 1 t s t t r tr s

69 P P P Pr s t r r r r s t r s t s s t s s t P r rs st sq r s tr r t r s 2 r s r t s s t r st t r2 rr s s r r t r t s r s s st t r2 2 t t r t ss 1 r s r s r s t s r r t t s t t s r t t2 t r s r s s t s t s t t rr t t s r r r2 2 q r s s t s t r t s s t r rs t r s r r r t st t t t s r t rs s t t t r t t s r s t t t s s s t t t r r 2 t t s s t r r 2 r rs 2 r q t t r r 2 s r r t t s t r rs st sq r s r t s t t t t r s t s RLST update updated factors r t t s t s s r t s r t s s t rr t t s r r s t t s t s s r s r r st t r2 t r s r t s t rr t s r r2 t r t s r t rr t t s r s r t 2 st t r2 r s 2 r2 r r t s s r t r t t 2 rr t s 1tr t rst r r s s r t r s s t st rr t tr s 2 t r t t t st t s 1t r s s r s r t t t t t t ss s 2 r t J t 2 t r r t t s r r r s t s s

70 P P r r t s t rst r s 2 t t rr 2 t t s 1 t rt rr 2 t st t s 1t r s x fib (t) s t r t t s s r 3 s rr 2 s x(t) r st t r2 s s t P r t s r t 2 2 s r x fib (t) s ts s t r t s r t P r s t t t r r t t t s s t s r t J t rr t tr s r t t r r r2 s s t x(t+1) R(t+1,τ 1 ) = λ r R(t,τ 1 )+x(t)x H (t τ 1 ), R(t+1,τ 2 ) = λ r R(t,τ 2 )+x(t)x H (t τ 2 ), R(t+1,τ J ) = λ r R(t,τ J )+x(t)x H (t τ J ), r λ r s r tt t r r t rr t tr s st t r t t s r s t s s rr t tr 1 t t t s r r r t st t s t P rr t tr 1 s 2 2 t t t s r ts r t tr 1 s r s t q t s t s 1 t rr t t s r s t s r ss s str t r R(t 1) = [R(t J,τ J ) 2 R(t J +1,τ 1 ) 2 2 R(t 1,τ J 1 )], R(t) = [R(t J +1,τ 1 ) 2 R(t J +2,τ 2 ) 2 2 R(t,τ J )], R(t+1) = [R(t J +2,τ 2 ) 2 R(t J +3,τ 3 ) 2 2 R(t+1,τ 1 )], r R(t j,τ j ) s s 3 K 1 K t s rt t t t t rst t 2 s t 1 t τ J t s 2 rt t t t t t 1t s s t t 2 s ts 2 2 t t P r t s r s t 2 t s s s t s t t t r t rst t tr s s r r 2 st t t s r R s t [R(t)] T (1) = ( F (1) (t) F (3) (t) ) [F (2) (t)] T. t rs F (1) (t) F (3) (t) s 2 r r s t t tr s s s 2 r2 H(t) = F (1) (t) F (3) (t) 2 s r rt r r t s t s

71 P P P select remove append r Pr ss s t r s t t P t rr t t s r t r R(t+J 1) s t t r ss s r st rt t t s r s t t t rr t tr 1 r t rst t 2 τ 1 [R(t)] T (1) r 23 t s r t t [ [[R(t)] ] [R(t+1)] T (1) = T (1) ]:, 1 r(t+1), r [ ] :, 1 rr s s t t r t r t rst tr 1 r(t+1) = vec ( R(t+1,τ j ) ) τ j s s 2 2 r {τ 1,τ 2,...,τ J } r t st st t r t r st s H(t) t s t t [ [[F [F (2) (t+1)] T (2) (t)] T] ] :, 1 [f(2) (t+1)] T C J d. t H(t) t tr s s t t r [F (2) (t)] st t s t st sq r s s t [f (2) (t+1)] T s st t t tr 1 H(t+1) s st t t st sq r s s t t s [f (2) (t+1)] T = H + (t)r(t+1), H(t+1) = [R(t+1)] T (1) [F(2) (t+1)] T+.

72 P P t 1t rt t s s r rs t t r H(t) 2 r t t st sq r s st t r tr t t s t t J H,f (2) = J r(u+1) H(t+1)[f (2) (u+j)] T 2 F, j=1 r u = t+1 J t r r t r tt t r s s s t s r s r r s 2 t st rr t s tr s r t r st t r r r st t s r s s q t t s r r t r r r t 3 t st t t r t t r s t t H(t + 1) s t! t r s t s s r J H,f (2) = 0 H J H,f (2) = 2 J j=1 ( r(j) H(t+1)[f (2) (u+j)] T) [f (2) (u+j)]! = 0, ( J )( J ) 1. H(t+1) = r(u+j)[f (2) (u+j)] [f (2) (u+j)] T [f (2) (u+j)] j=1 t s r t s t t s r t s s t r rs 2 s j=1 H p (t+1) = H p (t)+r(t+1)[f (2) (t+1)] r(u)[f (2) (u)], H q (t+1) = H q (t)+[f (2) (t+1)] T [f (2) (t+1)] [f (2) (u)] T [f (2) (u)], t r r H(t+1) t r tt s H(t+1) = H p (t+1)h 1 q (t+1). t r t t st tr 1 rs r s s r r t st r tr 1 rs s r tt H(t) s t t s s t t [f (2) (t)] T 2 s [f (2) (t+1)] T = H q (t+1)h + p(t+1)r(t+1), r rs r r s s r t t s t t r t s rs H + p(t + 1) r t t r rs t t 2 tr 1 rs r tr 1 A C M M A 1 (t+1) = (A 1 (t)+bc H ) 1 = A 1 (t)+ A 1 (t)bc H A 1 (t) 1+c H A 1 (t)b

73 P P P 2 t s rs t 2 t t rs F (1) (t+1) F (3) (t+1) t s r H(t+1) 2 23 t tr r t t t r s H(t+1) t s t t ts r t s f r (1) (t+1) f r (3) (t+1) = vec ( f r (1) (t+1)[f r (3) (t+1))] T) r f r ( ) (t + 1) s s t r t F ( ) (t + 1) 2 t r t r tr 1 H r (t + 1) = unvec ( ) [H(t + 1)] :,r r s r r r t s r t f r (1) (t+1) f r (3) (t+1) r H(t+1) s t t t r t t t r t s s f (1) r (t+1) = H T r(t+1)[f (3) r (t)], f (3) r (t+1) = H r(t+1)f r (1) (t+1). H r (t+1) 2 F t t r t st r = 1,...,d t t r tr s F (1) (t+1) F (3) (t+1) r st t t rr s t t r s t s r t s t t ˆP = F (1),F (2) = C P ˆH = F (1) tr 1 P t s ts r s r t r r s r t r s t r r r t t r s ˆP s t s ts s rs r W = ˆP + r t t 1tr 1 t2 t s rt t 2 t rs P s t r t s r s 2 s s r s s t s t 2 t r t t sr r t t t t t st t r t s W(t+1) = W(t) ( 2I K ˆP(t+1)W(t) ), s rs r tr 1 A C M N,M N A + (t+1) = (A + (t)+cd H ) + = A + (t)+ A+ (t)h H u H β β pq H, σ r β = 1 + d H A + (t)c h = d H A + u = ( I M A(t)A + (t) ) c p = ( u 2 /β A + (t)h H + k ) k = A + (t)c q H = ( h 2 /β u H +h ) σ = h 2 u 2 + β 2 sr t r t t st t s t s rs A C M N t r r t s r s  + (0) = αa H r α s s t t r  + (t+1) = Â+ (t) ( 2I M AÂ+ (t) ), 0 < α < 2 max [(A H A)] i,j. i j t s st t A + s r 2 t s t t 3 t r t

74 P P r I K s t t t2 tr 1 s 3 K W(0) t 3 t st t P + 2 t t s rs r t t 3 t t P r r s t r t s t t t t 2 s t 2 t r r ˆP(t+1) W(t+1) = W(t) ( 2I K ˆP(t+1) t W(t) ), r t s r s s ˆP(t+1) t = λ tˆp(t+1)+(1 λt )ˆP(t) r 0 < λ t 1 s t s t s t r t 2 r r t r t r r r t t t 2 t 2 2 rr t r r r r s r r str t s r t s t r st r t t t r t w (fr) i (t+1) = [ˆP(t+1)] :,i [ˆP(t+1)] H :,i [ˆP(t+1)] :,i +Q i ( w (fr) i (t) µ fr e (n)x fib (t) ), ( ) r Q i = I k [ˆP(t + 1)] :,i [ˆP(t + 1)] H :,i [ˆP(t + 1)] :,i 1[ˆP(t + 1)] H :,i µ fr s t st s 3 s t s t s t r st t s s rt t t t t t r [ˆP(t + 1)] :,i t s s rt t s t s st ss st t s t t t r t r s r2 t s s t r s 2 r t str t t rr t t s r s t s r s s t r t s r t 2 tr t r t r s tr t t s r r t 2 t t P t r t t tr t t s r s t t t r t 2 r st s r t sr s r t s r r s s 1tr st t t r t s r 3 s t t r r st r ss t s s ts t s s t s t s r t t r s s r t rst s t t r s r s r r s t s s P s t s s r s2 t r 2 r s s t r t r t r s t r st s t t s ts t r r q 2 s t t t r 3 r q 2 Ω = 0.65π t r r s r t r t Ω = 0.75π Ω = 0.85π r s t 2 s s r r 2 s 3 M = 17 t t 2 s t L = 80 s s str t r P = 5 rt s s rs

75 Pr s r st t s r t 1 t2 t 3 t t s s s r s t st t s r F (1) F (2) F (3) r t W = [F (1) ] + rst t [f (2) (t+1)] T = H q (t)h + p(t)r(t+1) [f (2) ] T 8K 2 (R+1)d t H p H p (t+1) = H p (t)+r(t+1)[f (2) (t+1)] r(u)[f (2) (u)] 14d 2 t H q H q (t+1) = H q (t)+[f (2) (t+1)] T [f (2) (t+1)] [f (2) (u)] T [f (2) (u)] 14K 2 d t H 1 p 2 t rs tr 1 t t t r s t t t H 1 p (t+1) 48d 2 +20d t H + q 2 t s rs tr 1 t t t r s t t t H + q (t+1) 96K 2 d t H H(t+1) = H p (t+1)h 1 q (t+1) 8K 2 d 2 t F (1) F (3) r r = 1,...,d f r (1) (t+1) = H T r(t+1)[f r (3) (t)] 8K 2 d f r (3) (t+1) = Hr(t+1)f(1) r (t+1) H r(t+1) 2 F 8K 2 d+10kd t [f (2) ] T [f (2) (t+1)] T = H [ q (t+1)h + p(t+1)r(t+1) 8d 2 +8K 2 d [[F t F (2) [F (2) (t+1)] T = (t)] T] ] :, 1 [f(2) (t+1)] T t W W(t+1) = 2W(t) W(t)F (2) (t+1)w(t) 2Kd+16K 2 d ( ) r s r s r s r r w (fr) i (t+1) = [ˆP(t+1)] :,i [ˆP(t+1)] H :,i [ˆP(t+1)] :,i + Q i ( w (fr) i (t) µ fr e (n)x fib (t) ) 10K +8K 2 ( ) 10dK +8dK 2 ( ) s r t rs r s r 3 t r s t r r s t s s s r P r t rs r t rst s r P r t r M t s L t s N s s ts P rt t s M prot P λ r λ t ǫ 10 5 r t t P st t t r t s s r r s t t st t t rt r t r st r t 3 t N = 1000 s s ts tr s t t P

76 SINR [db] P P Batch PARAFAC TW-RLST PARAFAC Frost TW-RLST PARAFAC Ben samples r r P s s r2 t 2 r 2 r st st s t t t r r r t r r r t s r ts s r r 2 s t 2 ts t t 1 t2 r t r s s s s t t r r t t t r s t r t r t r st r r t r r t s s t s t s r 1 ss s s t t t r Ω > 0.4π r r t s s r t s tr 2 st t r t t r q s t [ ]π [ ]π [ ]π r s t 2 t r r s st rt t t s s t t 2 r t s r t t t rs s s ts t t r s t s s s r r s t tt r s r tt r r t r s t r t r N = 5000 s s ts t r N = s s ts r t s t t r s t s r t t t r s s s t ss ss t2 3 t r r t s t t s r s r s t t r s r t s P s t s s r s2 t r 2 t s r s s t r s t rst s t r s ts t r r q 2 s t t t r 3

77 SINR [db] Magnitude response [db] Magnitude response [db] theta [deg] theta [deg] t r s r t r st r s r t r t r s s r t r t r q Batch PARAFAC TW-RLST PARAFAC Frost TW-RLST PARAFAC Ben samples r r r2 r q 2 Ω = 0.65π s s s r s t s t r st s s t r r s str t ts s t t t r Ω > 0.45π t r r r r t rs r r s r s 2

78 Magnitude response [db] Magnitude response [db] P P theta [deg] P t r t r t r q 2 t r s s r r s s t r N = 5000 t r s t r theta [deg] P t r t r t r q 2 t r s s r r s s t r N = t r s t r s t r t r s s t r r t t s s r rt s s t t r r s s r rt s s t r ts t t s t t t s s t r ss 2 rt s s s r t r r s t t t P r2 s s ts t r s t s s P r t s r t 3 t r s s ts s t t r s t s s r r s t t t P r t s st r s t tr t P r t s t t t ts st r

79 Magnitude response [db] Magnitude response [db] SINR [db] ICA Batch PARAFAC Proposed TW-RLST Frost Proposed TW-RLST PARAFAC samples r r s t t P s r t s r s t s t r 2 r t r r t2 r ts 1 t2 t r ss s r s s rs s s tr t P s t s r t 2 t s s r s r st t r s r s r t t t s r 2 r s s t tt r s t r st r t s t r t t t r r r t theta [deg] theta [deg] P t r t r t r q 2 t t r P t r t r t r q 2 t r st t r r tt r t r s t r r

80 P P r2 r s 2 t 1 t2 r t s s t r q 2 r t tr s r t t t tr s r s t 1t r s t st t s s t t s s rr r rt s r t t s r t q s r s r t st t s 1t r s t s r r r r s r t t s s t t s s s t P s t s r s r t s r s s t t s ss t str t t rr t t s r s t r r s t r r t s t t r t r t P s t t t 1 tr s rst r t s t t 1 t2 t s s t t s r t t r t s 2 t r s r r t r r s st t t rt s r s t t r s t r s st r r

81 P t s s s s q s t r ss t s s rr 2 s r ss r r t t r t s t st s s t rr 2s s s t t r 2 t s r rs r st ss t s s s r t rr t s r s r r t 2 s rr 2 ts r s 2 r r r r ss ss t t r s t s s s r r r t t t s tr2 s r rs 2 s r 3 s rs r st rt ss r s s t r r s s t r t rs t ss t t 3 t r st t s 2s r t rt r rr r r r t s t t t ts s t 2s r t 2 t 2 t t r r s q t2 t s r t q t2 s s r s t r t s t t r r s r t r s rt t s t r t r t s rt r t s t r s t t 2 s s r s ts r 1 s t r r s r 2 r s t t t s r t t t s t ss r r t s s r2 r t t r s t s2st s r r s 1 t t s2st s s t t rt r rr r t r t s 2 s s t t q r t t t t r t ts s t2 s ss t t r t r q r s r r tr s t r t s t s t r2 r s t 2

82 P s t t rr t 2 r r ss ss t s2st s t s t t t t r s t r r r t 2 r r ss ss t t s s r r t sts r s t s st r t t r t Pr s r s r 2t 1 r ss s t ss ss t s2st s q t2 2 s rst r r 1 s s t rt r r t rs s 2t 1 r ss t t rt r t t s r 1 t r s t s r t s t t 2 t r s t t r s s t s r t t t r t2 rt r t s r st r r s 2 t st t rr r t t s t rr r t t s s t t t s s s t t t s 2t 1 r ss s s r r t r t t s t s t tr s r t t r 2 t t s r s s t s r t2 str t t s r t t t s st t st ts r t s t t str t t s s t t t r s ts s t r s t t tr t r 2 t t t t t r r t rt r t s t rt r t s t r t rr r t s t t t t 1 t2 r s 1 t 2 t t r t s r r t 1 t2 s st r t t t s 1 t2 r s r t s r t r r r r t s r r t t t t t rr 2 s rt r t s t t r r s r rr t t s r t rt r t s r s r st t rr r rr 2 t s t rr r ss rr t q r s r s s t t t s r s r s t t2 tr 1 t r tr 1 t s 1 t t t s rt r t s s r s t r t t r t r s t 2 r t s str t t2 rt r t s s r r s t r r t 2 s r t r t2 s rt r t s s s r q 2 s t t t rr r s rr r s t r t r t t s s s t q r t r t r tr s r s s tt r r s ts t t r t r r s s t t q r t r t r tr s r s t s s r r s s r rr 2 r r ss ss t r r t s t r r s t s t2 s t t t r r t s r s s s t s s t t t t s r rt r t s t r s ts t t r s t r r ss ss t r r s t t r s ts t s t s r s ts 2 t r s t s s t s r

83 t st rt t t r s r r rr 2 t M t ts x(t) = i a(θ i )s i (t)+v(t) C M 1, r a(θ i ) s t st r t r θ i s t 3 t i t s r s s i (t) v(t) s t t s t r r t t st r t r t s t s 2s a m,i = e j2πµ i r µ i = (m 1) d cosθ λ i m s t t t 1 d s t t r t s t s d s t s t t r r t s 2 µ i t s s r t s r t s t rr rs r r s t s t r wavefront r str t r t t rr 2 t t s t rr rs r s s t t r t r s t t θ i s s t t t t r r s t 2 t ss str t r r Θ N(0,σ 2 θ ) s r r t r s t r s st t rr r x (Θ) (t) = a (Θ) (θ 0 )s 0 (t)+ i 0 a(θ i )s i (t)+v(t) C M 1, r a (Θ) (θ 0 ) = a(θ 0 +Θ) s t st r t r rt r 2 r r Θ t s t r st rr s s t t i = 0 s r s t t t s t st t rr r s 2s t s s r t s r t s ts r r s t t t t s t s rst

84 P t s t r r t rt s 1 s r ts r s t t (m 1)d t x 1 s t ts 1 t t r r t s s t t s t rr r t s s s x,y z r 2 t r r s D x D y D z r s t 2 t t r s s r s r t 2 t 3 t θ i t t s ts t φ i tt rs 1 t s 2s r t t r s s t µ m,i =(m 1)dcosθ i cosφ i +D x,m cosθ i cosφ i +D y,m sinθ i cosφ i +D z,m sinφ i, r t s s r t m t s t t 1 s t r r s r t t r s t t t r r s r r rr 2 s t r tt s x (D) (t) = i a (D) (θ i,φ i )s i (t)+v(t) C M 1, r a (D) (θ i,φ i ) = [e jµ 1,i,e jµ 2,i,...,e jµ M,i ] T s t st r t r rt r 2 t r t r D = [D x,1,d y,1,d z,1,d x,2,...,d z,m ] s t r s r t s t r s r t s s t t s r t2 str t t s r t s t t t ts r tr s r t s r r r t 2 s ts r t s t s r t s r r q r s r t t rts t r 2 t t t 1 t2 r t t s s t r t ts t r s r r s r t ts 1t s r t r r s s r t r s t 2 r t t s t k t t t s str t µ (κ) = E { U κ} = f U (u)u κ du,

85 r f U (u) s t r t2 s t2 t P t r r U s r t r 1 t f U ( ) f U (u) ω(p n ) = n ω n δ(u p n ), r p n s t n t s t ω n s t n t t δ(u) u=0 = 1 δ(u) = 0 r 2 t r s u s r t t s r t rs ˆµ (κ) ut = n ω n p κ n, s r 3 ω(p n ) s s r t r 1 t f U (u) t t ω n t t s t p n r s ts s s r t t t t s r r 2 ts s ts r t 2 s t r s2st r t r t 1 s q t 2 s tt r t s r κ s s ω 1 +ω = 1 ω 1 p 1 +ω 2 p = E { U } ω 1 p K 1 +ω 2 p K = E { U K}, r K s t st r r s r t t t s ts r t r K s t r s ts t t2 str t t t t s ts t 3 r t str t r st t s ss r r t 3 r t t s2 tr2 ω 1 = ω 3 p 1 = p 3 p 2 = 0 s t s s2 tr2 s ts r r t t r t rs r s t p 1 = p 3 = 3σ 2, p 2 = 0, ω 1 = ω 3 = 1/6 ω 2 = 2/3 r r s t s P t ts r 1 t s t t t t t t r s ts tr s t s t tt r P r 1 t s t t t t t s ts s q t t t t s P ts ts t s ts s f U ( ) t t st s s r κ r r r t t s s t 2 t t r t r r E { g(u) } = n ω n g(p n ),

86 probability P Continuous PDF UT3 UT x r r s t t s P t t P r 1 t r g( ) s r t s t t s r t s t t st st 2 t q t s t 1 g(u) ts 2 r s r s E { g(u) } { =E g(0)+ dg(u) du u+ 1 u=0 2! d2 g(u) du 2 u 2 u= ! d3 g(u) } du 3 u u=0 = a 0 +a 1 E{U}+a 2 E{U 2 }+a 3 E{U 3 }+..., r a i s t i t 2 r s r s t r r t ts r q q t s 1 t r 2 t t s tr t t t K t t s t g( ) s t t t r t s s t s s t t t t r t2 str t t r t s 2 ts st t st ts r t t t t r t t s r t r r s r r s t t s2st r t r U = [U 1,U 2,...,U M ] T s s r r r r s t 1 t s t r ss r ts r 3 r s t 1 t s U r s t s t

87 r t t r s E[U κ 1 1,...,Um κm,...,u κ M M ] = f Um (u m )u κm m du m, R r κ m {1,2,...} and κ j m = 0 r r t t r r r s s s t s t 1 t g(u) : R M R s 1 r ss s E[g(U)] = f(u 1,u 2,...,u M )g(u)du R M = f Um (u m )g(u)du. R M m t t r t 2 r tt s t r t r t 2 s 2 s r t t g(u) s r 1 t 2 t r t 2 q t s 2 t U s s r t r t t r s t t r s t q t r t 2 r 1 t r 2 s t ss t t t t t r t P f U (u) ω nm δ(u m p nm ). m n m 2 E[g(U)] t t t t 2 ss t t E[g(U)] g(u) ω nm δ(u m p nm )du R M m n m = g(u) ω nm δ(u m p nm )du R M n 1 n M m = g(u) ω nm δ(u m p nm )du. n R M 1 m n M s t t s s t r rt2 t s r t t r r s E[g(U)] ( g(p n1,...,n M ) ω nm ), n 1 n M m r p n1,...,n M = [p n1,...,p nm ] T s t t r s ts

88 P Pr s P r r ss ss t rr 2 s s t s s t r r r t t q t r s s t t s s t s r s r t r r t ss 2 t q s s t r s w = a(θ 0 ) t s t t t s t t r r s s r t r rr t s s s SINR = w H R ss w w H (R int +σ 2 I)w, r σ 2 s t t s r r rr t s s t rr t tr 1 R ss t t r r rr t tr 1 R int R ss = a(θ 0 )a H (θ 0 ), R int = i 0 a(θ i )a H (θ i ). r s t s rt rt r t s s s t r t a(θ i ) r a (Θ) (θ i ) r t s r st t rr r s s r rt r t s t t t s t s r s r a(θ i ) s r 2 a (D) (θ i ) r t r t r a (Θ) (θ i ) a (D) (θ i ) t s r t t t s s r r t s 1 t t t t r s r2 r s s r r 2 t s2st s r t r 2 t t t st t rr r t s t rr r t t t t s t ss r t r s r r r s t r t t t t t s r t r t s SINR r t s t t r st t rr r rst t r t s s s r st t rr r s r s t s rr r s r t s t s rt r t q 2 ts t ts a Θ (θ 0 +Θ) t r r s t r t t st r t r t s s t t r t s t tr t t r t t s t t t t r

89 Points P P P P N r 3 t s Θ r s t 1 r ss s SINR (Θ) MC = 1 N N n=1 w H R (Θ) ss (Θ[n])w w H (R (Θ) int (Θ[n])+σ2 I)w, r Θ[n] s t t r 3 t Θ t r s t rr t tr s r 2 R (Θ) ss (Θ[n]) = a(θ 0 +Θ[n])a H (θ 0 +Θ[n]), R (Θ) int (Θ[n]) = a(θ i +Θ[n])a H (θ i +Θ[n]). i 0 t t t t s r r2 t s s t t t s s r 3 t s t r t t r s r r t r t t t r s t s t s t r t r t t 2 t 2 s r s 2 2 ss t s s t r t r r st 2 t t t t r s t s t s t t rst ts t r r Θ t ts s ts r t r st 2 t s s r t r t s t 2 r g( ) q t 2 t Θ n 2 p (Θ) n SINR (Θ) N UT UT = n=1 ω n w H R (Θ) ss (p (Θ) n )w w H (R (Θ) int (p(θ) n )+σ 2 I)w. t2 2 N UT N MC q t t r s t t t 2 t t t r r s s t r s t N UT N MC r t t N MC r r 10 2 t 10 5 r 3 t s 10 5 UT3 UT5 MC MC10 3 MC10 4 MC Method r r r t r s s

90 P t r t s t t r t t s t rr r t s t t s r r s2st s rt r 2 t t s t rr r s s r t rt r t rs t 2 t t r t s s t t t s r t tr t t r t s sts t t r N r 3 t s t r t r D 2 SINR (D) MC = 1 N N n w H R ss (D) (D[n])w w H( R (D) int (D[n])+σ2 I ) w. s r r s t t r r rr t tr s t r s t s t rt r t s r r tt s R (D) ss (D[n]) = a (D[n]) (θ 0,φ 0 )[a (D[n]) (θ 0,φ 0 )] H, R (D) int (D[n]) = a (D[n]) (θ i,φ i )[a (D[n]) (θ i,φ i )] H. i q t t q t r t s s t t s r r r s s r r t r s t s s r t t r s r t t SINR (D) UT = N UT n z,m =1 N UT N UT N UT N UT n x,1 =1 n y,1 =1 n z,1 =1 n x,2 =1 ω nx,1 ω ny,1 ω nz,1 ω nx,2...ω nz,m w H R ss (D) (p nx,1,...,n z,m )w w H( R (D) int (p n x,1,...,n z,m )+σ 2 I ) w,... r p nx,1,...,n z,m = [p nx,1,p ny,1,p nz,1,p nx,2...,p nz,m ] T t ss str t s 3 r t s t t r t r2 r r r2 s rs s 2 s r s r t s s ss str t s t t rr 2 ts s t rr rs r r t s 2 t t r2 tt t r s t t t r ss r t r t 2 r r s str t t r r s r rr t t r r r str t s s t s s str t r t r st ss str t s s t s 2 2 s r D x D y D z s 3 r ss r r s t r σ 2 d t s ss r r s r s ts ss str t t r q t t s t r r s t

91 Points P P P P s rt r s 2s r s r µ (D) m,i = (m 1)dcosθ icosφ i +D m, r D m N ( 0,σ 2 D) t t r σ 2 D = σ 2 d (cos2 θ i cos 2 φ i +sin 2 θ i cos 2 φ i +sin 2 φ i ) s t 2 q t σd 2 t t t s s t r t s s s q t t r t s tr tr t t s r r t t t r rt r t s t s t SINR (D) N UT UT = N UT n 1 =1 n 2 =1 N UT n M =1 w H R ss (D) (p n1,n 2,...,n M )w w H (R (D) int (p n 1,n 2,...,n M )+σ 2 I)w. ω n1 ω n2...ω nm t t r t s t t ts t r 2 t r s t 2 t t t s ts t s t t t t ts r s t t r ts r t r s r s r UT3 UT MC10 2 MC10 3 MC10 4 MC MC Antennas r r s t t r ts r t 2 t t r2 r rr 2 ts t t r ts t 2 t r s 1 t 2 NUT M r t s r r t r t t s s s t s 2 r q r s r 2 r t ts r t s s t t t s t t t s r t t s r t 10 6 r t s t s s s s tr r t ts t

92 Sample variance (db) P t s t s ts t t s s t SINR s t s t t r ts r q r r t t s t s t s s t t r s r s t tt t q st t t r s s r r s t s r 2 ts t t s r s t str t r r r s t s s r t t t r s t s t s s t t r tr t r tr t s r t t t s s t r r t r s s t r r t 2 s r t t t rr r t t s r r t t s s ss t r rs t s r t r t tt r t st t str t t st t t t t r 2 r s s t t s r t r q t t r s s r r2 r tr s s r s t s s t s s s r rt r t s 10 0 univar multivar Monte Carlo trials r r rs s t r tr s t r s t s s t r t s s t t t t s t s s tr s r s t t t r s 10 3 s r s t t r t t s s t s r r s s t r s t r t t r t s q t r s t s s t t t r s s t 2 r r

93 SINR (db) t t r t s s t r ts r s s r r 2 s t r t s r t t t r t s r s r s s t st t s t t r st t t s s 10 3 r t s t s t ts s s r s r s s s t t t t r r s s r s t t r s t 2 s r t r s t s t t 10 6 r 3 t s r s ts r s r r r t MC variance MC10 6 UT3 UT < # (degrees) r SINR s σ Θ t st t rr r r t r s st t t t r s t r 10 6 r 3 t s r s s r r r r t s s t t t SINR st t s t t s st 1 t 2 t 10 6 r 3 t s SINR r t st r t s s r t t r t σ Θ = 4 t tt r st t r ts r r st r t s r 2 r r st t s t s s rt t t r t t t t t s r t s r t t t t st t s t s r t s t s t s ss t t t r 10 6 r 3 t s r r s t 2 SINR MC10 6 s r2 s t t r tr t r r t rr r s s Error = SINR SINR MC10 6. q t s s t s r t t t r s s t s t t t rr r t t t t t r t r

94 Error (db) P t t t t rr r t t t t r t r t t r t s P r r t t r t r t r t t r t r t st t s s 2 t s r r s st t r tr s 10 5 r t ts r t r t tr s s t 10 6 ts r s r s r t st t t t tt t r r t r s 3 t r r t s t r r r s s t r t rr r t t s t r r s t t r 10 6 r 3 t s r r t s s t t t t st s t 10 6 SINR t σ Θ = 6 t ss t rr r r t s s rt t t t t rr r s t r t 2 r t r t tr r 2 s σ Θ s r t s tr s r t s s t t t r t 2 3 r rr r t t s t r r t t s t t t SINR UT3 UT < # (degrees) r rr r s σ Θ t st t rr rs st r t s t 1 t s σ Θ = {1,6} r2 t s s r r r ts s t SINR r σ Θ = 1 t r t r s r r σ Θ = 6 r s st r t t s t s t 1 t 2 r r r t t ts t SINR t r t t r t t r s s t t r s t s r t

95 SINR (db) t r q t s s r t r t t t r t r s t t t t rr r t st t MC10 6 < = 1 UT3 < # = 1 UT5 < # = 1 MC < # = 6 UT3 < # = 6 UT5 < # = SNR r SINR s t 1 σ Θ = {2,10} t 1t s t t t t t s ss ss t r s ts r s r t t t r r r r2 r tr s r s ts s t t t t t t t t t r s t t s t s 2 t s tr s r r r t s r 2 s t t t s r s ts r t t t r ts r t s s r P r r t t t r t r t t r t s t 1 r2 σ D s s t r r t s t s t s r s t t s t r r2 s 2 r s t s r r r t s t t ts t SINR r t s r r r t r rr 2 t r r ss s r t t s r r t rr 2 t r rt r 2 r s t r ts t r s t t t r r s 1 t2 t r t s r s s r r r s r t t 1 t2 t t r s s s r t r t t r s s s s t t 3 r s r s t t r t r r s t t r t s t s r r λ

96 SINR (db) time (s) P 10 2 MC UT UT number of MC trials r t t t t r t t r s st t rr r MC variance MC10 6 UT3 UT < D (6) r SINR s σ D t rr 2 t s t r t s r s s t rr r r t t r t s r r t s r t t t rr r s rt 2 3 r r t t t st r t t r s t 2 s t t rr r r s st r t t t s 1 t r 2 s t r s s r 2 t 1 t t r t t rr r t t r r s σ D rr r r t r 3 t s r r s r 2 r r t s t ss t t rr r s r t st r t σ D s 1 t 4 6 t s r

97 SINR (db) Error (db) UT3 UT < D (6) r rr r rs s σ D t rr 2 t s t r t s r 2 s t r t s t SINRs t r t s s t s t rr r s t SINRs t r t r t s t s s t s t rr r s st t r t t s MC 10 6 < = 0.03 UT3 < D = 0.03 UT5 < D = 0.03 MC 10 6 < D = 0.12 UT3 < D = 0.12 UT5 < D = SNR r SINR s t 1 σ D = {0.03,0.12} s t ss ss s t t t t t t r t t r s ts r t r t t t r r r r2 r tr s r s ts t t t t t s t t t r s t t s t s r 2 r t

98 time (s) P tr s r t s t s r t t t t r 2 r t tr s r r q r s r s t s r t t r ts t t t r t r t s t s s s r 10 2 MC UT3 UT number of MC trials r t t t t t r t t s t s t rt t s r2 s t r s s t t t s t r ss ss t r r r t s s t t t t t r t t r r r t 2 r t t r t2 t s t s st t rr r r t s t rr 2 ts s t s r s r r t ss ss t r r r s t r s t r t t tr t s t s s t s s s t t t s r2 r 2 ts r t r s t rr r

99 r s s rr 2 s r ss s r 2 r s t t r2 2 r s t2 s r s r s st r str t t t2 t s r t t r t t s Pr s r q r ts r t 1t r t t r s s sts t t t s t r s s rt t s t r s t s s t r t s s s t t s t t r r t t t t r s r s rr t t r s t s t r t s t r r t r s 2 s rt s t t s t t s t r s s r s r t s t rr 2 s r ss r s 2 t r s r s s 2 2 s st s r s t 2 t s r s r r r t s t s s s 2 t t s t s r rst st t r t t q s t t t t tr t r s t t s r r t r t q s t t r r t t r s s s r r t t s t q s tt r t t r t s s r t 2 s r s ss 2 1t r t s2st s 2 r t t s t rr 2s t t s s 2 t r 3 r r t t r st t 2 t r 3 t t s t2 t t s t 1 r t s r t t s t2 t t s 1 r r rs t s s t t t ss r s q t t s t st r t R t s t r s r t t R 1 s t tt r t r r t t t s ss t 2 r q 2 r t tr s r t s t r r s r ss 2 s s t tr s r t s t 1tr t s r ss P s t s t s 1 r s t t ss t s s r q r r t str t rr t t s rs s

100 t t t r t P s t tr r t s s ts tt r r t st t t rt t t 2s s t s r t r s r r t r r s r t s r t t t2 t r t s r t st t2 t r t s r t r s r t 1 r r 1 t2 r r rr t r r t s 1 t2 r s 2 t t ts t t r 2 s s s t sts s r r s s r s t r r t t s t r s s r t r s r r t s s s t r P s s t s s t r st t t s r s t s r r r r t r t2 t s r t t s r r r r2 r s r t r t s s t r t t r r st t s ts r t r st s s r t t t s s s r r r t t s s s t r 2 t s s t rr 2 s s r t t r s r s t r t s r s t r t t t s t 2 s s r r r s r s s r s s t t rr t q s t t rr t t s r str t r r s s t r q 2 2 s s t 2 s s r s t r t s s t r t t r r r r q 2 1tr 1 t2 t t r t r t r s r t ts 2 rt 2 r s r r 1 t2

101 P s 1 r s r t s r t t tr s t rs tr 1 s ts r t s r s t s r ss t ts t r r 2 s ss t r t s2st s t t t t r t r r t r s t t r r r t s tr 1 s s t rt t t s r s s st r tr 1 2 BA(θ) = 0 r B s t tr 1 A s t st r tr 1 θ s t r t t s t s r s s r t r s str t s t rr 2 s t t s s s ss t r t s r str s r s r s s r r s t t t s r str t r r str t tr 1 r t s r s st r t rs s r r r t t 2 r r t 2 s t t tr 1 t r st s t t t t s t r b s t q s b s s rt r t t t s t t r t s t B 1

102 t t t r t t t s t tr 1 t t t s s r s r s t st r t r a(θ 0 ) r t r t r a(θ 0 ) s P a(θ 0 ) = I a(θ 0 )(a H (θ 0 )a(θ 0 )) 1 a H (θ 0 ). r t r t r s t rs t t r rt t a(θ 0 ) t s r t s r s r t s s s r r s t s s t r x a(θ 0 ) 0.5 y 0 z z x 0 a(θ 0 ) 0.5 y t t r Pr t s tr 1 r M = 3 d = 1 s r s st r t r s r r s t t t rt s s r r r t s r t s B t r s q s t t s 2 s d 1 = 2 rt 3 t s t r t rt 3 t t r 2 t t t rt 3 t rs s t t t r t r t r s t r t s s r t rs tr 1 ss t t t r st s r s r s s str t r r str t t r t s s r t rs tr 1 ss t t t r st s r s t r s t t B s t r t 2 t t a(θ 0 ) t t t

103 s t r t s s r t rs tr 1 ss t t t s s r s s r ss s str t r r str t t r t s s r t rs tr 1 ss t t t s st s r s

104

105 s 1 s t r t t s st st r t r t r st rt 2 1 t st t r t J CM (T,w) = E { a(θ 0 ) B H Tw) H x 1 2} = E { (a H (θ 0 ) x w H T H B x) (a H (θ 0 ) x w H T H B x) H} = E { a H (θ 0 ) x x H a(θ 0 ) w H T H B x x H a(θ 0 )+a H (θ 0 ) x w H T H B x x H a(θ 0 )+w H T H B x x H B H Tw+a H (θ 0 ) x w H T H B x w H T H B x+1 } = a H (θ 0 )R x x a(θ 0 ) 2w H T H BR x x a(θ 0 )+ 2a H (θ 0 )E { x } +w H T H BR x x B H Tw 2w H T H BE { x } +1 t t r t t r s t t w w J CM = 2T H BR x x a(θ 0 )+2T H BR x x B H Tw 2T H BE { x } = 2T H B(R x x B H Tw R x x a(θ 0 ) E { x } ) t r s t t T T J CM = 2BR x x a(θ 0 )w H +BR x x B H Tww H 2BE { x } w H st r r2 tr2 t s t r t t t st st r ts t t rr t t 1 t s x

106 s ˆR x x = 1 L X X H, Ê { x } = 1 L (m+1)l 1 n=ml x(n) = 1 L X 1 L, r 1 L s t r s s 3 L tr 1 X s t tr 1 t t s s t x(n) t r 1t t t x(n) = y (n)x(n) r t tr 1 t t t t X = X diag(e m ), r e m = [e(ml),e(ml+1),...,e((m+1)l 1)] H s rt t r 1 t s t r w ˆ w J CM = 2 TH (m+1)l 1 B ( X X H B H Tw X X H a(θ 0 ) x(n) ) L = 2 TH (m+1)l 1 B ( Xy m H Xd H m x(n) ) L n=ml = 2 L TH B ( Xe ) m + X 1 L n=ml = 2 L TH B X ( e m +1 L ), r t t rs y m d m r t rs r t t s t rs t t s s r t m t t s s rt t r 1 t s t r T ˆ T J CM = 2B X X H H L a(θ 0)w H +2B X X L BH Tww H 2B 1 L [ X 1 L ]w H = 2 L B X ( e m +1 L ) w H s s t t s t t r T(n+1) = T(n)+µ T X B ( em +1 L ) w H w(n+1) = w(n)+µ w T H X B ( em +1 L ),

107 r µ w µ T r r r s t t r s 1/L e m = e m +1 L rt r s 2 t t q t s T(n+1) = T(n)+µ T X B e m w H w(n+1) = w(n)+µ w T H X B e m,

108

109 st s t t sts s t t t s s t r s Pr s r st P r t rs r t rst s r

110

111 st r s s s r r t t 3 rt 2 st r r t s s 3 t t r str t tt r s r r 2 s r r r str t tr 1 s 3 M N s t s r s 3 M N P t r r r r 2 st st r t r P r t r st r t r t t2 r t s rs s s s r N = 50 t t2 r t s rs s s s r N = 50 r t2 r t s t r2 N r r t s t r2 N ρ = 0.9 t r N = 600 s s ts t r2 ρ t φ i 3 t θ i t r t rr t i t s r s t r t t s r ss r R s s r t R r t t t s t r s s t t r t t r 2 t ss r s r r2 r t r s s ts N t t r 2 t ss r s r r2 t t r 2 t ss r s r r2 rr 2 s 3 t s s t s r t q

112 t t t rs s N r t s s s t t t 2 t m r s r s t r 2 t r t L t s t r q 2 r s s w st r t 0 1 st t s t t r r s s t r q 2 r s s s t t r w[m, n] s s s s s t r q 2 r t r t sin(θ) = 0.4 s st t sin(θ) = 0 t t sin(θ) = 0 s r 2 t sin(θ) = 0.4 r t r s s s rr t r t s s s t r q 2 s t r t r str t P s t s r t r 2 rr 2 t t s t s s r t s r t s s Pr ss s t r s t t P t rr t t s r t r R(t + J 1) s t t r ss s r st rt t t s r s t t t rr t tr 1 r t rst t 2 τ 1 r P s s t r s s r t r t r q 2 r r2 r s s t r N = 5000 t r s t r r s s t r N = t r s t r r s t t P s r t s r s t s t r 2 r t r r t2 tt r t r s t r r str t r t t rr 2 t t s t rr rs r s t t s P t t P r 1 t r r t r s s

113 r s t t r ts r t 2 t t r2 r rr 2 ts r rs s t r tr s t r s t s SINR s σ Θ t st t rr r rr r s σ Θ t st t rr rs SINR s t 1 σ Θ = {2,10} t t t t r t t r s st t rr r SINR s σ D t rr 2 t s t r t s rr r rs s σ D t rr 2 t s t r t s SINR s t 1 σ D = {0.03,0.12} t t t t t r t t s t s t rt t s str t tr 1 Pr t s tr 1 r M = 3 d = 1 str t t r t s s r t rs tr 1 ss t t t r st s r s str t t r t s s r t rs tr 1 ss t t t s st s r s

114

115 a, b, c rs a, b, c t rs A, B, C tr s A, B, C s rs t r t r tr 1 r s r r r t t s r Pr t [X] (r) [X] (r) r t t s r r t r r 2 t s r r t s t 2 F 2 H { } { } ( ) { } r s r r r r r s r s r tr Pr t r r Pr t t r 3 tr 1 t r 3 t r 1tr t t t r 1 t

116 T + r s s tr 1 Ps rs tr 1 1 rs tr 1 H t r s s tr 1 t r

117 P P P R rt r t t r t t r t st q r s st t s s r t r r r s r r t rr 2 r q 2 r t r r r 3 r t t 2s s rs s r t r r r s r s rs s r t r r r s r t r t t s r 2 str r st q r s r t t r t t t t t r st rt ss s s P r t r 2s s Pr t2 s t2 t r t r P s t 2 R s rs st q r s rs st q r s r t t r r s t

118 t s t t r st r r rr 2 r t r rr 2 s t r s r t t r str t r t r t r s r r r s r t rt t2

119 P P t s s rst r t r P st tr r r s t t 2 st t r t rr st t tr r t r 3 t r t t t t r s rt t s r P r t s r r P st P r r r t t t r t t rr 2 r r ss s s r t r s Pr t t r t r 1t r t r r ss t r t P t rs r P r P st s 2 1 t2 s r t t q t s t r t t t2 t s 1t r s Pr t t r t r s Pr ss t 2st s st r P st tr r 2 1 t2 t r 3 s rs r r s s r s s r t Pr ss r P st s r r Pr r s r t r t t st r t r s t t s Pr t 2 s t s t s P rt r Pr t 2 s t s t s r P st r P r t s s r t s t r q 2 st s2st s

120 P r st s t t r t r r t t r t s t r 2 r P st r s s r t t r s t r r t s t tr2 s t r t r r s s t t s s2s t s Pr t t t r t r r q 2 q s r P st r 3 s 1 t2 r r ss ss t s s r rr 2 s t tr s r t s r t Pr ss r r s 2 P st r r q 2 s r s r t r s s r t rr Pr P s rt t t s P s P st r t t t s t rt s s s r t s st t s Pr t t r t r Pr ss t 2st s st P s P st r s r t rt s t r t t t s ss r r r s 2s s tr t r r q 2 r s t s r t r s s r t2 ss r r s 2 t r t rs r ss r ss t2 r rt r ss s t s 3 r r r r t r t s r r t t r t tr r s t s Pr ss t s tr s t rs t2 t q r r ss t s r t r s t s ss t

121 P r s r t 2 t r t rs r s t s t t tr sr t r t t t r 3 rs s ss t r t s r r 2s s ss 3 P t ss r t r ó P r rt t s r t st t t s tt r s2s t s t t t t r s r 2 r r 2 r r 3 rs tr s r t t s 2 r s t r q 2 r s tr 2s s Pr r s r tr 1 st t rr rs t rr 2s r s r s tr 2st s 2 rr 2s s r s t s s 2 r 3 t rt 2 s t Ps2 tr st t 2 rt r r ts s r ts Pr P s r r t s r rs t s st t s s r s r t t r t 2 s t t Pr ss t s P r t s r ss 2 s P st P r t r st t t q s r t s rr 2 s r ss r P s r r 2 r P st r r t r3 t s r t r s r str t r t r st t

122 P r s t r r rr t str t r Pr ss s r s r P st r 3 r r r st t r s s r s s r t ós r s r çõ s r r t r 3 P st r r t t r st r t t r s s r t r st t t q s s r 2 r s r ts Pr t t r t t q r 2 t P st r r t s r t s r r s t P r s Pr ss 2 r r s r P st r r r t r s r r s t t q s r r s t r t r st t r t s Pr t t r t t q r 2 t 3 s 2 r st s P r s 1 tr t st t st ts t t q t t s r s r t s t s r s t t tr t s 3 s r s r s st t t r t2 s t2 t tr t r t r s t t s t tr s r t Pr s t Pr r ss t t tr t s s r q t ss t s PP rs s P r rr 2 s r t t r s s r s t rr rs r s 2 s s r s Pr s t s r rr 2 t Pr ss r s r st r t r r 2 str t rr 2 r ss Pr s t ss r s s tr st t t q s t r 2 s2st s Pr t P s rr 2s 2 s s s r rt r t t r r s r r s

123 P r t t rr 2s t t s rt r r t rr s r t s Pr s t r s tr 1 t t s Pr ss t 2 str r t r 2s s r s r Pr t t r t r t r t t 2 r t s t r t r t r 2 str t r r s t s Pr t r Pr t2 r r ss s r tr t r rs st r rs t2 Pr ss r r s rr 2 s r ss r s r t r tr r Pr ss 3 ss r t r r r r s s s s st t t r t r t r st t r 2 t s r r tr r s r s Pr ss 2 r t ä t r t s r s t r t r st t t t s t s s t st Pr ss s r t r P s s Pr t r r t s s s t s r s r t r s Pr ss t rs t s t r r r s t s r 1 t r2 t t r 2s s r rs t s 2 t t r t r2 r t Pr t r r t r t r r s q s t r r r t t ss t t s s str t r s t s t t t r t

124 P 2 är r t t 2s s 2 r P ss r r tr s r t Pr P t t2 2 r r t r r 1 t r tr s r t s r t2 str t s r rt t 1 r r s t t r r st t Pr s t r r s r s t s t s t2 r str t t s rss t t t s t 2 r t r t s Pr ss 3 2 rss rs ss r3 tt ss r 1t r t r ss 2st s t s 3 t r st t t r t r 1t r s 2 s t s tr 1 3 t r s t s Pr ss r t rr 2 r t r st t s r r s s r s t rr rs Pr s r r t r P r r 2s s r st t r t s t s t s s r t s r s r s tr 2st t P t r st r r s t s Pr ss 2 r s t r r s r t Pr t r t r Pr ss Pr s P r st r r t s t st t s t r t r t r t t r t tr r

125 P P s r s r t r t 1t r s s r q 2 r t tr s r t Pr t r t r st s Pr ss P ss r ts t q s 2 r s r ss t s t 2 2 2s s s t s r t rr 2 Pr Pr r ss tr t s s r 2 s r r tr P st ss s t rr 2 t r t r t r tr s r t s r st t 2 rr t s s t r t r st s Pr ss P 2 r r P st tr 3 s s t tr s r t s rr 2 t r t Pr t t r t r st s Pr ss P r s str r r st t r r r s rr t t r s Pr t r t r t r 2st s t s r r t r t rs r r r t r t 3 Pr t r t r 2 s 2 r s t r t s t tr t r s t t r r r t s r r s t s Pr ss ss t str s s ss s t s s2st s r 2 2 r t P r t r P s Pr t2 r r s st st r ss s r r r r r ts r t t s r ss P s s rs t2 2

126 P r r t 2t r r ss ss t t s tr 1 t s r s s r t t2 r t s r s t s Pr ss 2 s P rss rss r3 tt rs ss rt t s s t r2 r rr 2s Pr ss 3 r s s t rr 2 t 3 r t rs r t r r s t s Pr ss ss tt 1 tr t r r3 r r s t r r s rt Pr t s r Pr s P st r 2 s t r q 2 t t r t r s t2 r s s r r s Pr t t r t r Pr ss t 2st s P st P tr t r t s s s tr r t s r s t s Pr ss 2 r r r s t s r r Pr t r r r r s r t s s2st t r r r t t t2 s r r s 2st s t rs 2 r rs t r t s t t r P 3 ss r s r r s t t t rr t tr 1 r ss s s r t r s Pr t r Pr ss r P rr 2 s r ss r t s r r r t P ss rt t rs t2 r r t r r str st t s r t s s t t r t t 3 t t rs r r r s Pr ss

127 P r P st r s r s t r t Pr t r t st 2 s r ts 2st s r r r 3 st r t t r 3 s r r t t r r r r r r t t st Pr ss r s t s st t r2 s t s r ss Pr ss

128 P

129 rs r ss r r t 3 äss r tt r t3 r r s r s tt rt t s r r t r r t ü r t 3 t s t r r 3 t t r P rs r r t t r rst r r r t t t t s s r r ür t t t r tt s 3 r t s st Pr t s r t r r r r P rs s r t r tt r r tt r rt st ür r t r t s t t r r t ss rt t st r t r s r r s r r ä r r r Prü s ör r t r s r ss r t t r rst r är s ä s s rs rt t r äÿ ➓ s r Pr t s r r s Pr t s r r s 3 r t r sí r r r r

r q s r 1t r t t 2st s

r q s r 1t r t t 2st s r q s r 1t r t t 2st s ss rt t 3 r r s s r s s t r r r r tr r r r r r sí r s t t r Pr r Pr r ã P r st s st Pr r sé r t s r t t s ö t s r ss s t ss r urn:nbn:de:gbv:ilm1-2017000099 PPGEE 117/2017 UNIVERSIDADE

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

Assessment of otoacoustic emission probe fit at the workfloor

Assessment of otoacoustic emission probe fit at the workfloor Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

UNIVERSITE DE PERPIGNAN VIA DOMITIA

UNIVERSITE DE PERPIGNAN VIA DOMITIA Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)

Διαβάστε περισσότερα

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t

Διαβάστε περισσότερα

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

❷ s é 2s é í t é Pr 3

❷ s é 2s é í t é Pr 3 ❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t

Διαβάστε περισσότερα

Pathological synchronization in neuronal populations : a control theoretic perspective

Pathological synchronization in neuronal populations : a control theoretic perspective Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

Langages dédiés au développement de services de communications

Langages dédiés au développement de services de communications Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

La naissance de la cohomologie des groupes

La naissance de la cohomologie des groupes La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.

Διαβάστε περισσότερα

Bandwidth mismatch calibration in time-interleaved analog-to-digital converters

Bandwidth mismatch calibration in time-interleaved analog-to-digital converters Bandwidth mismatch calibration in time-interleaved analog-to-digital converters Fatima Ghanem To cite this version: Fatima Ghanem. Bandwidth mismatch calibration in time-interleaved analog-to-digital converters.

Διαβάστε περισσότερα

A hybrid PSTD/DG method to solve the linearized Euler equations

A hybrid PSTD/DG method to solve the linearized Euler equations A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Review of Single-Phase AC Circuits

Review of Single-Phase AC Circuits Single-Phase AC Circuits in a DC Circuit In a DC circuit, we deal with one type of power. P = I I W = t2 t 1 Pdt = P(t 2 t 1 ) = P t (J) DC CIRCUIT in an AC Circuit Instantaneous : p(t) v(t)i(t) i(t)=i

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r

Διαβάστε περισσότερα

Conditions aux bords dans des theories conformes non unitaires

Conditions aux bords dans des theories conformes non unitaires Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 (   .ITU-R SF. 1 (008-003) * (ITU-R 54/4 ITU-R 6/9 ). 1. 4. 3. GHz 14,5-14,0 1,.90 (WRC-03) ( 4.4 ( - ) MHz 6 45-5 95 GHz 14,5-14 ( 4.4 " " ( ( ( ( ITU-R SF.1585 ( ( (ATPC) ( (.ITU-R SF.1650-1 " " * ITU-R SM.1448 / (

Διαβάστε περισσότερα

Une Théorie des Constructions Inductives

Une Théorie des Constructions Inductives Une Théorie des Constructions Inductives Benjamin Werner To cite this version: Benjamin Werner. Une Théorie des Constructions Inductives. Génie logiciel [cs.se]. Université Paris- Diderot - Paris VII,

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Das Pentagramma Mirificum von Gauß

Das Pentagramma Mirificum von Gauß Wissenschaftliche Prüfungsarbeit gemäß 1 der Landesverordnung über die Erste Staatsprüfung für das Lehramt an Gymnasien vom 07. Mai 198, in der derzeit gültigen Fassung Kandidatin: Jennifer Romina Pütz

Διαβάστε περισσότερα

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel

Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel Piégeage et accumulation de positons issus d un faisceau pulsé produit par un accélérateur pour l étude de l interaction gravitationnelle de l antimatière Pierre Grandemange To cite this version: Pierre

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a

o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a M M - - - - q -- x - K - W q - - x x - M q j x j x K W D M K q 6 W x x A j ˆ K ė j x ˆ D M [ 6 C ˆ j ˆ ˆ ˆ ˆ j M ˆ x ˆ A - D ˆ ˆ D M ˆ ˆ K x [ 6 ˆ C + M D ˆ ˆ + + D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + x 9 M S C : 4 R 9

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Αντίστροφος μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Voice over IP Vulnerability Assessment

Voice over IP Vulnerability Assessment Voice over IP Vulnerability Assessment Humberto Abdelnur To cite this version: Humberto Abdelnur. Voice over IP Vulnerability Assessment. Networking and Internet Architecture [cs.ni]. Université Henri

Διαβάστε περισσότερα

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Measurement-driven mobile data traffic modeling in a large metropolitan area

Measurement-driven mobile data traffic modeling in a large metropolitan area Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo

Διαβάστε περισσότερα

VISCOUS FLUID FLOWS Mechanical Engineering

VISCOUS FLUID FLOWS Mechanical Engineering NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and

Διαβάστε περισσότερα

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5.

5.2 (α) Να γραφούν οι εξισώσεις βρόχων για το κύκλωμα του σχήματος Π5.2α. (β) Να γραφούν οι εξισώσεις κόμβων για το κύκλωμα του σχήματος Π5. ΣΥΝΑΡΤΗΣΗ ΣΥΣΤΗΜΑΤΟΣ, ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ, ΠΡΟΣΟΜΟΙΩΣΗ 5. (α) Να βρεθεί η τιμή της σύνθετης αντίστασης Ζ(s) των τριών κυκλωμάτων στο σχήμα Π5. (β) Να βρεθούν οι πόλοι και τα μηδενικά της Ζ(s). (γ) Να βρεθεί

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα