|
|
- Πρόκρις Βασιλικός
- 9 χρόνια πριν
- Προβολές:
Transcript
1
2
3 k
4 k
5
6 ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G) N G (x) = x v 1 v 5 v 1 v 5 v 3 v 4 v 3 v 4 v 2 v 6 G v 2 v 6 G G G V (G) = V (G ) = {v 1, v 2, v 3, v 4, v 5, v 6 } E(G) = {{v 1, v 2 }, {v 1, v 3 }, {v 2, v 3 }, {v 3, v 4 } {v 1, v 5 }, {v 2, v 6 }, {v 4, v 5 }, {v 4, v 6 }, {v 5, v 6 }} E(G ) = E(G) {{v 1, v 4 }, {v 2, v 5 }}
7 G = (V, E) V = {v 1, v 2, v 3, v 4, v 5, v 6 } E = {{v 1, v 2 }, {v 1, v 3 }, {v 2, v 3 }, {v 3, v 4 } {v 1, v 5 }, {v 2, v 6 }, {v 4, v 5 }, {v 4, v 6 }, {v 5, v 6 }} G G G a b c d b e d e f G a f c G H G = ({a, b, c, d, e, f}, {{a, d}, {a, e}, {a, f}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f}}) G H = ({1, 2, 3, 4, 5, 6}, {{1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 4}, {3, 6}}) G V (G) = {v 1,..., v n } n n A = [a i,j ] (i,j) [n] 2 a i,j = { 1 {v i, v j } E(G) 0 {v i, v j } E(G) G 0 n n! A = A =
8 G G G H σ : V (G) V (H) x, y V (G) x y {x, y} E(G) {σ(x), σ(y)} E(H) G H G H G H G H a c υ ω 4 b 5 2 χ τ e d G f ϕ G ψ 6 3 G 1 Q 3 Q 3 r 0 K r = ({v 1,..., v r }, {{v i, v j } 1 i < j r}) r r G r G K r
9 K 6 K 4,3 K 6 K 4,3 p, q 0 K p,q = (A B, E) A = {v 1,..., v p }, B = {u 1,..., u q } E = {{v i, u j } 1 i p 1 j q} K 1,r r 0 r K 3,3 P 3 C 7 P 3 C 7 r 1 P r = ({v 1,..., v r+1 }, {{v 1, v 2 },..., {v r, v r+1 }}) v 1 v r+1 x y (x, y) r 3 C r = ({v 1,..., v r }, {{v 1, v 2 },..., {v r 1, v r }, {v r, v 1 }}) C 3 (6, 4)
10 V r = {1,..., r} (p, q) (V p V q, {{(x 1, y 1 ), (x 2, y 2 )} x 1 x 2 + y 1 y 2 = 1}). r 0 V r r r Q r = (V r, {{x, y} x, y V r x y }) Q 0 Q 1 Q 2 Q 3 Q i i = 0, 1, 2, 3 G G G V (G) G (G) G 1, 2, 3, 4 1, 4, 3, 2 3, 2, 1, 4 3, 2, 1, 2 (C 4 ) = { 1, 2, 3, 4 1, 4, 3, 2 3, 2, 1, 4 2, 3, 4, 1 3, 4, 1, 2 4, 3, 1, 2 4, 1, 2, 3 2, 1, 4, 3 } (H) = { 1, 2, 3, 4 4, 2, 3, 1 } V (K n ) (K n ) S n n! = (K n ) = S n G C 4 H G C 4 H
11 H H G (G) S n G (G) G n! G x, y V (G) x y σ(x) = y σ (G) x y G G {1, 3} {2, 4} C 4 {1, 2, 3, 4} G {2} {3} {1, 4} H {1, 4} {2, 3, 5, 6} {7} G x y σ (G) σ(x) = y C r r 3 K r r 1 K r,r r 1 G G V
12 ,6 2,1 1 1 G 1 G 2 G 3 G 4 G 5 G 6 G 1 G 2 G 3 G 4 G 5 G 6 {,,,,} G 1 E(G 1 ) = {{,}, {,}, {,}, {,}, {,}, {,}, {,}} G 2 E(G 2 ) = {(,), (,), (,), (,), (,), (,), (,)} G 3 E(G 1 ) 5 1 2, ,6 1 G 4 E(G 1 ) = E(G 1 ) {{}, {}, {}} G 5 E(G 1 ) {,} {,} {,} G 6 E(G 1 ) {{,,}, {,,,}} G = (N, E) E = {{x, y} ( N 2) y 2 = x 3 } G = (R, E) E = {{x, y} ( R 2) y 2 + x 2 = 1} 3 G Q 3
13 A = [a i,j ] 1 i,j r a i,j = (i + j) ( 2) K r/2, r/2 G 1, G 2, G 3 A = [a i,j ] 1 i,j 8 a i,j = (i + j) 2 σ : V (G) V (H) G H S V (G) σ(n G (S)) = N H (σ(s)) S V (G) σ(s) = {σ(v) v S} G m(g) = ( ) n(g) 2 x, y 1 (x, y) P x 1 P y 1 (p, q) 2 p q p q a, b, r C a Q b (r, r) Q r r Q r r 0 G (G) G (G) = 1 G n(g) A
14 n n
15
16 ΚΕΦΑΛΑΙΟ 2 G G G = (V (G), {{x, y} x, y V (G)}\E) G G G G G L(G) = (E(G), {{e 1, e 2 } e 1, e 2 E(G) e 1 e 2 }). a e b a d c e f b G d c f L(G) K 4 L(K 4 ) G H G H G H = (V (G) V (H), {{(x 1, y 1 ), (x 2, y 2 )} ({x 1, x 2 } E(G) y 1 = y 2 ) ({y 1, y 2 } E(H) x 1 = x 2 )}). G H G H = (V (G) V (H), E(G) E(H)) G H = (V (G) V (H), E(G) E(H)).
17 V (G) V (H) = G H G H G H G H G + H G H G H = {V (G) V (H), E(G) E(H) {{x, y} x V (G) y V (H)}}. G H G H G H G + H G H G H G H K 3 K 1,3 K 3 K 1,3 K 3 K 1,3 K 3, K 1,3, K 3 K 1,3 K 3 K 1,3,, +, k 0 G k G = G } + {{ + G }, G [k] = G } {{ G } k k G (k) = G} {{ G}. k G 0 G G (0) K 0 G [0] K 1 K 1 K 2 G 1 G 2 G 1 K 1,K 2 G 2 G 1 G 2 K 1 K 2 G 1 G 2 G 1 G 2 K 1 K 2 K 1 K 2 G K1,K 2 H G H
18 G e E(G) v v e v e v V (G) E G (v) V (G) v E E(G) V (E) = e E e E G S V (G) v V (G) E E(G) e = {x, y} E(G) G\S = (V (G)\S, {{x, y} E(G) {x, y} S = }) G\v = G\{v} G\E = (V (G), E(G)\E) G\e = G\{e} G\{x, y} G\e {x, y} e G\{x, y} {x, y} x y G\e e G v V (G) {x, v} {v, y} x y G/v = (V (G)\{v}, E(G)\{{x, v}, {v, y}} {{x, y}}) v G v e e G H G H G e = {x, y} E(G) v V (G) G/e = (V, E ) V = V (G)\{x, y} {v } E = E(G)\E G (x)\e G (y) {{v, u} u N G ({x, y})\{x, y}} e = {x, y} G x y v {x, y} G
19 u G v e G e G u v G 1 G 2 G 3 f G f G w w G 4 G 5 G 6 T = {\v, /v, \e, /e} T = {\v, /v, \e, /e} \v \e /v /e T = {\v, /v, \e, /e} A T A = G H H A G H G A A T A A = {\e, \v} H A G υπ G H G H G A = {\v} H A G ϵν G H G
20 A = {\e} H A G πα G H G A = {\e, \v, /v} H A G τπ G H G A = {\e, \v, /e} H A G ϵλ G H G C 4 C 4 C 5 C 5 G S V (G) G[S] = G\(V (G)\S) G[S] = (S, {{v, u} {v, u} S {x, y} E(G)}). G[S] ϵν G G[S] G S E E(G) G[E] = (V (E), E) G[E] G G H H ϵν G H ϵν G H G H πα H G H ϵν H G H τπ G H ϵλ G υπ ϵν πα τπ ϵλ T = {\v, /v, \e, /e} T G { υπ, ϵν, πα, τπ, ϵλ } G G G G G G G
21 G G G n(g) = 0 1 ( 4) n 3 C n L(C n ) G m(l(g)) ( ) m(g) 2 K p,q + K r,s (K p + K q ) (K r + K s ) K p,q K p + K q K (m) r K m r P p P q (p, q) L(K 4 ) (2 K 1 ) (3) Q r K [r] 2 G (G) = (G) G = {G G L(G)}
22 G k 1 k G, G [k] G (k) G L(G) G k,r V (G k,r ) r k {v, u} E(G k,r ) v u G k,r K [r] k G L(G) G = C i1 + + C ir i j 3 1 j r G 1 G 5 {\e, /v} G e v G\v G/v G\e G/e G K 1 G n T n k k 1 G k q 2 Q q 2 q G 1 K 5 k K 2,4 (k k) T W r = K 1 C r (n n) r 3(n 2) + (n 3) 2 n 3 3 K 1,3 + K 1,3 πα Q 3 Q 3
23 K 1,4 ϵλ Q 3 K 1,4 τπ Q 3 K 3,3 K 5 K 5 r (r, r) Q 3 G K 1,r υπ G K 1,r τπ G r (r, r) L(K 4 ) (r, r) K 1,1+ r 2 (r 1) K 2,1+ r 3 (r 1) K 3,r r 3 G 1 = {C r r 3} G 2 = {P i i 0} G 3 = {Q r r 0} ϵλ τπ υπ πα ϵν k A = {δ (G) G P [k] n n 1} B = {δ (G) G P [k] n n 1}
24 ΚΕΦΑΛΑΙΟ 3 v G G (v) = N G (v). G δ(g) = { G (v) v V (G)} (G) = { G (v) v V (G)} d(g) = 1 n(g) v V (G) G (v) G ϵ(g) = m(g) n(g) G r r (G) = {k K 1,k υπ G}. G v V (G) G (v) = 2 m(g) δ(g) d(g) (G) ϵ(g) = d(g) 2 v G (v)
25 V 1 V 2 V (G) 2 m(g) = G (v) = G (v) + G (v), v V 1 v V 2 v V (G) v V 1 G (v) V 1 G (G) G v V (G) z(g) = ( (G) G (v)). n(g) z(g) G (G) r = (G) G r G 1 = G G < r G ϵν G 1 z(g 1 ) < z(g) G m G υπ G r z(g) = 0 G m r G ϵ(g) δ(g) 2 δ, ϵ 0 δ ϵ G n = K δ+1 + K n δ 1 δ(g) δ ϵ(g n ) = ( δ+1 2 )+( n δ 1 2 ) n n ϵ(g n ) = n ϵ(g n ) ϵ δ (G) = {k G H δ(h) k }. G H υπ G δ (H) δ (G) G δ (G) n 1 δ (G)
26 G δ (G) = 3 δ (G) n δ (G) G H δ(h) n δ (G) H n 1 (n δ (G)) = δ (G) 1 G δ(h) n δ (G) n(h) = n(h) n δ (G) + 1 H G δ(h ) δ (G) n(h ) δ (G) + 1 n(h) + n(h ) > n H H v v H G (v) H (v) δ(h ) δ (G) v H G (v) δ (G) 1 G H δ(h) ϵ(g) δ (G) ϵ(g) G n(g) = 1 < n G n(g) = n δ(g) δ(g) δ (G) v G G (v) δ (G) G = G\v E(G ) m(g) δ (G) V (G ) = n(g) 1 δ (G ) ϵ(g ) = E(G ) V (G ) m(g) δ (G). n(g) 1 G υπ G δ (G) m(g) δ (G). n(g) 1 G δ (G) {ϵ(g), δ(g)} G n δ (G) k (v 1,..., v n ) G i=1,...,n δ Gi (v i ) k G i = G[{v 1,..., v i }] (v 1,..., v n ) G i=1,...,n δ Gi (v i ) k H υπ G δ(h) > k v i H (v 1,..., v n ) H υπ G i Gi (v i ) δ(g i ) δ(h) > k (v 1,..., v n ) G v i δ Gi (v i ) > k
27 G (v 1,..., v n ) v i v i (v 1,..., v n ) > k G i v j, j < i k G i v i v i+1 δ(g i ) > k δ (G) > k α = [d 1,..., d n ] G σ : V (G) {1,..., n} G (v) = d σ(v) α G G [5, 5, 4, 3, 3, 3, 3, 3, 1, 1, 1] α = [d 1,..., d n ] n 2 d 1 1 α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] α = [d 1,..., d n ] G V (G) = {v 1,..., v n } δ G (v i ) = d i, 1 i n f(g) = v N G (v 1 ) v 1 (d 2,..., d d1 +1) v i, v j N G (v 1 ) d i > d j {v 1 v i } E(G) {v 1, v j } E(G) d i > d j v h v 1 {v h, v i } E(G) {v h, v j } E(G) G G {v 1, v j } {v h, v i } {v 1, v i } {v h, v j } f(g ) > f(g) v 1 (d 2,..., d d1 +1) G\v 1 α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] α
28 G α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] S G d 1 G S G α = [d 1,..., d n ] (d 1,..., d n ) d i r(r 1) + (r, d i ) i=1,...,r i=r+1,...,n ϵ(g) = δ(g) 2 G L(G) n r, s r + s = n s = 0 ( 2) G r s G 2 K 3 ϵλ G G G n m δ(g) m 1 2 (n2 3n + 2).
29 q, r 1 δ (K 1,q K 1,r ) δ (G) 1 2 ( 2 n(g) 1 ) (2 n(g) 1) 2 8 m(g). G H δ (G), δ (H) k δ (G H) 2k + 1 G δ (G) 1 2 (n 1 (G)) k A = {δ G G P [k] n n 1}, B = {δ G G P [k] n n 1}. α = (d 1,..., d n ) (n d 1 1, n d 2 1,..., n d n 1) α = (d 1,..., d n ) G k G G [k] G (k) k 0
30 ΚΕΦΑΛΑΙΟ 4 G G W = [v 1,..., v r ] i,1 i<r {v i, v i+1 } E(G) W (v 1, v i+1 ) G r v 1 v r W G[W ] = ({v 1,..., v r }, {{v 1, v 2 },..., {v r 1, v r }}). W = [v 1,..., v r, v 1 ] G n n G (x, y) (x, y) G (x, y) W (x, y) W W = [v 1,..., v r ] G v 1 = x v r = y y W W y i W = [v 1,..., v i ] W (x, y) W W = [v 1,..., v r 1 ] W r G (v 1, v r 1 ) P W v r P {v r 1, v r } (x, y) W
31 G V (G) = {1,..., n} A = [a i,j ] (i,j) [n] 2 G i i i i = 1,..., n r = 1,..., n a r i,j Ar = [a r i,j ] (i,j) [n] 2 r i j G r r = 1 v i, v j A 1 = A A r 1 = [a r 1 i,j ] ar i,j r 1 v i v j A r = A r 1 A a r i,j = h=1,...,n a r 1 i,h a h,j r v i v j v i v h r 1 v j v h A = C 5 A 2 = A3 = A 4 = C x, y G G (x, y) x y G (x, y) G G (x, y) = G G (x) = (G) = G (x, y). y V (G) G (x). x V (G)
32 β χ Θ (β, χ) (β, χ) (β, χ) Θ x, y G (x, y) = (G) (G) = G (x). x V (G) x V (G) (G) = G (x) x G G (G) x V (G) (G) = G (x) x G G (G) G n(g) 2 G x y K k, k 1 K p,q, p, q 2 p q Q 3 G V (G) G x,y V (G) G (x, y) 0 G (x, y) = 0 x = y x,y V (G) G (x, y) = G (y, x) x,y,z V (G) G (x, y) + G (y, z) G (x, z) G (G) (G) 2 (G)
33 G H G x, y G v G G (x, v) G (v) G (v, y) G (v) (G) = G (x, y) G (x, v) + G (v, y) 2 G (v) = 2 (G). (C r ) = r 2 = (C r) r 3 2 (P 2 r ) = 2r = (P 2r ) r 1 (C r ) = (C r ) = V (C r ) r 3 (P r ) 2 K 1 r 2 P 2r+1 [(P 2r+1 )] K 2 r 0 (P 2r ) = 1 r 1 G (G) = (G) = V (G) G x (G) = G (x) = (G) v V (G) (G) G (v) (G) G (v) = (G) = (G) (G) = (G) = V (G) G (G) d v V (G) q q (d 1) l 1 l 1 v i = 1,..., l Pv i l v P v τ(p ) Pv 1 = q i, 1 i l 1 Pv i+1 Pv i Pv i G (u) 1 Pv i+1 Pv i+1 P Pv i ( G (τ(p )) 1) Pi v (d 1) i, 1 i r 1 Pv i = Pv 1 (d 1) l 1
34 G v V (G) G v A = [X 0,..., X r ] r = v (G) X 0 = {v} X i+1 = N G (X i )\ j=0,...,i 1 X j i = 1,..., r X 3 X 2 X 1 x X 0 x A = [X 0,..., X r ] G v i=0,...,r X i = V (G) A = [X 0,..., X r ] G v i, j, 0 i j r x, y x X i y X j P x y X i,..., X j P X i P [a 1,..., a q ] {0,..., r} a 1 = i a q = j a h, a h+1, 1 j < q a h a h+1 1 A X i X i 1 X i X i+1 {i,..., j} G A = [X 0,..., X r ] G v i = 0,..., r X i G i v i u X i G (v, u) = i i i = 0 i j i = j + 1 u X j+1 X j+1 u u X j j v u P G v u j + 1 P G v u j P X 0,..., X j+1 P j
35 A A G (v, u) = i u X h, h {1,..., i 1, i + 1,..., r} A = [X 0,..., X r ] V (G) u V (G)\ h {1,...,i 1,i+1,...,r} X h = X i G (G) d v V (G) 1 + ((d 1) 1) G l v d d 2 A = [X 0,..., X r ] G v G i v X i X i G v X i X i d (d 1) i 1 i 1 i = 1,..., l G i v i=0,...,l X i X i 1 + d + d(d 1) + + d(d 1) l 1 i=0,...,l = 1 + d( i=0,...,l 1 (d 1) i ) = 1 + d ((d 1) 1) d 2 G (G) α (G) d n(g) 1 + d d 2 ((d 1)α 1). v l = (G) G (G) v G (G) β (G) d n(g) 1 + d d 2 ((d 1)β 1). A = [X 0,..., X r ] G v { X i 0 i r} G v v G G (G) G (G) n(g) 1 (G) v G G G v A = [X 0,..., X r ] G v n(g) 1 + r X i 1 + r (G) r = G (v) (G) n(g) 1 + (G) (G)
36 G n (G) d d n/2 G n (G) d (G) β m(g) n(n 1)(d 2) 2((d 1) β 1). e G 2 l (d 1) l 1 l 1 Pi r, i = 1,..., r r e = (x, y) i (d 1)(d 1) r i 1 = (d 1) r i r i y G\e (d 1)(d 1) i 2 = (d 1) i 1 i 1 x G\e Pi r e x y (d 1) r i (d 1) i 1 = (d 1) r 1 e Pi r 2 (d 1)r 1 e l r G 2 m(g) (d 1) r 1 G 2 (n 2) G β 2 ( ) n 2 2 m(g) i=1,...,β (d 1) i 1 m(g) G n (G) d (G) β m(g) d n/2 d n 2 n(n 1)(d 2) 2((d 1) β 1). n G G (G) G G (G) G (G) = (G) = 0
37 G H G H 3 C = (v 1,..., v r, v 1 ) {z, y} z y C G (G) G δ(g) (G) 1 P = (v 1,..., v t ) G v 1 v 1 v i i G (v 1 ) + 1 δ(g) + 1 δ(g) + 1 G G ϵ(g) 1 V (H) 3 < n n = n(g) δ(g) 2 G v 1 ϵ(g\v) 1 G\v G ϵ(g) 1 K 3 τπ G K 3 G G (G) g δ(g) d { 1 + d i=0,...,r 1 n(g) (d 1)i g = 2r + 1 g 2 i=0,...,r 1 (d 1)i g = 2r g g 2 = 1 S i, 0 i r r + 1 G v 0 G i = 1,..., r v S i S i 1
38 G v v 0 i i v 0 2r < g S i (d 1) S i 1 2 i r S 0 = 1 S 1 d n(g) S i 1 + d + d(d 1) +..., d(d 1) r 1 i=0,...,r g 2 = 0 v 0 G n(g ) S i (d 1) +..., 2(d 1) r 1 = (d 1) i i=0,...,r n(g) = n(g ) 1 i=0,...,r 1 G n n+n 1+ 1 k (G) 2k k n + 1 = d δ (G) ϵ(g) d G G δ(g ) d (G) 2k + 1 (G ) 2k + 1 d > 2 G n n(g ) 1 + d i=0,...,r 1 d > 2 (d 1) i = 1 + d d 2 ((d 1)k 1) > (d 1) k = n, k 1 {(H) H υπ P k P k } = k(k + 2). G G (p, q) p, q 1
39 r r 1 G H G (G H) G G (G) = (G) = V (G) x, y x y 2x x y G (G) = (G) G (G) < 3 (G) > 3 x, y x y 2x G (G) = x (G) = y G δ(g) (G) 2 G G G n (G) x n x G (G) 2 (G) + 1
40 ΚΕΦΑΛΑΙΟ 5 x, y V (G) (x, y) G (G) < K 1 G v G G (v) 1 G G\v [v 1,..., v n ] G i = 1,..., n 1 (v i, v i+1 ) P i G G P i (v i, v i+1 ) W i W 1,..., W n 1 G G G n(g) n(g) = 1 < n G n(g) = n v V (G) N G (v) = V (G)\{v} x, y V (G)\{v} {v, x} E(G) {v, y} E(G) H = G[V (G)\{v}] < n H H {v, x} G G {v, y} G G
41 G I(G) G H I(G) G I(G) H G G G H G δ(h) δ(g) (H) (G) G δ(g) n(g) 2 G G H n(h) n(g) 2 δ(h) n(h) 1 < n(g) 2 G m(g) n(g) 1 G G m(g) < n(g) 1 H n(h) < n(g) m(h) n(h) 1 δ(g) 1 m(g) n(g) δ(g) 2 n(g) v G G H = G\v G m(h) n(h) 1 m(g) = m(h) + 1 n(g) = n(h) + 1 m(g) n(g) 1 G S V (G) S G G\S S S G S S (a, b) a, b V (G) G\S (a, b) S (a, b) (a, b) S (a, b) G S k 2 G G G
42 a e i b f j G c d g h k l {e, f, g, h} G {e, f, h} {e, g} G {f} {h} G {f, g} (a, k) {h} (a, k) G G v x, y G\v x y v x y P 1 x t w y P 2 P 1 P 2 G x, y V (G) G (x, y) x y G G (x, y) = 1 e = {x, y} G e G G\x {x} G G\x (y) 1 G\e G\e G\x G\e G\e x y {x, y} G x y (x, y) < k x, y G (x, y) = k 2 w k G x y P 1 P 2 G x w P 1 P 1, P 2 y P P 1 x y {y, w} P, P 2 G P 1, P 2 y R
43 G x y w G G\w R P 1 P 2 R P 1 {w, y} G t P 1 P 2 R t P 1 P P 1 x t R t y P 2 P 2 {w, y} P 2 P G G 3 x, y, z V (G) G y x z G + G w x z G + P 1, P 2 w y (P 1 P 2 )\w H 1 H 2 V (H 1 ) V (H 2 ) 2 H 1 H 2 H 1 x 1 v u u v x 2 H 2 {v, u} S = V (H 1 ) V (H 2 ) x 1, x 2 H = H 1 H 2 x 1 x 2 H 1 H 2 x 1 V (H 1 )\S x 2 V (H 2 )\S P 1 G 1 v u x 1 P 1 P 1 v, u S P 2 G 2 v u x 1 P 1 P 2 v G {v} G
44 G I 2 (G) G H I 2 (G) G G K 2 I 2 (G) H 1 H 2 G {x, y} S = V (H 1 ) V (H 2 ) w V (H 1 )\V (H 2 ) P H 1 x y w H 1 P H 1 H 1 P H 1 x P x v P y x y P x y V (H 1 ) V (H 2 ) = {v} G\v x y H 1 H 2 v P x y G\v H = H 1 H 2 H\v x y P H\v E(G)\E(H) H + = H P H + H 1 H H + P P H 1 H 2 x y x y v P x P y x y v H 1 H 2 C = P P x P y H + = C H 1 H 2 K 3
45 K 3 G k > k k κ(g) = {k G k } G κ(g) δ(g) G e E(G) κ(g\e) κ(g) 1 v V (G) κ(g\v) κ(g) 1 G S V (G) x V (G)\S (x, S) S x S G s, t G (s, t) G (s, t) G G (s, t) S k k (s, t) G S (s, t) S G k k (s, t) G k = 1 k > 1 k k H H (s, t) S k G G H G k (s, t) G e E(G) (s, t) S e k 1 G\e e E(G) e S e = w e\{s,t} S e {w} (s, t) G k
46 G\S e (s, t) S e = k 1 k s t e G\e e S e S e e s t (s, t) G N G (s) N G (t) = x t s S = S {t,x} \{x} (s, t) G\x S = k 1 k 1 (s, t) G\x s, x, t k (s, t) G s S t s t s S t G s G t G (s, t) S k G N G (s) = S N G (t) = S S (s, t) k G P s G s S S P t (s, t) G S P s P t P P s P P t V (P ) V (P ) = V (P ) V (P ) = {q} q S (s, t) S G s = P Ps P G t = P Pt P S V (G s )\s S V (G t )\t G s = G s {S {t}, {{x, t} s S}} G t = G s {S {t}, {{s, x} x S}} n(g t ), n(g s ) < n(g) k (s, t) P 1 s,..., P k s P 1 t,..., P k t G s G t (s, S) {Q i s i = 1,..., k} = {P i s\t, i = 1,..., k} (t, S) {Q i t i = 1,..., k} = {P i t \s i = 1,..., k} Q 1 s Q 1 t,..., Q k s Q k t k (s, t) G P (s, t) G [s, v 1, v 2,..., t] e = {v 1, v 2 } v 2 t {v 1, t} E(G) P 3 {v 1 } S e (s, t) S k G {v 1, t} E(G) N G (s) = {v 1 } S e P {s, v 2 } E(G) {v 2 } S e (s, t) S k G {s, v 2 } E(G) N G (t) = {v 2 } S e k 2 S e s t (s, t) (s, t)
47 x y (x, y) G κ G (x, y) κ(g) = {κ G (x, y) x, y V (G), {x, y} E(G)} k k S (x, y) G G (x, S) W x (y, S) W y W x G\S x e k G κ(g\e) = k 1 G κ(g) = k e = {x, y} E(G) e G κ G\e (x, y) = k 1 G = G\e e G R V (G ) k 1 G \R x y G \R R G κ(g) = k R (x, y) G k 1 κ G (x, y) k 1 κ(g ) k 1 κ G (x, y) k 1 κ G (x, y) = k 1 e G k k (x, y) G G (x, y) G k κ(g\e)(x, y) k 1 G δ(g) > κ(g) e E(G) κ(g\e) = κ(g) G G k κ(g) = k G k S G\S v N G (v) = S G (v) = k C D = G\S\V (C) D G\S n(d) n(c) e = {x, y} x, y V (C) G = G\e G (x, y) R k 1
48 v G G = G [S C] ({v } S, {{v, w} w S}) k (v, x) G (v, x) S G k 1 S S V (C) S (z, x) G z D S + = S {y} (z, x) G S + S V (C) S + S C + G\S + x C S (x, S) W x G G W x (x, S) G (y, S) W x G D S C x z y S G z V (D) k (z, x) G (z, S) W z G G V (D) R z V (D)\R G W z W x k (x, z) G W z W y k (z, y) R z x z z y R x y V (D) R V (D) V (D) < V (C) R R 1 = R V (D) = V (D) R 2 = R S R 3 = R V (C) R (x, y) G w S\R R W x W y x w w y R R S\R R 2 = S S\R R ( S R 2 ) = 1 2 (k R 2 ) V (D) = R 1 = R R 3 R 2 = k 1 R 3 R 2 k R (k R 2 ) 1 = 1 2 (k R 2 ) 1 < 1 2 (k R 2 ) R 3 V (C) r 0 K 2,r + = K 2 (r K 1 ) K 2 K 2,r + K 2,r
49 K + 2,5 G k k + 2 k 2 v V (G) d K + 2,d 2 πα G[N G (v)] G e E(G) κ(g\e) = k e = {x, y} G[N G (v)] K + 2,d 2 S = v N G (v)\{x, y} S 2 G = (G\S)\e P G S G\e k 1 (x, y) S P κ G (x, y) = k e G G v G G G K 3 2 G G G v 2 v G K 3 n(g) 4 G/v 2 r W r = C r K 1 W r r 3 3 e E(G) G\e 3 e E(G) G G/e 3 G G = K 4 K 4 W 3 n
50 W 9 n(g) = n G G G G G e = {a, b} G v e G e = (G\a)\b G W r v V (G) v 1, v 2, v 3 K 3 K 2,1 + v 1, v 2, v 3 G v 1, v 2, v 3 G v 1, v 2, v 3 G e = {v, v 3 } v e G e e v 1 v 2 B 1, B 2 G e v e {v 3, v e } G B G e {a, v 3 } G a B v 3 B 1 \v e B 2 \v e v 3 1 B 2 {v e, v 2 } {v e, v 1 } G v 3 w i B i \v e \v i i = 1, 2 {v i, v e } G i = 1 2 f = {v, v 1 } S f = {v 1, v f } G = G\v (α) {v, v 1, v i }, i = 2, 3 G v f {v 2, v 3 } (β) v 2, v 3 G \S f S f G G v 2 v 3 S f (v 2, v 3 ) G v 1 (α) {v 1, v 2 } v 1, v 2, v 3 G e = {v, v 3 } G S = {v, v 3, v e } C D G\S {v 1, v 2 } {v e } C v G S C v D {v 3, v e } G
51 v e f B v 1 1 w 1 v v 3 G v e B 2 v 2 S f v f v 1 v 3 v 2 w 2 G (α) (β) α G G e β S f G {v 1, v 2 } {v 1, v 3 } v 1, v 2, v 3 G G G\v {v 2, v 3 } G 3 S G S 2 v 1, v 2, v 3 G S C G\S S G G e = {v 2, v 3 } G f = {x, y} G (x, y) G \f (x, y) G {v 2, v 3 } {v 2, v} {v, v 3 } f G e = {v 2, v 3 } G H = G G \e H = G \e H n(g) < n(h) H f H/f f e e E(H) = G \e e H H = G f G G H W r r 3 = G \e G W r v a, b, c W r K 1,2 W r {a, b}, {b, c} E(W r ) {a, c} E(W r ) K 1,2 (α) (β) {a, b} {b, c} H = G G W r
52 a v a v b c b c (α) (β) a v a v c c b b (γ) (δ) W r+1 v W r W r (γ) W r W r (δ) W r+1 W 4 Q 3 K 4 Q 8
53 v 4 v 1 v 2 v v 1 v 2 v 1 v 2 3 G 5 e 3 H G E πα G e v e 3 H E E e v e G = (V (H ), V (H ) H ) G G = G/e G 3 G 1,..., G m G 1 = G G m = K 4 i = 1,... m 1 G i G i+1 G n(g) 4 κ(g) 3 K 4 ϵλ G G δ(g) 3 G G G V (G) 5 3 < 5 K 4 κ(k 4 ) = 3 κ(g) 2 S G C G\S C + = G[S V (C)] S = {x} x C + N C +(x) S G G\S C C δ(c + ) 3 n(c + ) < n(g) C + G S = {x, y} (x, y) P G\V (C) C C + {x, y} (x, y) P G\V (C) C ϵλ G S C N C (x) N C (y) G C δ(c ) 3 n(c ) < n(g) C G
54 G δ(g) 3 K 3 ϵλ G k κ (G) = {k G k } G m(g) (2 1)(n(G) k) k n(g) = 1 < n G n(g) = n m(g) (2 1)(n(G) k) S G S k G k S < k C 1 G\S G 1 = G[V (C 1 ) S] G 2 = G\V (C 1 ) S = V (G 1 ) V (G 2 ) G 1, G 2 m(g) m(g 1 ) + m(g 2 ) n(g 1 ) + n(g 2 ) = n(g) + S. h {1, 2} m(g h ) (2k 1)(n(G h ) k), (2 1)(n(G) k) m(g) m(g 1 )+m(g 2 ) < (2k 1)(n(G 1 )+n(g 2 ) 2k)) = (2k 1)(n(G)+ S 2k) < (2k 1)(n(G) k)), n(g i ) < n, i = 1, 2 G h k G h G G H κ(h) ϵ(g) 2 κ (G) ϵ(g) 2 ϵ(g) 2 k κ (G) k ϵ(g) 2 k m(g) 2k n(g) (2 1)(n(G) k) G k κ (G) k G G λ(g) G λ(g) = { F F E(F ) G\F }.
55 G k K k G G n V (G) = {v 1,..., v n } G[{v 1,..., v i }] i = 1,..., n G G G K 2,3 ϵλ G G K 1 K 2 G a b b a = (t(v) 1) v V (G) t(v) v 4 n n 1
56 Q 8 K 4 G 2κ (G) ϵ(g) κ(g) 2 δ(g) (n(g) + k 2)/2 κ(g) k f : NN k N G δ(g) f(k) k ϵ (G) = {k H υπ G : ϵ(h) k}. ϵ (G) δ (G) 2 ϵ (G) κ (G) δ (G) 4 κ (G) ϵ (G) 2 κ (G) 4 ϵ (G)
57
58 ΚΕΦΑΛΑΙΟ 6 G x, y V (G) P 1 P 2 e = {x, y} P 1 P 2 H = (P 1 P 2 )\e G H P x y H P G\e P ({x, y}, {{x, y}}) G G G < n G n x y G G (x) = 1 G\x x G G m(g) = n(g) 1 G m(g) n(g) 1 m(g) n(g) 1 m(g) n(g) ϵ(g) 1 G n(t ) 2
59 2 m(t ) 1 + 2(n(G) 1) m(t ) n(g) 1 2 m(t ) n(g) G δ(g) + 1 δ(g) δ(g) = 1 2 δ(g) = k 1 k 1 k G k T k + 1 T G T = T \v v T G = G\y y G δ(g ) k 1 n(t ) = k T G σ : V (T ) V (G ) T G u T v u T u = σ(u) G T G T σ v G u k 1 G (u ) k u x G T V (T )\{u } = k 1 σ σ(v) = x T G G (u ) = k 1 u G y u G k 1 σ σ(v) = y T G G G G G G G G G G G T V (T ) V (G) v V (G)\V (T ) V (T ) 1 G
60 u V (T ) P (v, u) G x 0 = v, x 1,..., x r = u G v V (T ) {x 0, x 1 } T P e i = {x i, x i+1 }, i 1 P T e T G G G T G G G n(g) = m(g) 1 G T n(t ) 1 G T G = T n n {1,..., n} (T, τ) T τ : V (T ) {1,..., n(t )} V (T ) n(g) n(t ) (T, τ) (T, τ ) σ : V (T ) V (T ) T T v V (T ), τ(v) = τ (σ(v)) n n 2 n n 1 n n 2 n n n n 2 n 2 n n A = (a 1,..., a n 2 ) n
61 S = {1,..., n} T = (V, E) V n E = τ : V S V S S > 2 x S A x S y A E {τ 1 (x), τ 1 (y)} A S (T, τ) (T, τ) n() A V (T ) > 2 v T w v A τ(w) T v A T [5, 5, 2, 3, 3, 2, 8, 8] A (T, τ) (T, τ) A n n 2 n
62 3 T 1 T 2 δ (T 1 T 2 ) 3 G n(g) m(g) G m(g) n(g) 1 (T ) G n(g) m(g) T G δ(g) n(t ) 1 T G k
63
64 ΚΕΦΑΛΑΙΟ 7 R 2 S R 2 S S S Γ = (V, A) v V R 2 Γ e A R 2 (0, 1) e e e V V ( e E e) = Γ = V ( e E e) E V (Γ) = V E(Γ) = A
65 f 3 f 3 f 1 f 2 f 1 f 2 f 4 f 4 f 5 f 5 Γ R 2 Γ F (Γ) Γ K 5 K 3,3 Γ = (V, E) Γ = (V, E ) Γ V V E E (V, E ) R 2 \ Γ Γ = (V, E) R 2 \ Γ Γ F (Γ) Γ G Γ = (V, E) D R 2 Γ D R 2 {(x, y) R 2 x 2 + y 2 < 1} Γ D Γ = (V, E) f F (Γ) Γ Γ Γ Γ = (V, E) G Γ = (V, { e e E(Γ)}). Γ G Γ Γ f F (Γ) Γ[f] Γ V (Γ) f f\v (Γ) f F (G) G Γ[f] K 3 Γ f 1 f 4 G Γ G G Γ G) G Γ G Γ G Γ G
66 G Γ Γ υπ, ϵν, πα, τπ ϵλ G Γ Π Γ Π G Γ Π Γ G Γ G H G H K r, r 2 G H Γ e Γ f 1, f 2 F (Γ) e f 1 f 2 Γ f F (G) Γ[f] Γ Λ Γ Γ Γ Γ R 2 \ Λ Λ Γ
67 W 1 W 2 G W 1 W 2 [v 1, v 2, v 3, v 1, v 5, v 1, v 4, v 1 ] [v 4, v 1, v 5, v 1, v 3, v 2, v 1, v 4 ] [v 4, v 1, v 5, v 1, v 2, v 3, v 1, v 4 ] Γ = (V, A) f F (Γ) f Γ V f f\v j i k f 4 g a l b f 2 f 3 c h f 1 e G π(f 1 ) = [e, h, c, b, a, j, c, j, i, c, h, g, e], π(f 2 ) = [b, a, k, l, k, c, b], π(f 3 ) = [g, e, h, g], π(f 4 ) = [i, c, j, i] Γ = (V, E) f F (Γ) π(f) f Γ = (V, E) Γ = (V, E) Γ Γ G Γ G Γ ρ : V (Γ) V (Γ ) σ : F (Γ) F (Γ ) f F (Γ) ρ(π(f)) = π(σ(f)) Γ Γ G Γ G Γ G G Γ, Γ G G Γ Γ
68 σ(f 1 ) f 1 f 3 σ(f 2 ) σ(f 3 ) f 2 Γ Γ Γ Γ Γ G Γ G Γ Γ Γ R 2 S 0 = {(x, y, z) x 2 +y 2 +(z 1) 2 = 1} (0, 0, 2) (x, y, z) S 0 = {(x, y, z) x 2 + y 2 + (z 1) 2 = 1} (χ, ψ) R 2 x (x, y) ( 2 z, y 2 z ) 2x (x, y, z) ( x 2 + y 2 + 1, 2y x 2 + y 2 + 1, 2x 2 + 2y 2 x 2 + y ) f Γ s = (x 0, y 0 ) f Γ
69 (x, y) (x x 0, y y 0 ) s = (x 0, y 0 )) G Γ S 0 s (x, y, z) (2 x, 2 y, z) {(x, y, z) R 3 z = 0} s (0, 0, 2) s G Γ Γ Γ f Γ Γ f Γ Γ ρ π f π(f) Γ Γ = (V, A) F = F (Γ) Γ = (V, A ) Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Q 3 K 2,2,2
70 Γ Γ Γ Γ G H G K 2,2,2 K [3] 2 G K 4 Γ n m r m + 2 = r + n Γ m n 1 m = n 1 G Γ r = 1
71 < m n Γ n m r m n G Γ e Γ e f, f Γ e Γ Γ = (V (Γ), E(Γ)\{e}) f f f f e Γ (m 1) + 2 = (r 1) + n Γ V (G) 3 Γ E(Γ) Γ Γ Γ V (Γ) 3 Γ Γ 3 3n 6 Γ 2 3 E(Γ) r = 2 3m G n 3 3n 6 G δ(g) 5 m = m(g) n = n(g) Γ 6 m 6 2 n = 3 n G δ (G) 5 n 3 n
72 G G x G y x, y 3 n = n(g) r = n(g ) n, r, x y n + r = xn + 2, 2 n + r = yr + 2, 2 x, y 3, x, y 5, n = 4y 2(x + y) xy x = 3 y = 3 n = 4 r = 4 G x = 3 y = 4 n = 8 r = 6 G x = 4 y = 3 n = 6 r = 8 G x = 3 y = 5 n = 12 r = 20 G x = 5 y = 3 n = 20 r = 12 G x, y 4 (x 4)(y 4) 0 xy 4x 4y 16 0 xy 2(x + y) 2(x 4) + 2(y 4) 0
73 K 5 K 3,3 G K 3,3 < m G m G e = {x, y} E(G) G G = G e G e = {x, y} E(G) G G = G/e v e e G = G\e G = G/e m(g ) < m(g) G K 5 K 3,3 Γ G x y Γ e Γ G Γ C x y R\ C S = V (S) G G 3 (x, y) P i, i = 1, 2, 3 G {x, y} E(G ) S = V (S) F = C P 1 P 2 P 3 K5 = (2 K 1) K 3 {x, y} F K 5 K 5 τπ G (α) Γ Γ = Γ \v e f F (Γ ) Γ \v e v e Γ Γ [f] C M = [x 1,..., x r, x 1 ] S e = {x, y} G X = N G (x)\y Y = N G (y)\x V (C) X M Y G K 3,3 τπ G (β) K 5 K 3,3 K 5 K 3,3 G K 5 K 3,3 G S S = 1 2 C i, i = 1,..., r G\S i = 1,..., r G i G V (C i ) S i = 1,..., r G i ϵλ G n(g i ) < n(g) G G i K 5 K 3,3 G K 5 K 3,3 G i, i = 1,..., r i, j 1 i < j r G i G j = K S i=1,...,r G i = G
74 G e E(G) K 5 τπ G/e K 5 τπ G K 3,3 τπ G A xy A x A y x y K 3,3 e = {x, y} v e G = G/e e A xy = N G (x) N G (y) A x = N G (x)\{y}\a xy, A x = N G (y)\{x}\a xy H G D V (G ) v e D K 5 τπ G v e V (H)\D N = N H (v e ) N = 4 N A x, A y, A xy N A x A y K 3,3 τπ G K 5 τπ G G K 5 K 3,3 K 5 K 3,3 K 5 K 3,3 Γ υπ, ϵν, πα, τπ ϵλ K 4 K 2,3
75 K 4 K 2,3 K 5 K 3,3 K 4 K 2,3 G G + = G K 1 G G G + G + Γ Γ Γ G G + G + K 5 K 3,3 G K 4 K 2,3 G n 2n 3 v 1 v 5 Γ v 2 v 3 v 4 v 2 v 3 v 4 Γ v 5 v 1 G Γ G f Γ Γ[f] [v 1,..., v n, v 1 ] Γ + f Γ Γ [v 1,..., v n, v 1 ] Γ Γ + {v i, v n i+1 } i = 1,..., r {v i, v n i } i = 1,..., r 1 {v n, v n} G
76 n(g ) = 2 n(g) m(g ) = 2 n(g) + 2 m(g)) m(g ) 3 n(g ) 6 2 n(g) + 2 m(g)) 6 n(g) 6 m(g) 2 n(g) 3 G (G) 3 G H G H G (G) 3 r 3 r = 3 r = 4 ξ P X,Y = {(x, y, z) R 3 z = 0} R 3 P X,Y S 0 ξ G G H m
77 n 2(n 1) 6 4 G K 3 υπ G δ (G) 3 C 4 τπ G m(g) 3 2 (n 1) Γ κ r n m m + κ + 1 = n + r 6 x δ(g) 2 δ() 2 G H H G 6 H G δ (G) 6 K 4 τπ G 1 2 (3n 1) 4 C 4 τπ G m(g) 3 2 (n 1) n 0 n
78 H 3 n K4 K 4 G = {G K4 ϵλ G} {V 1, V 2 } V (G) G[V 1 ], G[V 2 ]
79
80 ΚΕΦΑΛΑΙΟ 8 k k k G χ : V (G) {1,..., k} {x, y} E(G) χ(v) χ(u) k G G k k χ 1 (i) i = 1,..., k χ S V (G) χ(s) = {χ(v) v S} X {1,..., k} χ 1 (S) = {χ 1 (i) i X} χ k G k G k χ(g) k 2 χ(c 2k 1 ) = 3 χ(c 2k ) = 2 l 1,..., l k K l1,...,l k = K l1 + + K lk V i (K l1,...,l k ) = V (K li ), i = 1,..., k K l1,...,l k k k K l1,...,l k l 1,..., l k V i (G), i = 1,..., k k G k
81 K K 3,3,3,3 k k k k k k χ : V (G) {1,..., k} k G G K χ 1 (1),..., χ 1 (k) χ : V (K l1,...,l k ) {1,..., k} χ(v) K l1,...,l k v χ K l1,...,l k G k G k G k G n n 2 ( k 1 2k ) G K l1,...,l k l 1,..., l k i=1,...,k l i = n m(g) m(k l1,...,l k ) K l1,...,l k m(k l1,...,l k ) ( ) n 2 i=1,...,k = 1 2 (n2 n = 1 2 (n2 i=1,...,k 1 2 (n2 n2 k ) = n 2 ( k 1 2k ) ( ) li 2 i=1,...,k (l 2 i )) (l 2 i l i ) i=1,...,k l2 i 1 k ( i=1,...,k l i) 2 k G n m χ(g) n2 n 2 2m
82 G 2 G G G G G G A = [X 0,..., X r ] G v G G X i {x, y} X i P x v x P x v y X 1,..., X i 1 w P 1 P 2 v P 1 P 2 P 1 P 2 w P 1 P 2 X i X i G n n2 4 G k S V (G) χ : V (G) {1,..., k} G χ(s) = {1,..., k} k G S S k G v, u S i j χ(v) = i, χ(u) = j G[χ 1 (i) χ 1 (j)] χ : V (G) {1,..., k} k G V v G[χ 1 (i) χ 1 (j)] v u V v χ G χ i j V v χ = χ\{(x, χ(x)) x V v } {(x, i + j χ(x)) x V v }. χ (v) = χ (u) = j χ 1 (S) = {1,..., k} i S
83 G χ(g) δ (G) + 1 G δ (G)+1 n(g) n(g) = 1 G < n δ (G) + 1 G n(g) = n v G δ (G) δ G\v δ (G\v) + 1 δ (G) + 1 χ : V (G\v) {1,..., δ (G) + 1} X = χ 1 (N G (v)) X δ (G) R = {1,..., δ (G) + 1}\X i R χ = χ {(v, i)} χ G δ (G) + 1 G l (l + 1) χ(g) l + 2 δ (G) l + 1 H H δ(h) l + 1 l + 2 l + 1 G n χ(g) + χ(g) n + 1 n χ(g) χ(g) χ(g) + χ(g) δ (G) δ (G) + 1 δ (G) n δ (G) 1 G χ(g) K l1,...,l χ(g) l i = {l 1,..., l χ(g) } l i n χ(g) V i(g) G G G n χ(g) 6 5
84 5 G v 5 G G = G\v 5 S = N v (G) 5 χ G {1, 2, 3, 4, 5}\χ 1 (S) i χ {(v, i)} 5 G Γ G Γ N G (v) v [v 1, v 2, v 3, v 4, v 5, v 1 ] χ(v i ) = i i = 1,..., 5 i, j, 1 i < j 5 G i,j = G[χ 1 (i) χ 1 (j)] G i,j G i j v i v j G i,j i, j, 1 i < j 5 P v 1 v 2 v v 5 v 4 v 3 v 1 v 3 P G P v L G Λ Γ G Λ = L Λ R 2 R 1, R 2 R 2 \ˆΛ v 2, v 4 Γ v 2 v 4 Λ G 2,4 v 2 v 4 G 2,4 i = 2 j = 4 4 δ (G) (G)
85 G ( (G) + 1) (G) d 3 G (G) d K d+1 υπ G G d G v G G = G\v d S = N v (G) d χ G {1,..., d} \χ 1 (S) i χ {(v, i)} d G S S = {v 1,..., v d } χ(v i ) = i G v 1 v 2 G G i = 1,..., d S i = {v i } N G (v i ) h {1,..., i 1, i+1,..., d}\χ(s i ) = χ = χ\{(v i, χ(v i ))} {(v i, h)} G S G G i,j = G[χ 1 (i) χ 1 (j)] v i v j G i,j, P i,j (v i, v j ) G i,j i, j 1 i < j d P i,j = G i,j i, j 1 i < j d P i,j G i,j D = [v i, a 1,..., a p, v j ] P i,j P i,j v i b a 1 χ(b) = j S i Gi,j (v i ) = 1 Gi,j (v j ) = 1 a s D Gi,j (c) > 2 χ(a s ) = i d a s P i,j χ(d) = j a s j a s P i,j d {1,..., i 1, i + 1,..., d}\χ(n Gi (a s )) h χ = χ\{(a s, i)} {(a s, h)} d G d a h C i,j = C i,j\a h i j S i, j, k {1,..., d} V (C i,k ) V (C k,j ) = {x k } c V (C i,k ) V (C k,j )\{x k } χ(c) = k c i j {1,..., k 1, k + 1,..., d}\χ(n G (c)) h χ = χ\{(c, k)} {(c, h)} d G d C i,k = C i,k\c i k S z P 1,2 v 1 χ(z) = 2 z S z P 2,3 P 1,2 P 2,3
86 (G) G 2l G l µ µ U n {v 1,..., v n } U n X m,n,d,k = {G U n m(g) = m nd, (G) d 2, χ(g) k} G m,n,d,l = {G U n m(g) = m nd, (G) d 2, (G) l}. n, d, k, l X dn,n,d,k < G dn,n,d,l U n l k X m,n,d,k G m,n,d,k X m,n,d,k χ : V (G) {1,..., k} ) k ( n/k ) = 1 2 n2 (1 1 k H = (V (G), ) ( n 2 2 ) χ ( 1 2 n2 (1 1 k ) ) m ( 1 2 n2 (1 1 k ))m m H χ k n k H X m,n,d,k k n ( 1 2 n2 (1 1 k ))m G m,n,d,l G m,n,d,l H G m 1,n,d,l e () d 2 m(h) nd 2n/d H d 2 n(1 2 d ) S V (H) e x S S\{x}
87 l v l d2 d 2 2 (d2 1) l d 2l n(1 2 d ) d2l e 1 2 n(1 2 d )(n(1 2 d ) d2l ) H G m,n,d,l G m,n,d,l ( 1 2 n(1 2 d )(n(1 2 d ) d2l )) m n d X dn,n,d,k G dn,n,d,l k n ( 1 2 n2 (1 1 k ))dn ( 1 2 n(1 2 d )(n(1 2 d ) d2l )) nd n 2 k 1/d (1 1 k ) n(n(1 2 d ) d2l )(1 2 d ). n d n 2 n 2 d k 1/d (1 1 k ) (1 2 d )2. d 1 1 1/k G K 5 K 3,3 K 5 K 3 4 K 5 G K 5 ϵλ G V 8 G K 5 ϵλ G
88 V 8 V 8 G K 4 ϵλ G k 0 G K k+1 ϵλ G k k = 6 r 7 K r G K r ϵλ G ϵ(g) 2 r 2 c(r) c ϵ(g) c K t ϵλ G c(t) = (α + o(1))t t α = r = 1, 2, 3 r = 4 G G χ(g) m(G) + 1 4
89 G {V 1, V 2 } V (G) χ(g[v 1 ])+ χ(g[v 2 ]) = χ(g) G {V 1, V 2 } V (G) χ(g[v 1 ]) + χ(g[v 2 ]) > χ(g) G H χ(g 1 ) χ(g 2 ) χ(g 1 G 2 ) G G l (l + 1)
90 ΚΕΦΑΛΑΙΟ 9 ω(g) G G ω(g) = {k K k υπ G} G G ω(g) χ(g) G ω(g) 4 τ(p, n) p n p, n (r 1, n 0) p n 1,..., n p G m(g) = n i n j 1 i<j p n 1,..., n p n/p p
91 n p,..., n p, n p,..., n p. } {{ } } {{ } n p p (n p) p, n (r 1, n 0) T p (n) τ(p, n) T 4 (10) T 5 (9) G (k, ω) ω(g) k G ω(g ) k n(g) = n(g ) m(g) < m(g ) G v V (G) v G G v G N G (v) v v v v G G + G ω(g) = ω(g + ) (k, ω) G x, y, a {x, y} E(G) {x, a}, {y, a} E(G) x y
92 G (x) > G (a) x G + ω(g + ) k m(g + ) = m(g) + G (x) G + a G ω(g ) k m(g ) = m(g) + G (x) G (a) > m(g) G (x) G (a) G (y) G (a) a G + ω(g + ) k m(g + ) = m(g)+2 G (a) G + x y G ω(g ) k m(g ) = m(g)+2 G (a) G (x) ( G (y) 1) > m(g) x y x y G (y) 1 (k, ω) G n T k (n) G k ω(g) > k G T k (n) (k, ω) G m(g) τ(ω(g), n(g)) G S V (G) G S G α(g) G G G α(g) = ω(g) G n(g) α(g) χ(g) k l r(k, l) k l n G n ω(g) k α(g) l k l r(1, l) = r(k, 1) = 1 r(2, l) = r r(k, 2) = k r(k, l) = r(l, k)
93 r(k, l) k l r(k, l) r(k 1, l) + r(k, l 1). G G n(g) r(k 1, l) + r(k, l 1) v G k 1 = N G (v) k 2 = N G (v) k 2 G v G k 1 + k 2 = n(g) 1 r(k 1, l) + r(k, l 1) 1. k 1 r(k 1, l) G = G[N G (v)] ω(g ) k 1 α(g ) l ω(g) k v G + α(g) l k 1 < r(k 1, l) k 1 r(k 1, l) 1 k 1 r(k 1, l) + 1 k 2 r(k, l 1) G ω(g ) k α(g ) l 1 ω(g) k α(g) l v G k l ( ) k + l 2 r(k, l). k 1 k + l k +l 5 p, q k, l k + l < p + q r(p, q) r(p 1, q) + r(p, p 1) ( ) ( ) p + q 3 p + q 3 + p 1 p 2 ( ) p + q 2 =, p 1 r(3, 3) r(2, 3+r(3, 2)) = 6 ω(c 5 ) = α(c 5 ) = 2 r(3, 3) 6 r(3, 3) = 6 r(k, l) k l r(3, i) i {3,..., 9} r(4, i) i {4, 5} r(5, 5) {43,..., 49} r(5, 5) r(6, 6) r(5, 5) r(6, 6)
94 k r(k, k) 2 k/2 k 3 V n = {v 1,..., v n } G n V n G k n G n k i, j, 1 i < j n G n G n = 2 (n 2) S V n k 2 (n 2) ( k 2) Gn S ( n ) k S G k n ( ) n 2 (n 2) ( k G 2) n k k G n ( n )2 (k2) n k 2 (k 2) <. k k! n < 2 k/2 Gn k G n < 2k2/2 2 ( k 2) k! = 2k/2 k! < 1 2. G n k G n = {G G G n } G n k G G n } k ω(g) < k α(g) < k r(k, k) < 2 k/2 G ω(g) < k α(g) < k n < 2 k/2 G ω(g) δ (G) + 1 t(p, n) t(p, n) n 2 p 1 2p n p n p
95
96 ΚΕΦΑΛΑΙΟ 10 e G S V (G) S S V (G) G S G (G) G G S S G k G U D (G) { U, D } G (G) = n(g) α(g) S G G S G S V (G)\S S G
97 G S V (G)\S V (G)\S G G k n(g) k G δ (G) (G) δ (G) k G δ(h) k H S S < k H\S I v I H S G (v) S < k δ(h) k (G) (H) k G L(G) L(G) G L(G) L(G) G (G) = χ(l(g)) r L(G) G V (L) r L(G) G G r E(G) r G r r G r L(G) G M E(G) e,e M e e = µ(g) G M v V (G) v M G µ(g) = ω(l(g)) G χ(g) n(g) µ(g)
98 n = n(g) = n(g) µ(g) G G n 2 µ(g) G M G n 2 µ(g) µ(g) + n 2 µ(g) = n µ(g) χ(g) n(g) µ(g) G n m µ(g) 2mn n + 2m. µ(g) n χ(g) χ(g) n 2 n 2 2(( n 2) m) µ(g) n n 2 n 2 n(n 1)+2m 2mn n+2m 3 K 2 G µ(g) (G) G (G) = µ(g) G (G) µ(g) U D G M G M U U G S U M P S S M P M R G e M e = {u, d} u U d D d R S d R u R = M R G e E(G) R e M e M M e = {u, d} e M M {e} d e u S e S R d R e R u e = {u, d } S d R u R e R S P d d d e M d R e R d P e P P M e P d P P P + = P ({d, u, d, {e, e})} S d d R d e M P + M +
99 U u u U u e e e e D d D d d U u U u D e e d e d D e e d d M P + M P + M + G M G U D M U R U N G (R) R M U U S U M M M S D N G (S) M = S M N G (S) S M U (G) = µ(g) < U S G < U S U = S U S D = S D S G (U\S U ) (D\S D ) G N G (U\S U ) S D S < U S\S U < U\S U N G (U\S U ) S D = S\S U < U\S U R = U\S U N G (R) < R n m (G) m n α(g) n2 m n
100 ΚΕΦΑΛΑΙΟ 11 G H χ(g) = ω(g) 3
101 5 W i, i 4 i C 5 G G n χ(g) ω(g) χ(g) n µ(g) µ(g) = (G) ω(g) = α(g) α(g) = n (G) χ(g) n µ(g) = n (G) = α(g) = ω(g) H L(H) H H χ(l(h)) = ω(l(h)) (H) = χ(l(h)) µ(h) = ω(l(h)) G (G) = 3 G χ(g) = ω(g) = δ (G) + 1 = 4
102 S G G x, y S {x, y} E(G) S (a, b) a, b G\S C a C b G\S a b x y C a C b S (a, b) G (x, y) P a C a (x, y) P b C b P a P b P a P b G 4 G G G G a b S (a, b) G S G C a G\S a G 1 = G[S C a ] G 2 = G\C a G 1 G 2 n(g i ) < n(g), i = 1, 2 i = 1, 2 G i i {1, 2} G i v i V (G i )\S G i {1, 2} G i v i S v 1 v 2 G G δ (H) ω(g) 1 G ω(g) 1 G v G = G[N G (v)] G (v) = G (v) ω(g) 1 G H χ(h) δ (H) + 1 ω(h) = ω(h) G {V c, V d } V (G) V c G V d G G H G (G) = {ω(h) 1 G H H }. G
103 C i G {V c, V d } V (G) G[V c ] C i V c G G[V d ] i 3 V d G i 3 0 i 3 G G I = {I 1,..., I n } I I i = [l i, r i ] l i < r i I G I = (I, {{I i, I j } I i I j }), G I I G I G I G I I G I G C i G i 4 I 1, I 2, I 3,..., I i C i I 1 l 1 = {l i 1 i i} I 3 r 1 I 1 I 3 G j = 1,..., i 2 I j+2 r j i 1 I 1 I i = I 1 I i G G
104 ω(g) = α(g) n(g) = n(g) n(h) α(h) ω(h) G G 5 1 G 5 G I 0 = {3, 5} G 3 G 5 χ 3 χ 5 G 3 G 5 χ 3 χ 5 I 1 = {2, 5}, I 2 = {1, 4}, I 3 = {2, 4} I 4 = {1, 3} G G I 0, I 1, I 2, I 3, I 4 S 0 = {1, 2}, S 1 = {3, 4}, S 2 = {2, 3}, S 3 = {1, 5} S 4 = {4, 5} G H χ(h) = ω(h) n(h) α(h) χ(h) n(h) α(h) ω(h) G χ(g) > ω(g) H G G χ(h) = ω(h) p = ω(g) I 0 = {v 1,..., v q } G q = α(g) i {1,..., q} G i = G\v i ω(g i ) = ω(g) ω(g i ) < ω(g) χ(g i ) = ω(g i ) < ω(g) χ(g) ω(g) χ(g i ) = ω(g i ) = p i 1,..., q p σ i : V (G i ) {1,..., p} G i I (i 1) p+1,..., I i+p σ i i = 1,..., q G pq + 1 I 0, I 1,..., I pq G j {0,..., pq} χ(g\i j ) < ω(g) I j
105 χ(g) ω(g) χ(g\i j ) ω(g) ω(g) χ(g\i j ) = ω(g\i j ) ω(g) G\I j p S j pq + 1 S 0, S 1,..., S pq G j, j {0,..., pq} j j S j I j j = 0 j {1,..., pq} G i = G\v i σ i I j S 0 G\I 0 S 0 0 v i S 0 G[S 0 ] G i χ(g i ) = p G[S 0 ] σ i I j G[S 0 ] < p G[S 0 ] I j j {1,..., pq} j > 0 G[S j ] G\I j I j σ i i {1,..., q} σ i G i = G\v i v i S j v i S j G[S j ] G i \I j G i χ(g i \I j ) < p G[S j ] < p v i S j S j I 0 S j I j j {1,..., pq}\{j} G i = G\v i σ i I j i i v i S j v i, v i I 0 v i S j G[S j ] G i = G\v i G i I j S j < p i = i I j I j σ i S j I j S j I j = G[S j ] G\I j \I j G\{v i }\I j \I j p 2 G\I j \I j p 1 χ(s j ) < p S 0 S 1 S 2 S 3 S 4 I I I I I X Y Z X Y C 5 X, Y Z n(g) = 5 > 2 2 = α(g) ω(g) V (G) = {v 1,..., v n } (pq + 1) n X = [x i,h ] (i,j) [pq+1] [n] x i,h = 1 v j I i X I i, i = {0,..., pq} n (pq + 1) Y = [y h,j ] (h,j) [n] [pq+1] a h,j = 1 v h S j Y I j, j = {0,..., pq} S j I i i j i = j S j I i = 0 S j G\I j S j I j = S j I i = i j
106 S j I i S j I i S j I i = 1 z i,j = x i,h y h,j = S i I j h {1,...,n} XY (pq + 1) (pq + 1) Z = [z i,j ] (i,j) [pq+1] 2 Z 0 X n X n X pq Z = XY pq XY X Z Z pq + 1 P = (S, <) S R S x, y R x < y y < x R S x, y R x y y x a a a b c b c b c d e f d e f d e f g h g h g h P P P = (S, <) G P G G = (P, {{x, y}} x < y x > y}), S G G G P P = (S, <) G P P = (S, <) P = (S, <) S ρ P ρ P ρ
107 a b c d e f g h G P P = (S, <) S = n P B U D U = S v S v D (v, u) S S v < u B v U u D u D v U v D v v P a R U a b c d e f g h b c B d e f R D g h a b c d e f g h B B R {a, c, f, h} {b, d} {e, g} d e f P M B R B M = µ(b) = (B) = R = k R k S n k S P F P S F = E M {v, u } E A F v A u A F u
108 A v F [v, u] E E\{{v, u }} E = F n k U M M F = n k ρ = n k P = (S, <) P (P) F = {L 1,..., L k } S L i F P P = (S, <) P P F P ρ I ρ F P I F I = F F F P F I F = I I P = (S, <) S α(g P ) = (P) P G P α(g P ) P P P = (S, <) S (P) = χ(g P ) P G P F P ρ V (G P ) ρ G χ(g) ρ P (P) = χ(g P ) G n χ(g) ω(g) χ(g) ω(g) P = (V (G), <) G G = G P χ(g) = χ(g P ) = (P) = α(g P ) = α(g) = ω(g)
109 a a b c b c d e f d e f g h g h G P P G P G P G P G D (x, y), (y, z) E(D) (x, z) E(D) G (G) = ω(g) 1
110 ΚΕΦΑΛΑΙΟ 12 G G W = [v 0,..., v r 1, v 0 ] G W = [v 1,..., v r, v 1 ] e E(G) {i {v i, v i+1 r } = e} = 1.
111 G C = [v 0,..., v r 1, v 0 ] v G I {0,..., r 1} v = v i I = {i {0,..., r 1} v = v i } i I v = v i {v i 1 r, v i } {v i, v i+1 r } I C (v) = 2 I v ρ(g) = v V (G) ((v) 2). ρ(g) = 0 G G ρ(g) ρ(g) > 0 v 4 G v G {x, v} {y, v} v G w x y v G G G G (v) = G (v) 2 G G G w G v ρ(g ) < ρ(g) G G G G W = [v 0,..., v r 1 ] G
112 C A B D A B C D G G v 0 v r 1 G G G v 0 v r 1 G G G G G
113 G G G G G G I = {1,..., k} I 1, I 2 I I 1 + I 2 k + 2 i I 1 i + 1 I 2 j I 2 j + 1 I 1 G n(g) G x y G (x) + G (y) n(g) 2 < n(g) G P = [v 1,..., v r ] G r n(g) G P {v 1, v r } E(G) v 1 v r N G (v 1 ), N G (v 2 ) {v 2,..., v r 1 } N G (v 1 ) N G (v 2 ) r 2 n(g) 2 N G (v 1 ) + N G (v r ) n(g) i {2,..., r 2} v i N G (v r ) v i+1 N G (v 1 ) G C = [v 0, v i+1, v i+2,..., v r, v i, v i 1,..., v 0 ]
114 G r < n G w G C v C G w v C r + 1 P n(g)/2 G α(g) κ(g) C G G u V (G)\V (C) V (C) κ(g) V (C) < κ(g) x x C κ(g) G x x e = {x, x } V (C)\{x, x } < κ(g) 2 P V (C)\{x, x } P (C\e) r r κ(g) G + G v C V (C) κ(g) κ(g + ) κ(g) v u G + κ(g) v u G + (u, S) G S V (C) S κ(g) S u V (C)\S x S x C S C\{x, x } P 1 P 2 P 1, P 2 u x x C I V (C) S I G x, y I e C\{{x, x }, {y, y }} (e, {e}) P x P y x y x y P x P y u x y I V (C)\S u V (C)\S {u} I G κ(g) + 1 α(g) > κ(g)
115
116 n
117 k 3
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((
? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&
! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1
! " " #$%&'(&) *+,-. /01 34 564784 37964 :4 ; ?@ 34 E156F57E1 GHE H567JF4 H5F:7H4 K06 LF37:4 M4N45F415 30 6PG34 0F EK0 F17JF4415 R465071 K6ES3P4 :4 E156F57E1 3M07:4 :4 4 4F3 7156F415 4 E15 6H9H3H 7KE7S34
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards
A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v
BÀ. tdmj³ Xn-cp-h-\- -]p-cw kz-tz-in. 2004 ap-xâ [-\-Im-cy ]-{X-{]-hÀ- -\cw-k v. XpS- w Zo-]n-I- Zn-\- -{X- nâ. C-t mä am-xr-`q-an Zn-\- -{X- n-sâ {]-Xnhmc _n-kn\-kv t]pm-b "[-\-Im-cy-' n-sâbpw ssz-\w-zn-\
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!
!! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
Θεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443
"#$& " # $ & ' &( &)* &"# &"+,(-. (# / 0 123(2443 2443 56 1 7 & '()(()(*+( ),)(-.(/)((,),24420 8.94: -; :53&:54::549 '()((0)(#'(1)(' ( )(-.(/)((,),24460..94: < * 94&5=>6 '()( 2( )(3(1)((0)('.( )4)((,)
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
PoS(PSF07)002 !"# $%"&!'( &")(#""* "+#,'("# ! " #$% ! " #$ ! " ,,. 12!34 " ! " ! γ " " #$ % &'# ( #$ γ )* +, &'# &'# -. /$01#!
! #$%!#! #$ $%&!'(! #$% &(# &'(+,-,,. #$% +#%%+ &/0 12!34 #$% +#,'(#! #$%! #$ % &'# ( #$ +, &'# &'# -. /$01#! 2 #$ 5.60.780+ 2$ 9 2 #&'&# & 3 #$45.6 0 3 / : / : :;#:;< ' #5. 3 #$ 3 Γ# 5 / # 5 ( (# ρ( ρ(
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession, and Descent Revisited
College of Humanities and Social Science Graduate School of History, Classics and Archaeology Masters Programme Dissertation Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession,
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +
! " # $ %&&' '( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + %( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((('& %('(,,
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
a,b a f a = , , r = = r = T
!" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
'#( ) : /..,..,..!.; , ISBN *, +, /, , 2 1+,,, : 7.
- 003 :! " #!! $%!& '#( 638 ) : /! ; - - 003-08 ISBN 5-30-0600-0 * + - 0000-5000 / 0 0 ( 3 + 8 33 4 : 7 * 3+ -- - : - - - - 3 - ; (! ( ) ISBN 5-30-0600-0 - 003 + - 0000-5000 / 0 ( 3 + 0 + - - - 0 - - +
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
! "#$%&'( )'*#+,&-.-& / $ %12' 2&.&-.6 12µ*-
!"#$%& '!()&*$& +&,-(!.#!$& ).&,/ +&,$($%0# '/.1#$%0# (&'!1) 1#"20+$)($%0# & %&$#0#$%0#!+$)(/'0# & 3$%1$&-! "#$%&'( )'*#+,&-.-& /0123241-5.$ %12' 2&.&-.6 12µ*- 7&840µ-1&.9 )#+-%:- 1(;
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ
Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)
ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА
ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА Верзија 1.0 децембар 2009. године На основу члана 107. Закона о енергетици (''Службени гласник Републике Србије'' број 84/04) и чл. 32. ст. 1. т. 9. Одлуке о измени
Θεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
Comptage asymptotique et algorithmique d extensions cubiques relatives
Comptage asymptotique et algorithmique d extensions cubiques relatives Anna Morra To cite this version: Anna Morra. Comptage asymptotique et algorithmique d extensions cubiques relatives. Mathématiques
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001
!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί
Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )
ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2
ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
!"#$%&$'&()*+, $$ $ &-.! & "# $ %
!"#$%&$'&()*+, $$ $ &-.! &! "# $ % & '() * &++++),- #,.'() * &/0 1223 145%0% $ %.. 6##- 7%8,- 1%- 4%,9%)- 6%: $0+++%++0+++%+++ / 000000000000000000000000000000000000000000000000000 &()*+, $$ $ &-.! & /
X vu = Γ 1 21X u + Γ 2 21X v + fn. X vv = Γ 1 22X u + Γ 2 22X v + gn, (7.2) X u = (cos u cos v, cos u sin v, sin u)
Κεφάλαιο 7 Οι εξισώσεις Codazzi και Gauss Σύνοψη Στο κεφάλαιο αυτό θα ασχοληθούμε με μια βαθύτερη κατανόηση της καμπυλότητας Gauss. Θα ορίσουμε τα σύμβολα του Christoffel, τα οποία είναι πραγματικές συναρτήσεις
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
DC BOOKS. a-pl½-z-v iao-w Da-c-n
a-pl½-z-v iao-w Da-c-n 1945 P-q-s-s-e 24þ\-v I-mkÀ-t-I-m-U-v aq-s-w-_-b-e-nâ P-\-n -p. {-K-Ù-I-À- -mh-v-, h-n-hà- I³-, d-n-«. A-²-y-m-]-I³. C-c-p-]- -n-\-m-e-p hàj-s- A-²-y-m-]-IP-o-h-n-X- -n-\-pt-i-j-w
... * +, . >1 " W1 X &=:C.1 3.% 2 *! > 8. $( >1 $.: " G YJ ZC1 G! 1.
1... #) %# "#$%& '%(! 3 2 1 ()*+, &! # $% &!" 5 6!7 8 9 4 2 3 /$01 &,. 2 =! > 8 3.%
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*
!"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"
Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a
Formula o grawal Fiber-Oti Communiation Sytem Chater (ntroution) 8 / max m M / E nh N h M m 4 6.66. J e 9.6 / m log /mw SN / / /, NZ SN log / Z max N E Chater (Otial Fiber) Setion - (Geometrial Oti erition)
Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013
Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ
ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ x x x y y x y?? Ευριπίδης Μάρκου Ευάγγελος Κρανάκης Άρης Παγουρτζής Ντάννυ Κριζάνκ ΕΥΡΙΠΙΔΗΣ ΜΑΡΚΟΥ Τµήµα Πληροφορικής µε Εφαρµογές στη Βιοϊατρική Πανεπιστήµιο
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
1.4 8v 78hp 1.4 8v 78hp. Progression Distinctive Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1
1.4 8v 78hp 1.4 8v 78hp 1368 1368 Progression Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1 ΘΟΦΝΠ ΦΥΡΗΠΚΝΠ NIGHT PANEL ΚΔ LED ---- ΦΥΡΗZOMENOI ΘΑΘΟΔΞΡΔΠ ΠΡΑ ΑΙΔΜΖΙΗΑ ---- ΡΑΚΞΙΥ SPRINT ---- ΡΑΚΞΙΥ
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 7 ΧΡΩΜΑΤΙΣΜΟΣ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Χρωματισμός κορυφών-ακμών-περιοχών. Χρωματική τάξη (color class):
Πλεόνασμα παραγωγού και καταναλωτή Υπολογισμοί με το Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης htt://stavrakoudis.econ.uoi.gr Δεκέμβριος 213 1 / 4 Επισκόπηση 1 Πλεόνασμα του
A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ III ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN 1 Εστω f : V V γραμμική απεικόνιση Εστω A = ker(f i ) και B = ker(f i+1 ) Δείξτε ότι (i) A B και (ii) f(b) A Αποδ: (i) Εστω x ker(f i ) Τότε f i (x)
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
! " #! $ %! & & $ &%!
!" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες
Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0
f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)
Ω f: Ω C l C z Ω f f(w) f(z) z a w z = h 0,h C f(z + h) f(z) h = l. z f l = f (z) Ω f Ω f Ω H(Ω) n N C f(z) = z n h h 0 h z + h z h = h h C f(z) = z f (z) = f( z) f f: Ω C Ω = { z; z Ω} z, a Ω f (z) f
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Florida State University Libraries
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 A New Examination of Service Loyalty: Identification of the Antecedents and Outcomes of an Attitudinal
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ