Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3 k

4 k

5

6 ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G) N G (x) = x v 1 v 5 v 1 v 5 v 3 v 4 v 3 v 4 v 2 v 6 G v 2 v 6 G G G V (G) = V (G ) = {v 1, v 2, v 3, v 4, v 5, v 6 } E(G) = {{v 1, v 2 }, {v 1, v 3 }, {v 2, v 3 }, {v 3, v 4 } {v 1, v 5 }, {v 2, v 6 }, {v 4, v 5 }, {v 4, v 6 }, {v 5, v 6 }} E(G ) = E(G) {{v 1, v 4 }, {v 2, v 5 }}

7 G = (V, E) V = {v 1, v 2, v 3, v 4, v 5, v 6 } E = {{v 1, v 2 }, {v 1, v 3 }, {v 2, v 3 }, {v 3, v 4 } {v 1, v 5 }, {v 2, v 6 }, {v 4, v 5 }, {v 4, v 6 }, {v 5, v 6 }} G G G a b c d b e d e f G a f c G H G = ({a, b, c, d, e, f}, {{a, d}, {a, e}, {a, f}, {b, d}, {b, e}, {b, f}, {c, d}, {c, e}, {c, f}}) G H = ({1, 2, 3, 4, 5, 6}, {{1, 4}, {1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 4}, {3, 6}}) G V (G) = {v 1,..., v n } n n A = [a i,j ] (i,j) [n] 2 a i,j = { 1 {v i, v j } E(G) 0 {v i, v j } E(G) G 0 n n! A = A =

8 G G G H σ : V (G) V (H) x, y V (G) x y {x, y} E(G) {σ(x), σ(y)} E(H) G H G H G H G H a c υ ω 4 b 5 2 χ τ e d G f ϕ G ψ 6 3 G 1 Q 3 Q 3 r 0 K r = ({v 1,..., v r }, {{v i, v j } 1 i < j r}) r r G r G K r

9 K 6 K 4,3 K 6 K 4,3 p, q 0 K p,q = (A B, E) A = {v 1,..., v p }, B = {u 1,..., u q } E = {{v i, u j } 1 i p 1 j q} K 1,r r 0 r K 3,3 P 3 C 7 P 3 C 7 r 1 P r = ({v 1,..., v r+1 }, {{v 1, v 2 },..., {v r, v r+1 }}) v 1 v r+1 x y (x, y) r 3 C r = ({v 1,..., v r }, {{v 1, v 2 },..., {v r 1, v r }, {v r, v 1 }}) C 3 (6, 4)

10 V r = {1,..., r} (p, q) (V p V q, {{(x 1, y 1 ), (x 2, y 2 )} x 1 x 2 + y 1 y 2 = 1}). r 0 V r r r Q r = (V r, {{x, y} x, y V r x y }) Q 0 Q 1 Q 2 Q 3 Q i i = 0, 1, 2, 3 G G G V (G) G (G) G 1, 2, 3, 4 1, 4, 3, 2 3, 2, 1, 4 3, 2, 1, 2 (C 4 ) = { 1, 2, 3, 4 1, 4, 3, 2 3, 2, 1, 4 2, 3, 4, 1 3, 4, 1, 2 4, 3, 1, 2 4, 1, 2, 3 2, 1, 4, 3 } (H) = { 1, 2, 3, 4 4, 2, 3, 1 } V (K n ) (K n ) S n n! = (K n ) = S n G C 4 H G C 4 H

11 H H G (G) S n G (G) G n! G x, y V (G) x y σ(x) = y σ (G) x y G G {1, 3} {2, 4} C 4 {1, 2, 3, 4} G {2} {3} {1, 4} H {1, 4} {2, 3, 5, 6} {7} G x y σ (G) σ(x) = y C r r 3 K r r 1 K r,r r 1 G G V

12 ,6 2,1 1 1 G 1 G 2 G 3 G 4 G 5 G 6 G 1 G 2 G 3 G 4 G 5 G 6 {,,,,} G 1 E(G 1 ) = {{,}, {,}, {,}, {,}, {,}, {,}, {,}} G 2 E(G 2 ) = {(,), (,), (,), (,), (,), (,), (,)} G 3 E(G 1 ) 5 1 2, ,6 1 G 4 E(G 1 ) = E(G 1 ) {{}, {}, {}} G 5 E(G 1 ) {,} {,} {,} G 6 E(G 1 ) {{,,}, {,,,}} G = (N, E) E = {{x, y} ( N 2) y 2 = x 3 } G = (R, E) E = {{x, y} ( R 2) y 2 + x 2 = 1} 3 G Q 3

13 A = [a i,j ] 1 i,j r a i,j = (i + j) ( 2) K r/2, r/2 G 1, G 2, G 3 A = [a i,j ] 1 i,j 8 a i,j = (i + j) 2 σ : V (G) V (H) G H S V (G) σ(n G (S)) = N H (σ(s)) S V (G) σ(s) = {σ(v) v S} G m(g) = ( ) n(g) 2 x, y 1 (x, y) P x 1 P y 1 (p, q) 2 p q p q a, b, r C a Q b (r, r) Q r r Q r r 0 G (G) G (G) = 1 G n(g) A

14 n n

15

16 ΚΕΦΑΛΑΙΟ 2 G G G = (V (G), {{x, y} x, y V (G)}\E) G G G G G L(G) = (E(G), {{e 1, e 2 } e 1, e 2 E(G) e 1 e 2 }). a e b a d c e f b G d c f L(G) K 4 L(K 4 ) G H G H G H = (V (G) V (H), {{(x 1, y 1 ), (x 2, y 2 )} ({x 1, x 2 } E(G) y 1 = y 2 ) ({y 1, y 2 } E(H) x 1 = x 2 )}). G H G H = (V (G) V (H), E(G) E(H)) G H = (V (G) V (H), E(G) E(H)).

17 V (G) V (H) = G H G H G H G H G + H G H G H = {V (G) V (H), E(G) E(H) {{x, y} x V (G) y V (H)}}. G H G H G H G + H G H G H G H K 3 K 1,3 K 3 K 1,3 K 3 K 1,3 K 3, K 1,3, K 3 K 1,3 K 3 K 1,3,, +, k 0 G k G = G } + {{ + G }, G [k] = G } {{ G } k k G (k) = G} {{ G}. k G 0 G G (0) K 0 G [0] K 1 K 1 K 2 G 1 G 2 G 1 K 1,K 2 G 2 G 1 G 2 K 1 K 2 G 1 G 2 G 1 G 2 K 1 K 2 K 1 K 2 G K1,K 2 H G H

18 G e E(G) v v e v e v V (G) E G (v) V (G) v E E(G) V (E) = e E e E G S V (G) v V (G) E E(G) e = {x, y} E(G) G\S = (V (G)\S, {{x, y} E(G) {x, y} S = }) G\v = G\{v} G\E = (V (G), E(G)\E) G\e = G\{e} G\{x, y} G\e {x, y} e G\{x, y} {x, y} x y G\e e G v V (G) {x, v} {v, y} x y G/v = (V (G)\{v}, E(G)\{{x, v}, {v, y}} {{x, y}}) v G v e e G H G H G e = {x, y} E(G) v V (G) G/e = (V, E ) V = V (G)\{x, y} {v } E = E(G)\E G (x)\e G (y) {{v, u} u N G ({x, y})\{x, y}} e = {x, y} G x y v {x, y} G

19 u G v e G e G u v G 1 G 2 G 3 f G f G w w G 4 G 5 G 6 T = {\v, /v, \e, /e} T = {\v, /v, \e, /e} \v \e /v /e T = {\v, /v, \e, /e} A T A = G H H A G H G A A T A A = {\e, \v} H A G υπ G H G H G A = {\v} H A G ϵν G H G

20 A = {\e} H A G πα G H G A = {\e, \v, /v} H A G τπ G H G A = {\e, \v, /e} H A G ϵλ G H G C 4 C 4 C 5 C 5 G S V (G) G[S] = G\(V (G)\S) G[S] = (S, {{v, u} {v, u} S {x, y} E(G)}). G[S] ϵν G G[S] G S E E(G) G[E] = (V (E), E) G[E] G G H H ϵν G H ϵν G H G H πα H G H ϵν H G H τπ G H ϵλ G υπ ϵν πα τπ ϵλ T = {\v, /v, \e, /e} T G { υπ, ϵν, πα, τπ, ϵλ } G G G G G G G

21 G G G n(g) = 0 1 ( 4) n 3 C n L(C n ) G m(l(g)) ( ) m(g) 2 K p,q + K r,s (K p + K q ) (K r + K s ) K p,q K p + K q K (m) r K m r P p P q (p, q) L(K 4 ) (2 K 1 ) (3) Q r K [r] 2 G (G) = (G) G = {G G L(G)}

22 G k 1 k G, G [k] G (k) G L(G) G k,r V (G k,r ) r k {v, u} E(G k,r ) v u G k,r K [r] k G L(G) G = C i1 + + C ir i j 3 1 j r G 1 G 5 {\e, /v} G e v G\v G/v G\e G/e G K 1 G n T n k k 1 G k q 2 Q q 2 q G 1 K 5 k K 2,4 (k k) T W r = K 1 C r (n n) r 3(n 2) + (n 3) 2 n 3 3 K 1,3 + K 1,3 πα Q 3 Q 3

23 K 1,4 ϵλ Q 3 K 1,4 τπ Q 3 K 3,3 K 5 K 5 r (r, r) Q 3 G K 1,r υπ G K 1,r τπ G r (r, r) L(K 4 ) (r, r) K 1,1+ r 2 (r 1) K 2,1+ r 3 (r 1) K 3,r r 3 G 1 = {C r r 3} G 2 = {P i i 0} G 3 = {Q r r 0} ϵλ τπ υπ πα ϵν k A = {δ (G) G P [k] n n 1} B = {δ (G) G P [k] n n 1}

24 ΚΕΦΑΛΑΙΟ 3 v G G (v) = N G (v). G δ(g) = { G (v) v V (G)} (G) = { G (v) v V (G)} d(g) = 1 n(g) v V (G) G (v) G ϵ(g) = m(g) n(g) G r r (G) = {k K 1,k υπ G}. G v V (G) G (v) = 2 m(g) δ(g) d(g) (G) ϵ(g) = d(g) 2 v G (v)

25 V 1 V 2 V (G) 2 m(g) = G (v) = G (v) + G (v), v V 1 v V 2 v V (G) v V 1 G (v) V 1 G (G) G v V (G) z(g) = ( (G) G (v)). n(g) z(g) G (G) r = (G) G r G 1 = G G < r G ϵν G 1 z(g 1 ) < z(g) G m G υπ G r z(g) = 0 G m r G ϵ(g) δ(g) 2 δ, ϵ 0 δ ϵ G n = K δ+1 + K n δ 1 δ(g) δ ϵ(g n ) = ( δ+1 2 )+( n δ 1 2 ) n n ϵ(g n ) = n ϵ(g n ) ϵ δ (G) = {k G H δ(h) k }. G H υπ G δ (H) δ (G) G δ (G) n 1 δ (G)

26 G δ (G) = 3 δ (G) n δ (G) G H δ(h) n δ (G) H n 1 (n δ (G)) = δ (G) 1 G δ(h) n δ (G) n(h) = n(h) n δ (G) + 1 H G δ(h ) δ (G) n(h ) δ (G) + 1 n(h) + n(h ) > n H H v v H G (v) H (v) δ(h ) δ (G) v H G (v) δ (G) 1 G H δ(h) ϵ(g) δ (G) ϵ(g) G n(g) = 1 < n G n(g) = n δ(g) δ(g) δ (G) v G G (v) δ (G) G = G\v E(G ) m(g) δ (G) V (G ) = n(g) 1 δ (G ) ϵ(g ) = E(G ) V (G ) m(g) δ (G). n(g) 1 G υπ G δ (G) m(g) δ (G). n(g) 1 G δ (G) {ϵ(g), δ(g)} G n δ (G) k (v 1,..., v n ) G i=1,...,n δ Gi (v i ) k G i = G[{v 1,..., v i }] (v 1,..., v n ) G i=1,...,n δ Gi (v i ) k H υπ G δ(h) > k v i H (v 1,..., v n ) H υπ G i Gi (v i ) δ(g i ) δ(h) > k (v 1,..., v n ) G v i δ Gi (v i ) > k

27 G (v 1,..., v n ) v i v i (v 1,..., v n ) > k G i v j, j < i k G i v i v i+1 δ(g i ) > k δ (G) > k α = [d 1,..., d n ] G σ : V (G) {1,..., n} G (v) = d σ(v) α G G [5, 5, 4, 3, 3, 3, 3, 3, 1, 1, 1] α = [d 1,..., d n ] n 2 d 1 1 α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] α = [d 1,..., d n ] G V (G) = {v 1,..., v n } δ G (v i ) = d i, 1 i n f(g) = v N G (v 1 ) v 1 (d 2,..., d d1 +1) v i, v j N G (v 1 ) d i > d j {v 1 v i } E(G) {v 1, v j } E(G) d i > d j v h v 1 {v h, v i } E(G) {v h, v j } E(G) G G {v 1, v j } {v h, v i } {v 1, v i } {v h, v j } f(g ) > f(g) v 1 (d 2,..., d d1 +1) G\v 1 α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] α

28 G α = [d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ] S G d 1 G S G α = [d 1,..., d n ] (d 1,..., d n ) d i r(r 1) + (r, d i ) i=1,...,r i=r+1,...,n ϵ(g) = δ(g) 2 G L(G) n r, s r + s = n s = 0 ( 2) G r s G 2 K 3 ϵλ G G G n m δ(g) m 1 2 (n2 3n + 2).

29 q, r 1 δ (K 1,q K 1,r ) δ (G) 1 2 ( 2 n(g) 1 ) (2 n(g) 1) 2 8 m(g). G H δ (G), δ (H) k δ (G H) 2k + 1 G δ (G) 1 2 (n 1 (G)) k A = {δ G G P [k] n n 1}, B = {δ G G P [k] n n 1}. α = (d 1,..., d n ) (n d 1 1, n d 2 1,..., n d n 1) α = (d 1,..., d n ) G k G G [k] G (k) k 0

30 ΚΕΦΑΛΑΙΟ 4 G G W = [v 1,..., v r ] i,1 i<r {v i, v i+1 } E(G) W (v 1, v i+1 ) G r v 1 v r W G[W ] = ({v 1,..., v r }, {{v 1, v 2 },..., {v r 1, v r }}). W = [v 1,..., v r, v 1 ] G n n G (x, y) (x, y) G (x, y) W (x, y) W W = [v 1,..., v r ] G v 1 = x v r = y y W W y i W = [v 1,..., v i ] W (x, y) W W = [v 1,..., v r 1 ] W r G (v 1, v r 1 ) P W v r P {v r 1, v r } (x, y) W

31 G V (G) = {1,..., n} A = [a i,j ] (i,j) [n] 2 G i i i i = 1,..., n r = 1,..., n a r i,j Ar = [a r i,j ] (i,j) [n] 2 r i j G r r = 1 v i, v j A 1 = A A r 1 = [a r 1 i,j ] ar i,j r 1 v i v j A r = A r 1 A a r i,j = h=1,...,n a r 1 i,h a h,j r v i v j v i v h r 1 v j v h A = C 5 A 2 = A3 = A 4 = C x, y G G (x, y) x y G (x, y) G G (x, y) = G G (x) = (G) = G (x, y). y V (G) G (x). x V (G)

32 β χ Θ (β, χ) (β, χ) (β, χ) Θ x, y G (x, y) = (G) (G) = G (x). x V (G) x V (G) (G) = G (x) x G G (G) x V (G) (G) = G (x) x G G (G) G n(g) 2 G x y K k, k 1 K p,q, p, q 2 p q Q 3 G V (G) G x,y V (G) G (x, y) 0 G (x, y) = 0 x = y x,y V (G) G (x, y) = G (y, x) x,y,z V (G) G (x, y) + G (y, z) G (x, z) G (G) (G) 2 (G)

33 G H G x, y G v G G (x, v) G (v) G (v, y) G (v) (G) = G (x, y) G (x, v) + G (v, y) 2 G (v) = 2 (G). (C r ) = r 2 = (C r) r 3 2 (P 2 r ) = 2r = (P 2r ) r 1 (C r ) = (C r ) = V (C r ) r 3 (P r ) 2 K 1 r 2 P 2r+1 [(P 2r+1 )] K 2 r 0 (P 2r ) = 1 r 1 G (G) = (G) = V (G) G x (G) = G (x) = (G) v V (G) (G) G (v) (G) G (v) = (G) = (G) (G) = (G) = V (G) G (G) d v V (G) q q (d 1) l 1 l 1 v i = 1,..., l Pv i l v P v τ(p ) Pv 1 = q i, 1 i l 1 Pv i+1 Pv i Pv i G (u) 1 Pv i+1 Pv i+1 P Pv i ( G (τ(p )) 1) Pi v (d 1) i, 1 i r 1 Pv i = Pv 1 (d 1) l 1

34 G v V (G) G v A = [X 0,..., X r ] r = v (G) X 0 = {v} X i+1 = N G (X i )\ j=0,...,i 1 X j i = 1,..., r X 3 X 2 X 1 x X 0 x A = [X 0,..., X r ] G v i=0,...,r X i = V (G) A = [X 0,..., X r ] G v i, j, 0 i j r x, y x X i y X j P x y X i,..., X j P X i P [a 1,..., a q ] {0,..., r} a 1 = i a q = j a h, a h+1, 1 j < q a h a h+1 1 A X i X i 1 X i X i+1 {i,..., j} G A = [X 0,..., X r ] G v i = 0,..., r X i G i v i u X i G (v, u) = i i i = 0 i j i = j + 1 u X j+1 X j+1 u u X j j v u P G v u j + 1 P G v u j P X 0,..., X j+1 P j

35 A A G (v, u) = i u X h, h {1,..., i 1, i + 1,..., r} A = [X 0,..., X r ] V (G) u V (G)\ h {1,...,i 1,i+1,...,r} X h = X i G (G) d v V (G) 1 + ((d 1) 1) G l v d d 2 A = [X 0,..., X r ] G v G i v X i X i G v X i X i d (d 1) i 1 i 1 i = 1,..., l G i v i=0,...,l X i X i 1 + d + d(d 1) + + d(d 1) l 1 i=0,...,l = 1 + d( i=0,...,l 1 (d 1) i ) = 1 + d ((d 1) 1) d 2 G (G) α (G) d n(g) 1 + d d 2 ((d 1)α 1). v l = (G) G (G) v G (G) β (G) d n(g) 1 + d d 2 ((d 1)β 1). A = [X 0,..., X r ] G v { X i 0 i r} G v v G G (G) G (G) n(g) 1 (G) v G G G v A = [X 0,..., X r ] G v n(g) 1 + r X i 1 + r (G) r = G (v) (G) n(g) 1 + (G) (G)

36 G n (G) d d n/2 G n (G) d (G) β m(g) n(n 1)(d 2) 2((d 1) β 1). e G 2 l (d 1) l 1 l 1 Pi r, i = 1,..., r r e = (x, y) i (d 1)(d 1) r i 1 = (d 1) r i r i y G\e (d 1)(d 1) i 2 = (d 1) i 1 i 1 x G\e Pi r e x y (d 1) r i (d 1) i 1 = (d 1) r 1 e Pi r 2 (d 1)r 1 e l r G 2 m(g) (d 1) r 1 G 2 (n 2) G β 2 ( ) n 2 2 m(g) i=1,...,β (d 1) i 1 m(g) G n (G) d (G) β m(g) d n/2 d n 2 n(n 1)(d 2) 2((d 1) β 1). n G G (G) G G (G) G (G) = (G) = 0

37 G H G H 3 C = (v 1,..., v r, v 1 ) {z, y} z y C G (G) G δ(g) (G) 1 P = (v 1,..., v t ) G v 1 v 1 v i i G (v 1 ) + 1 δ(g) + 1 δ(g) + 1 G G ϵ(g) 1 V (H) 3 < n n = n(g) δ(g) 2 G v 1 ϵ(g\v) 1 G\v G ϵ(g) 1 K 3 τπ G K 3 G G (G) g δ(g) d { 1 + d i=0,...,r 1 n(g) (d 1)i g = 2r + 1 g 2 i=0,...,r 1 (d 1)i g = 2r g g 2 = 1 S i, 0 i r r + 1 G v 0 G i = 1,..., r v S i S i 1

38 G v v 0 i i v 0 2r < g S i (d 1) S i 1 2 i r S 0 = 1 S 1 d n(g) S i 1 + d + d(d 1) +..., d(d 1) r 1 i=0,...,r g 2 = 0 v 0 G n(g ) S i (d 1) +..., 2(d 1) r 1 = (d 1) i i=0,...,r n(g) = n(g ) 1 i=0,...,r 1 G n n+n 1+ 1 k (G) 2k k n + 1 = d δ (G) ϵ(g) d G G δ(g ) d (G) 2k + 1 (G ) 2k + 1 d > 2 G n n(g ) 1 + d i=0,...,r 1 d > 2 (d 1) i = 1 + d d 2 ((d 1)k 1) > (d 1) k = n, k 1 {(H) H υπ P k P k } = k(k + 2). G G (p, q) p, q 1

39 r r 1 G H G (G H) G G (G) = (G) = V (G) x, y x y 2x x y G (G) = (G) G (G) < 3 (G) > 3 x, y x y 2x G (G) = x (G) = y G δ(g) (G) 2 G G G n (G) x n x G (G) 2 (G) + 1

40 ΚΕΦΑΛΑΙΟ 5 x, y V (G) (x, y) G (G) < K 1 G v G G (v) 1 G G\v [v 1,..., v n ] G i = 1,..., n 1 (v i, v i+1 ) P i G G P i (v i, v i+1 ) W i W 1,..., W n 1 G G G n(g) n(g) = 1 < n G n(g) = n v V (G) N G (v) = V (G)\{v} x, y V (G)\{v} {v, x} E(G) {v, y} E(G) H = G[V (G)\{v}] < n H H {v, x} G G {v, y} G G

41 G I(G) G H I(G) G I(G) H G G G H G δ(h) δ(g) (H) (G) G δ(g) n(g) 2 G G H n(h) n(g) 2 δ(h) n(h) 1 < n(g) 2 G m(g) n(g) 1 G G m(g) < n(g) 1 H n(h) < n(g) m(h) n(h) 1 δ(g) 1 m(g) n(g) δ(g) 2 n(g) v G G H = G\v G m(h) n(h) 1 m(g) = m(h) + 1 n(g) = n(h) + 1 m(g) n(g) 1 G S V (G) S G G\S S S G S S (a, b) a, b V (G) G\S (a, b) S (a, b) (a, b) S (a, b) G S k 2 G G G

42 a e i b f j G c d g h k l {e, f, g, h} G {e, f, h} {e, g} G {f} {h} G {f, g} (a, k) {h} (a, k) G G v x, y G\v x y v x y P 1 x t w y P 2 P 1 P 2 G x, y V (G) G (x, y) x y G G (x, y) = 1 e = {x, y} G e G G\x {x} G G\x (y) 1 G\e G\e G\x G\e G\e x y {x, y} G x y (x, y) < k x, y G (x, y) = k 2 w k G x y P 1 P 2 G x w P 1 P 1, P 2 y P P 1 x y {y, w} P, P 2 G P 1, P 2 y R

43 G x y w G G\w R P 1 P 2 R P 1 {w, y} G t P 1 P 2 R t P 1 P P 1 x t R t y P 2 P 2 {w, y} P 2 P G G 3 x, y, z V (G) G y x z G + G w x z G + P 1, P 2 w y (P 1 P 2 )\w H 1 H 2 V (H 1 ) V (H 2 ) 2 H 1 H 2 H 1 x 1 v u u v x 2 H 2 {v, u} S = V (H 1 ) V (H 2 ) x 1, x 2 H = H 1 H 2 x 1 x 2 H 1 H 2 x 1 V (H 1 )\S x 2 V (H 2 )\S P 1 G 1 v u x 1 P 1 P 1 v, u S P 2 G 2 v u x 1 P 1 P 2 v G {v} G

44 G I 2 (G) G H I 2 (G) G G K 2 I 2 (G) H 1 H 2 G {x, y} S = V (H 1 ) V (H 2 ) w V (H 1 )\V (H 2 ) P H 1 x y w H 1 P H 1 H 1 P H 1 x P x v P y x y P x y V (H 1 ) V (H 2 ) = {v} G\v x y H 1 H 2 v P x y G\v H = H 1 H 2 H\v x y P H\v E(G)\E(H) H + = H P H + H 1 H H + P P H 1 H 2 x y x y v P x P y x y v H 1 H 2 C = P P x P y H + = C H 1 H 2 K 3

45 K 3 G k > k k κ(g) = {k G k } G κ(g) δ(g) G e E(G) κ(g\e) κ(g) 1 v V (G) κ(g\v) κ(g) 1 G S V (G) x V (G)\S (x, S) S x S G s, t G (s, t) G (s, t) G G (s, t) S k k (s, t) G S (s, t) S G k k (s, t) G k = 1 k > 1 k k H H (s, t) S k G G H G k (s, t) G e E(G) (s, t) S e k 1 G\e e E(G) e S e = w e\{s,t} S e {w} (s, t) G k

46 G\S e (s, t) S e = k 1 k s t e G\e e S e S e e s t (s, t) G N G (s) N G (t) = x t s S = S {t,x} \{x} (s, t) G\x S = k 1 k 1 (s, t) G\x s, x, t k (s, t) G s S t s t s S t G s G t G (s, t) S k G N G (s) = S N G (t) = S S (s, t) k G P s G s S S P t (s, t) G S P s P t P P s P P t V (P ) V (P ) = V (P ) V (P ) = {q} q S (s, t) S G s = P Ps P G t = P Pt P S V (G s )\s S V (G t )\t G s = G s {S {t}, {{x, t} s S}} G t = G s {S {t}, {{s, x} x S}} n(g t ), n(g s ) < n(g) k (s, t) P 1 s,..., P k s P 1 t,..., P k t G s G t (s, S) {Q i s i = 1,..., k} = {P i s\t, i = 1,..., k} (t, S) {Q i t i = 1,..., k} = {P i t \s i = 1,..., k} Q 1 s Q 1 t,..., Q k s Q k t k (s, t) G P (s, t) G [s, v 1, v 2,..., t] e = {v 1, v 2 } v 2 t {v 1, t} E(G) P 3 {v 1 } S e (s, t) S k G {v 1, t} E(G) N G (s) = {v 1 } S e P {s, v 2 } E(G) {v 2 } S e (s, t) S k G {s, v 2 } E(G) N G (t) = {v 2 } S e k 2 S e s t (s, t) (s, t)

47 x y (x, y) G κ G (x, y) κ(g) = {κ G (x, y) x, y V (G), {x, y} E(G)} k k S (x, y) G G (x, S) W x (y, S) W y W x G\S x e k G κ(g\e) = k 1 G κ(g) = k e = {x, y} E(G) e G κ G\e (x, y) = k 1 G = G\e e G R V (G ) k 1 G \R x y G \R R G κ(g) = k R (x, y) G k 1 κ G (x, y) k 1 κ(g ) k 1 κ G (x, y) k 1 κ G (x, y) = k 1 e G k k (x, y) G G (x, y) G k κ(g\e)(x, y) k 1 G δ(g) > κ(g) e E(G) κ(g\e) = κ(g) G G k κ(g) = k G k S G\S v N G (v) = S G (v) = k C D = G\S\V (C) D G\S n(d) n(c) e = {x, y} x, y V (C) G = G\e G (x, y) R k 1

48 v G G = G [S C] ({v } S, {{v, w} w S}) k (v, x) G (v, x) S G k 1 S S V (C) S (z, x) G z D S + = S {y} (z, x) G S + S V (C) S + S C + G\S + x C S (x, S) W x G G W x (x, S) G (y, S) W x G D S C x z y S G z V (D) k (z, x) G (z, S) W z G G V (D) R z V (D)\R G W z W x k (x, z) G W z W y k (z, y) R z x z z y R x y V (D) R V (D) V (D) < V (C) R R 1 = R V (D) = V (D) R 2 = R S R 3 = R V (C) R (x, y) G w S\R R W x W y x w w y R R S\R R 2 = S S\R R ( S R 2 ) = 1 2 (k R 2 ) V (D) = R 1 = R R 3 R 2 = k 1 R 3 R 2 k R (k R 2 ) 1 = 1 2 (k R 2 ) 1 < 1 2 (k R 2 ) R 3 V (C) r 0 K 2,r + = K 2 (r K 1 ) K 2 K 2,r + K 2,r

49 K + 2,5 G k k + 2 k 2 v V (G) d K + 2,d 2 πα G[N G (v)] G e E(G) κ(g\e) = k e = {x, y} G[N G (v)] K + 2,d 2 S = v N G (v)\{x, y} S 2 G = (G\S)\e P G S G\e k 1 (x, y) S P κ G (x, y) = k e G G v G G G K 3 2 G G G v 2 v G K 3 n(g) 4 G/v 2 r W r = C r K 1 W r r 3 3 e E(G) G\e 3 e E(G) G G/e 3 G G = K 4 K 4 W 3 n

50 W 9 n(g) = n G G G G G e = {a, b} G v e G e = (G\a)\b G W r v V (G) v 1, v 2, v 3 K 3 K 2,1 + v 1, v 2, v 3 G v 1, v 2, v 3 G v 1, v 2, v 3 G e = {v, v 3 } v e G e e v 1 v 2 B 1, B 2 G e v e {v 3, v e } G B G e {a, v 3 } G a B v 3 B 1 \v e B 2 \v e v 3 1 B 2 {v e, v 2 } {v e, v 1 } G v 3 w i B i \v e \v i i = 1, 2 {v i, v e } G i = 1 2 f = {v, v 1 } S f = {v 1, v f } G = G\v (α) {v, v 1, v i }, i = 2, 3 G v f {v 2, v 3 } (β) v 2, v 3 G \S f S f G G v 2 v 3 S f (v 2, v 3 ) G v 1 (α) {v 1, v 2 } v 1, v 2, v 3 G e = {v, v 3 } G S = {v, v 3, v e } C D G\S {v 1, v 2 } {v e } C v G S C v D {v 3, v e } G

51 v e f B v 1 1 w 1 v v 3 G v e B 2 v 2 S f v f v 1 v 3 v 2 w 2 G (α) (β) α G G e β S f G {v 1, v 2 } {v 1, v 3 } v 1, v 2, v 3 G G G\v {v 2, v 3 } G 3 S G S 2 v 1, v 2, v 3 G S C G\S S G G e = {v 2, v 3 } G f = {x, y} G (x, y) G \f (x, y) G {v 2, v 3 } {v 2, v} {v, v 3 } f G e = {v 2, v 3 } G H = G G \e H = G \e H n(g) < n(h) H f H/f f e e E(H) = G \e e H H = G f G G H W r r 3 = G \e G W r v a, b, c W r K 1,2 W r {a, b}, {b, c} E(W r ) {a, c} E(W r ) K 1,2 (α) (β) {a, b} {b, c} H = G G W r

52 a v a v b c b c (α) (β) a v a v c c b b (γ) (δ) W r+1 v W r W r (γ) W r W r (δ) W r+1 W 4 Q 3 K 4 Q 8

53 v 4 v 1 v 2 v v 1 v 2 v 1 v 2 3 G 5 e 3 H G E πα G e v e 3 H E E e v e G = (V (H ), V (H ) H ) G G = G/e G 3 G 1,..., G m G 1 = G G m = K 4 i = 1,... m 1 G i G i+1 G n(g) 4 κ(g) 3 K 4 ϵλ G G δ(g) 3 G G G V (G) 5 3 < 5 K 4 κ(k 4 ) = 3 κ(g) 2 S G C G\S C + = G[S V (C)] S = {x} x C + N C +(x) S G G\S C C δ(c + ) 3 n(c + ) < n(g) C + G S = {x, y} (x, y) P G\V (C) C C + {x, y} (x, y) P G\V (C) C ϵλ G S C N C (x) N C (y) G C δ(c ) 3 n(c ) < n(g) C G

54 G δ(g) 3 K 3 ϵλ G k κ (G) = {k G k } G m(g) (2 1)(n(G) k) k n(g) = 1 < n G n(g) = n m(g) (2 1)(n(G) k) S G S k G k S < k C 1 G\S G 1 = G[V (C 1 ) S] G 2 = G\V (C 1 ) S = V (G 1 ) V (G 2 ) G 1, G 2 m(g) m(g 1 ) + m(g 2 ) n(g 1 ) + n(g 2 ) = n(g) + S. h {1, 2} m(g h ) (2k 1)(n(G h ) k), (2 1)(n(G) k) m(g) m(g 1 )+m(g 2 ) < (2k 1)(n(G 1 )+n(g 2 ) 2k)) = (2k 1)(n(G)+ S 2k) < (2k 1)(n(G) k)), n(g i ) < n, i = 1, 2 G h k G h G G H κ(h) ϵ(g) 2 κ (G) ϵ(g) 2 ϵ(g) 2 k κ (G) k ϵ(g) 2 k m(g) 2k n(g) (2 1)(n(G) k) G k κ (G) k G G λ(g) G λ(g) = { F F E(F ) G\F }.

55 G k K k G G n V (G) = {v 1,..., v n } G[{v 1,..., v i }] i = 1,..., n G G G K 2,3 ϵλ G G K 1 K 2 G a b b a = (t(v) 1) v V (G) t(v) v 4 n n 1

56 Q 8 K 4 G 2κ (G) ϵ(g) κ(g) 2 δ(g) (n(g) + k 2)/2 κ(g) k f : NN k N G δ(g) f(k) k ϵ (G) = {k H υπ G : ϵ(h) k}. ϵ (G) δ (G) 2 ϵ (G) κ (G) δ (G) 4 κ (G) ϵ (G) 2 κ (G) 4 ϵ (G)

57

58 ΚΕΦΑΛΑΙΟ 6 G x, y V (G) P 1 P 2 e = {x, y} P 1 P 2 H = (P 1 P 2 )\e G H P x y H P G\e P ({x, y}, {{x, y}}) G G G < n G n x y G G (x) = 1 G\x x G G m(g) = n(g) 1 G m(g) n(g) 1 m(g) n(g) 1 m(g) n(g) ϵ(g) 1 G n(t ) 2

59 2 m(t ) 1 + 2(n(G) 1) m(t ) n(g) 1 2 m(t ) n(g) G δ(g) + 1 δ(g) δ(g) = 1 2 δ(g) = k 1 k 1 k G k T k + 1 T G T = T \v v T G = G\y y G δ(g ) k 1 n(t ) = k T G σ : V (T ) V (G ) T G u T v u T u = σ(u) G T G T σ v G u k 1 G (u ) k u x G T V (T )\{u } = k 1 σ σ(v) = x T G G (u ) = k 1 u G y u G k 1 σ σ(v) = y T G G G G G G G G G G G T V (T ) V (G) v V (G)\V (T ) V (T ) 1 G

60 u V (T ) P (v, u) G x 0 = v, x 1,..., x r = u G v V (T ) {x 0, x 1 } T P e i = {x i, x i+1 }, i 1 P T e T G G G T G G G n(g) = m(g) 1 G T n(t ) 1 G T G = T n n {1,..., n} (T, τ) T τ : V (T ) {1,..., n(t )} V (T ) n(g) n(t ) (T, τ) (T, τ ) σ : V (T ) V (T ) T T v V (T ), τ(v) = τ (σ(v)) n n 2 n n 1 n n 2 n n n n 2 n 2 n n A = (a 1,..., a n 2 ) n

61 S = {1,..., n} T = (V, E) V n E = τ : V S V S S > 2 x S A x S y A E {τ 1 (x), τ 1 (y)} A S (T, τ) (T, τ) n() A V (T ) > 2 v T w v A τ(w) T v A T [5, 5, 2, 3, 3, 2, 8, 8] A (T, τ) (T, τ) A n n 2 n

62 3 T 1 T 2 δ (T 1 T 2 ) 3 G n(g) m(g) G m(g) n(g) 1 (T ) G n(g) m(g) T G δ(g) n(t ) 1 T G k

63

64 ΚΕΦΑΛΑΙΟ 7 R 2 S R 2 S S S Γ = (V, A) v V R 2 Γ e A R 2 (0, 1) e e e V V ( e E e) = Γ = V ( e E e) E V (Γ) = V E(Γ) = A

65 f 3 f 3 f 1 f 2 f 1 f 2 f 4 f 4 f 5 f 5 Γ R 2 Γ F (Γ) Γ K 5 K 3,3 Γ = (V, E) Γ = (V, E ) Γ V V E E (V, E ) R 2 \ Γ Γ = (V, E) R 2 \ Γ Γ F (Γ) Γ G Γ = (V, E) D R 2 Γ D R 2 {(x, y) R 2 x 2 + y 2 < 1} Γ D Γ = (V, E) f F (Γ) Γ Γ Γ Γ = (V, E) G Γ = (V, { e e E(Γ)}). Γ G Γ Γ f F (Γ) Γ[f] Γ V (Γ) f f\v (Γ) f F (G) G Γ[f] K 3 Γ f 1 f 4 G Γ G G Γ G) G Γ G Γ G Γ G

66 G Γ Γ υπ, ϵν, πα, τπ ϵλ G Γ Π Γ Π G Γ Π Γ G Γ G H G H K r, r 2 G H Γ e Γ f 1, f 2 F (Γ) e f 1 f 2 Γ f F (G) Γ[f] Γ Λ Γ Γ Γ Γ R 2 \ Λ Λ Γ

67 W 1 W 2 G W 1 W 2 [v 1, v 2, v 3, v 1, v 5, v 1, v 4, v 1 ] [v 4, v 1, v 5, v 1, v 3, v 2, v 1, v 4 ] [v 4, v 1, v 5, v 1, v 2, v 3, v 1, v 4 ] Γ = (V, A) f F (Γ) f Γ V f f\v j i k f 4 g a l b f 2 f 3 c h f 1 e G π(f 1 ) = [e, h, c, b, a, j, c, j, i, c, h, g, e], π(f 2 ) = [b, a, k, l, k, c, b], π(f 3 ) = [g, e, h, g], π(f 4 ) = [i, c, j, i] Γ = (V, E) f F (Γ) π(f) f Γ = (V, E) Γ = (V, E) Γ Γ G Γ G Γ ρ : V (Γ) V (Γ ) σ : F (Γ) F (Γ ) f F (Γ) ρ(π(f)) = π(σ(f)) Γ Γ G Γ G Γ G G Γ, Γ G G Γ Γ

68 σ(f 1 ) f 1 f 3 σ(f 2 ) σ(f 3 ) f 2 Γ Γ Γ Γ Γ G Γ G Γ Γ Γ R 2 S 0 = {(x, y, z) x 2 +y 2 +(z 1) 2 = 1} (0, 0, 2) (x, y, z) S 0 = {(x, y, z) x 2 + y 2 + (z 1) 2 = 1} (χ, ψ) R 2 x (x, y) ( 2 z, y 2 z ) 2x (x, y, z) ( x 2 + y 2 + 1, 2y x 2 + y 2 + 1, 2x 2 + 2y 2 x 2 + y ) f Γ s = (x 0, y 0 ) f Γ

69 (x, y) (x x 0, y y 0 ) s = (x 0, y 0 )) G Γ S 0 s (x, y, z) (2 x, 2 y, z) {(x, y, z) R 3 z = 0} s (0, 0, 2) s G Γ Γ Γ f Γ Γ f Γ Γ ρ π f π(f) Γ Γ = (V, A) F = F (Γ) Γ = (V, A ) Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Q 3 K 2,2,2

70 Γ Γ Γ Γ G H G K 2,2,2 K [3] 2 G K 4 Γ n m r m + 2 = r + n Γ m n 1 m = n 1 G Γ r = 1

71 < m n Γ n m r m n G Γ e Γ e f, f Γ e Γ Γ = (V (Γ), E(Γ)\{e}) f f f f e Γ (m 1) + 2 = (r 1) + n Γ V (G) 3 Γ E(Γ) Γ Γ Γ V (Γ) 3 Γ Γ 3 3n 6 Γ 2 3 E(Γ) r = 2 3m G n 3 3n 6 G δ(g) 5 m = m(g) n = n(g) Γ 6 m 6 2 n = 3 n G δ (G) 5 n 3 n

72 G G x G y x, y 3 n = n(g) r = n(g ) n, r, x y n + r = xn + 2, 2 n + r = yr + 2, 2 x, y 3, x, y 5, n = 4y 2(x + y) xy x = 3 y = 3 n = 4 r = 4 G x = 3 y = 4 n = 8 r = 6 G x = 4 y = 3 n = 6 r = 8 G x = 3 y = 5 n = 12 r = 20 G x = 5 y = 3 n = 20 r = 12 G x, y 4 (x 4)(y 4) 0 xy 4x 4y 16 0 xy 2(x + y) 2(x 4) + 2(y 4) 0

73 K 5 K 3,3 G K 3,3 < m G m G e = {x, y} E(G) G G = G e G e = {x, y} E(G) G G = G/e v e e G = G\e G = G/e m(g ) < m(g) G K 5 K 3,3 Γ G x y Γ e Γ G Γ C x y R\ C S = V (S) G G 3 (x, y) P i, i = 1, 2, 3 G {x, y} E(G ) S = V (S) F = C P 1 P 2 P 3 K5 = (2 K 1) K 3 {x, y} F K 5 K 5 τπ G (α) Γ Γ = Γ \v e f F (Γ ) Γ \v e v e Γ Γ [f] C M = [x 1,..., x r, x 1 ] S e = {x, y} G X = N G (x)\y Y = N G (y)\x V (C) X M Y G K 3,3 τπ G (β) K 5 K 3,3 K 5 K 3,3 G K 5 K 3,3 G S S = 1 2 C i, i = 1,..., r G\S i = 1,..., r G i G V (C i ) S i = 1,..., r G i ϵλ G n(g i ) < n(g) G G i K 5 K 3,3 G K 5 K 3,3 G i, i = 1,..., r i, j 1 i < j r G i G j = K S i=1,...,r G i = G

74 G e E(G) K 5 τπ G/e K 5 τπ G K 3,3 τπ G A xy A x A y x y K 3,3 e = {x, y} v e G = G/e e A xy = N G (x) N G (y) A x = N G (x)\{y}\a xy, A x = N G (y)\{x}\a xy H G D V (G ) v e D K 5 τπ G v e V (H)\D N = N H (v e ) N = 4 N A x, A y, A xy N A x A y K 3,3 τπ G K 5 τπ G G K 5 K 3,3 K 5 K 3,3 K 5 K 3,3 Γ υπ, ϵν, πα, τπ ϵλ K 4 K 2,3

75 K 4 K 2,3 K 5 K 3,3 K 4 K 2,3 G G + = G K 1 G G G + G + Γ Γ Γ G G + G + K 5 K 3,3 G K 4 K 2,3 G n 2n 3 v 1 v 5 Γ v 2 v 3 v 4 v 2 v 3 v 4 Γ v 5 v 1 G Γ G f Γ Γ[f] [v 1,..., v n, v 1 ] Γ + f Γ Γ [v 1,..., v n, v 1 ] Γ Γ + {v i, v n i+1 } i = 1,..., r {v i, v n i } i = 1,..., r 1 {v n, v n} G

76 n(g ) = 2 n(g) m(g ) = 2 n(g) + 2 m(g)) m(g ) 3 n(g ) 6 2 n(g) + 2 m(g)) 6 n(g) 6 m(g) 2 n(g) 3 G (G) 3 G H G H G (G) 3 r 3 r = 3 r = 4 ξ P X,Y = {(x, y, z) R 3 z = 0} R 3 P X,Y S 0 ξ G G H m

77 n 2(n 1) 6 4 G K 3 υπ G δ (G) 3 C 4 τπ G m(g) 3 2 (n 1) Γ κ r n m m + κ + 1 = n + r 6 x δ(g) 2 δ() 2 G H H G 6 H G δ (G) 6 K 4 τπ G 1 2 (3n 1) 4 C 4 τπ G m(g) 3 2 (n 1) n 0 n

78 H 3 n K4 K 4 G = {G K4 ϵλ G} {V 1, V 2 } V (G) G[V 1 ], G[V 2 ]

79

80 ΚΕΦΑΛΑΙΟ 8 k k k G χ : V (G) {1,..., k} {x, y} E(G) χ(v) χ(u) k G G k k χ 1 (i) i = 1,..., k χ S V (G) χ(s) = {χ(v) v S} X {1,..., k} χ 1 (S) = {χ 1 (i) i X} χ k G k G k χ(g) k 2 χ(c 2k 1 ) = 3 χ(c 2k ) = 2 l 1,..., l k K l1,...,l k = K l1 + + K lk V i (K l1,...,l k ) = V (K li ), i = 1,..., k K l1,...,l k k k K l1,...,l k l 1,..., l k V i (G), i = 1,..., k k G k

81 K K 3,3,3,3 k k k k k k χ : V (G) {1,..., k} k G G K χ 1 (1),..., χ 1 (k) χ : V (K l1,...,l k ) {1,..., k} χ(v) K l1,...,l k v χ K l1,...,l k G k G k G k G n n 2 ( k 1 2k ) G K l1,...,l k l 1,..., l k i=1,...,k l i = n m(g) m(k l1,...,l k ) K l1,...,l k m(k l1,...,l k ) ( ) n 2 i=1,...,k = 1 2 (n2 n = 1 2 (n2 i=1,...,k 1 2 (n2 n2 k ) = n 2 ( k 1 2k ) ( ) li 2 i=1,...,k (l 2 i )) (l 2 i l i ) i=1,...,k l2 i 1 k ( i=1,...,k l i) 2 k G n m χ(g) n2 n 2 2m

82 G 2 G G G G G G A = [X 0,..., X r ] G v G G X i {x, y} X i P x v x P x v y X 1,..., X i 1 w P 1 P 2 v P 1 P 2 P 1 P 2 w P 1 P 2 X i X i G n n2 4 G k S V (G) χ : V (G) {1,..., k} G χ(s) = {1,..., k} k G S S k G v, u S i j χ(v) = i, χ(u) = j G[χ 1 (i) χ 1 (j)] χ : V (G) {1,..., k} k G V v G[χ 1 (i) χ 1 (j)] v u V v χ G χ i j V v χ = χ\{(x, χ(x)) x V v } {(x, i + j χ(x)) x V v }. χ (v) = χ (u) = j χ 1 (S) = {1,..., k} i S

83 G χ(g) δ (G) + 1 G δ (G)+1 n(g) n(g) = 1 G < n δ (G) + 1 G n(g) = n v G δ (G) δ G\v δ (G\v) + 1 δ (G) + 1 χ : V (G\v) {1,..., δ (G) + 1} X = χ 1 (N G (v)) X δ (G) R = {1,..., δ (G) + 1}\X i R χ = χ {(v, i)} χ G δ (G) + 1 G l (l + 1) χ(g) l + 2 δ (G) l + 1 H H δ(h) l + 1 l + 2 l + 1 G n χ(g) + χ(g) n + 1 n χ(g) χ(g) χ(g) + χ(g) δ (G) δ (G) + 1 δ (G) n δ (G) 1 G χ(g) K l1,...,l χ(g) l i = {l 1,..., l χ(g) } l i n χ(g) V i(g) G G G n χ(g) 6 5

84 5 G v 5 G G = G\v 5 S = N v (G) 5 χ G {1, 2, 3, 4, 5}\χ 1 (S) i χ {(v, i)} 5 G Γ G Γ N G (v) v [v 1, v 2, v 3, v 4, v 5, v 1 ] χ(v i ) = i i = 1,..., 5 i, j, 1 i < j 5 G i,j = G[χ 1 (i) χ 1 (j)] G i,j G i j v i v j G i,j i, j, 1 i < j 5 P v 1 v 2 v v 5 v 4 v 3 v 1 v 3 P G P v L G Λ Γ G Λ = L Λ R 2 R 1, R 2 R 2 \ˆΛ v 2, v 4 Γ v 2 v 4 Λ G 2,4 v 2 v 4 G 2,4 i = 2 j = 4 4 δ (G) (G)

85 G ( (G) + 1) (G) d 3 G (G) d K d+1 υπ G G d G v G G = G\v d S = N v (G) d χ G {1,..., d} \χ 1 (S) i χ {(v, i)} d G S S = {v 1,..., v d } χ(v i ) = i G v 1 v 2 G G i = 1,..., d S i = {v i } N G (v i ) h {1,..., i 1, i+1,..., d}\χ(s i ) = χ = χ\{(v i, χ(v i ))} {(v i, h)} G S G G i,j = G[χ 1 (i) χ 1 (j)] v i v j G i,j, P i,j (v i, v j ) G i,j i, j 1 i < j d P i,j = G i,j i, j 1 i < j d P i,j G i,j D = [v i, a 1,..., a p, v j ] P i,j P i,j v i b a 1 χ(b) = j S i Gi,j (v i ) = 1 Gi,j (v j ) = 1 a s D Gi,j (c) > 2 χ(a s ) = i d a s P i,j χ(d) = j a s j a s P i,j d {1,..., i 1, i + 1,..., d}\χ(n Gi (a s )) h χ = χ\{(a s, i)} {(a s, h)} d G d a h C i,j = C i,j\a h i j S i, j, k {1,..., d} V (C i,k ) V (C k,j ) = {x k } c V (C i,k ) V (C k,j )\{x k } χ(c) = k c i j {1,..., k 1, k + 1,..., d}\χ(n G (c)) h χ = χ\{(c, k)} {(c, h)} d G d C i,k = C i,k\c i k S z P 1,2 v 1 χ(z) = 2 z S z P 2,3 P 1,2 P 2,3

86 (G) G 2l G l µ µ U n {v 1,..., v n } U n X m,n,d,k = {G U n m(g) = m nd, (G) d 2, χ(g) k} G m,n,d,l = {G U n m(g) = m nd, (G) d 2, (G) l}. n, d, k, l X dn,n,d,k < G dn,n,d,l U n l k X m,n,d,k G m,n,d,k X m,n,d,k χ : V (G) {1,..., k} ) k ( n/k ) = 1 2 n2 (1 1 k H = (V (G), ) ( n 2 2 ) χ ( 1 2 n2 (1 1 k ) ) m ( 1 2 n2 (1 1 k ))m m H χ k n k H X m,n,d,k k n ( 1 2 n2 (1 1 k ))m G m,n,d,l G m,n,d,l H G m 1,n,d,l e () d 2 m(h) nd 2n/d H d 2 n(1 2 d ) S V (H) e x S S\{x}

87 l v l d2 d 2 2 (d2 1) l d 2l n(1 2 d ) d2l e 1 2 n(1 2 d )(n(1 2 d ) d2l ) H G m,n,d,l G m,n,d,l ( 1 2 n(1 2 d )(n(1 2 d ) d2l )) m n d X dn,n,d,k G dn,n,d,l k n ( 1 2 n2 (1 1 k ))dn ( 1 2 n(1 2 d )(n(1 2 d ) d2l )) nd n 2 k 1/d (1 1 k ) n(n(1 2 d ) d2l )(1 2 d ). n d n 2 n 2 d k 1/d (1 1 k ) (1 2 d )2. d 1 1 1/k G K 5 K 3,3 K 5 K 3 4 K 5 G K 5 ϵλ G V 8 G K 5 ϵλ G

88 V 8 V 8 G K 4 ϵλ G k 0 G K k+1 ϵλ G k k = 6 r 7 K r G K r ϵλ G ϵ(g) 2 r 2 c(r) c ϵ(g) c K t ϵλ G c(t) = (α + o(1))t t α = r = 1, 2, 3 r = 4 G G χ(g) m(G) + 1 4

89 G {V 1, V 2 } V (G) χ(g[v 1 ])+ χ(g[v 2 ]) = χ(g) G {V 1, V 2 } V (G) χ(g[v 1 ]) + χ(g[v 2 ]) > χ(g) G H χ(g 1 ) χ(g 2 ) χ(g 1 G 2 ) G G l (l + 1)

90 ΚΕΦΑΛΑΙΟ 9 ω(g) G G ω(g) = {k K k υπ G} G G ω(g) χ(g) G ω(g) 4 τ(p, n) p n p, n (r 1, n 0) p n 1,..., n p G m(g) = n i n j 1 i<j p n 1,..., n p n/p p

91 n p,..., n p, n p,..., n p. } {{ } } {{ } n p p (n p) p, n (r 1, n 0) T p (n) τ(p, n) T 4 (10) T 5 (9) G (k, ω) ω(g) k G ω(g ) k n(g) = n(g ) m(g) < m(g ) G v V (G) v G G v G N G (v) v v v v G G + G ω(g) = ω(g + ) (k, ω) G x, y, a {x, y} E(G) {x, a}, {y, a} E(G) x y

92 G (x) > G (a) x G + ω(g + ) k m(g + ) = m(g) + G (x) G + a G ω(g ) k m(g ) = m(g) + G (x) G (a) > m(g) G (x) G (a) G (y) G (a) a G + ω(g + ) k m(g + ) = m(g)+2 G (a) G + x y G ω(g ) k m(g ) = m(g)+2 G (a) G (x) ( G (y) 1) > m(g) x y x y G (y) 1 (k, ω) G n T k (n) G k ω(g) > k G T k (n) (k, ω) G m(g) τ(ω(g), n(g)) G S V (G) G S G α(g) G G G α(g) = ω(g) G n(g) α(g) χ(g) k l r(k, l) k l n G n ω(g) k α(g) l k l r(1, l) = r(k, 1) = 1 r(2, l) = r r(k, 2) = k r(k, l) = r(l, k)

93 r(k, l) k l r(k, l) r(k 1, l) + r(k, l 1). G G n(g) r(k 1, l) + r(k, l 1) v G k 1 = N G (v) k 2 = N G (v) k 2 G v G k 1 + k 2 = n(g) 1 r(k 1, l) + r(k, l 1) 1. k 1 r(k 1, l) G = G[N G (v)] ω(g ) k 1 α(g ) l ω(g) k v G + α(g) l k 1 < r(k 1, l) k 1 r(k 1, l) 1 k 1 r(k 1, l) + 1 k 2 r(k, l 1) G ω(g ) k α(g ) l 1 ω(g) k α(g) l v G k l ( ) k + l 2 r(k, l). k 1 k + l k +l 5 p, q k, l k + l < p + q r(p, q) r(p 1, q) + r(p, p 1) ( ) ( ) p + q 3 p + q 3 + p 1 p 2 ( ) p + q 2 =, p 1 r(3, 3) r(2, 3+r(3, 2)) = 6 ω(c 5 ) = α(c 5 ) = 2 r(3, 3) 6 r(3, 3) = 6 r(k, l) k l r(3, i) i {3,..., 9} r(4, i) i {4, 5} r(5, 5) {43,..., 49} r(5, 5) r(6, 6) r(5, 5) r(6, 6)

94 k r(k, k) 2 k/2 k 3 V n = {v 1,..., v n } G n V n G k n G n k i, j, 1 i < j n G n G n = 2 (n 2) S V n k 2 (n 2) ( k 2) Gn S ( n ) k S G k n ( ) n 2 (n 2) ( k G 2) n k k G n ( n )2 (k2) n k 2 (k 2) <. k k! n < 2 k/2 Gn k G n < 2k2/2 2 ( k 2) k! = 2k/2 k! < 1 2. G n k G n = {G G G n } G n k G G n } k ω(g) < k α(g) < k r(k, k) < 2 k/2 G ω(g) < k α(g) < k n < 2 k/2 G ω(g) δ (G) + 1 t(p, n) t(p, n) n 2 p 1 2p n p n p

95

96 ΚΕΦΑΛΑΙΟ 10 e G S V (G) S S V (G) G S G (G) G G S S G k G U D (G) { U, D } G (G) = n(g) α(g) S G G S G S V (G)\S S G

97 G S V (G)\S V (G)\S G G k n(g) k G δ (G) (G) δ (G) k G δ(h) k H S S < k H\S I v I H S G (v) S < k δ(h) k (G) (H) k G L(G) L(G) G L(G) L(G) G (G) = χ(l(g)) r L(G) G V (L) r L(G) G G r E(G) r G r r G r L(G) G M E(G) e,e M e e = µ(g) G M v V (G) v M G µ(g) = ω(l(g)) G χ(g) n(g) µ(g)

98 n = n(g) = n(g) µ(g) G G n 2 µ(g) G M G n 2 µ(g) µ(g) + n 2 µ(g) = n µ(g) χ(g) n(g) µ(g) G n m µ(g) 2mn n + 2m. µ(g) n χ(g) χ(g) n 2 n 2 2(( n 2) m) µ(g) n n 2 n 2 n(n 1)+2m 2mn n+2m 3 K 2 G µ(g) (G) G (G) = µ(g) G (G) µ(g) U D G M G M U U G S U M P S S M P M R G e M e = {u, d} u U d D d R S d R u R = M R G e E(G) R e M e M M e = {u, d} e M M {e} d e u S e S R d R e R u e = {u, d } S d R u R e R S P d d d e M d R e R d P e P P M e P d P P P + = P ({d, u, d, {e, e})} S d d R d e M P + M +

99 U u u U u e e e e D d D d d U u U u D e e d e d D e e d d M P + M P + M + G M G U D M U R U N G (R) R M U U S U M M M S D N G (S) M = S M N G (S) S M U (G) = µ(g) < U S G < U S U = S U S D = S D S G (U\S U ) (D\S D ) G N G (U\S U ) S D S < U S\S U < U\S U N G (U\S U ) S D = S\S U < U\S U R = U\S U N G (R) < R n m (G) m n α(g) n2 m n

100 ΚΕΦΑΛΑΙΟ 11 G H χ(g) = ω(g) 3

101 5 W i, i 4 i C 5 G G n χ(g) ω(g) χ(g) n µ(g) µ(g) = (G) ω(g) = α(g) α(g) = n (G) χ(g) n µ(g) = n (G) = α(g) = ω(g) H L(H) H H χ(l(h)) = ω(l(h)) (H) = χ(l(h)) µ(h) = ω(l(h)) G (G) = 3 G χ(g) = ω(g) = δ (G) + 1 = 4

102 S G G x, y S {x, y} E(G) S (a, b) a, b G\S C a C b G\S a b x y C a C b S (a, b) G (x, y) P a C a (x, y) P b C b P a P b P a P b G 4 G G G G a b S (a, b) G S G C a G\S a G 1 = G[S C a ] G 2 = G\C a G 1 G 2 n(g i ) < n(g), i = 1, 2 i = 1, 2 G i i {1, 2} G i v i V (G i )\S G i {1, 2} G i v i S v 1 v 2 G G δ (H) ω(g) 1 G ω(g) 1 G v G = G[N G (v)] G (v) = G (v) ω(g) 1 G H χ(h) δ (H) + 1 ω(h) = ω(h) G {V c, V d } V (G) V c G V d G G H G (G) = {ω(h) 1 G H H }. G

103 C i G {V c, V d } V (G) G[V c ] C i V c G G[V d ] i 3 V d G i 3 0 i 3 G G I = {I 1,..., I n } I I i = [l i, r i ] l i < r i I G I = (I, {{I i, I j } I i I j }), G I I G I G I G I I G I G C i G i 4 I 1, I 2, I 3,..., I i C i I 1 l 1 = {l i 1 i i} I 3 r 1 I 1 I 3 G j = 1,..., i 2 I j+2 r j i 1 I 1 I i = I 1 I i G G

104 ω(g) = α(g) n(g) = n(g) n(h) α(h) ω(h) G G 5 1 G 5 G I 0 = {3, 5} G 3 G 5 χ 3 χ 5 G 3 G 5 χ 3 χ 5 I 1 = {2, 5}, I 2 = {1, 4}, I 3 = {2, 4} I 4 = {1, 3} G G I 0, I 1, I 2, I 3, I 4 S 0 = {1, 2}, S 1 = {3, 4}, S 2 = {2, 3}, S 3 = {1, 5} S 4 = {4, 5} G H χ(h) = ω(h) n(h) α(h) χ(h) n(h) α(h) ω(h) G χ(g) > ω(g) H G G χ(h) = ω(h) p = ω(g) I 0 = {v 1,..., v q } G q = α(g) i {1,..., q} G i = G\v i ω(g i ) = ω(g) ω(g i ) < ω(g) χ(g i ) = ω(g i ) < ω(g) χ(g) ω(g) χ(g i ) = ω(g i ) = p i 1,..., q p σ i : V (G i ) {1,..., p} G i I (i 1) p+1,..., I i+p σ i i = 1,..., q G pq + 1 I 0, I 1,..., I pq G j {0,..., pq} χ(g\i j ) < ω(g) I j

105 χ(g) ω(g) χ(g\i j ) ω(g) ω(g) χ(g\i j ) = ω(g\i j ) ω(g) G\I j p S j pq + 1 S 0, S 1,..., S pq G j, j {0,..., pq} j j S j I j j = 0 j {1,..., pq} G i = G\v i σ i I j S 0 G\I 0 S 0 0 v i S 0 G[S 0 ] G i χ(g i ) = p G[S 0 ] σ i I j G[S 0 ] < p G[S 0 ] I j j {1,..., pq} j > 0 G[S j ] G\I j I j σ i i {1,..., q} σ i G i = G\v i v i S j v i S j G[S j ] G i \I j G i χ(g i \I j ) < p G[S j ] < p v i S j S j I 0 S j I j j {1,..., pq}\{j} G i = G\v i σ i I j i i v i S j v i, v i I 0 v i S j G[S j ] G i = G\v i G i I j S j < p i = i I j I j σ i S j I j S j I j = G[S j ] G\I j \I j G\{v i }\I j \I j p 2 G\I j \I j p 1 χ(s j ) < p S 0 S 1 S 2 S 3 S 4 I I I I I X Y Z X Y C 5 X, Y Z n(g) = 5 > 2 2 = α(g) ω(g) V (G) = {v 1,..., v n } (pq + 1) n X = [x i,h ] (i,j) [pq+1] [n] x i,h = 1 v j I i X I i, i = {0,..., pq} n (pq + 1) Y = [y h,j ] (h,j) [n] [pq+1] a h,j = 1 v h S j Y I j, j = {0,..., pq} S j I i i j i = j S j I i = 0 S j G\I j S j I j = S j I i = i j

106 S j I i S j I i S j I i = 1 z i,j = x i,h y h,j = S i I j h {1,...,n} XY (pq + 1) (pq + 1) Z = [z i,j ] (i,j) [pq+1] 2 Z 0 X n X n X pq Z = XY pq XY X Z Z pq + 1 P = (S, <) S R S x, y R x < y y < x R S x, y R x y y x a a a b c b c b c d e f d e f d e f g h g h g h P P P = (S, <) G P G G = (P, {{x, y}} x < y x > y}), S G G G P P = (S, <) G P P = (S, <) P = (S, <) S ρ P ρ P ρ

107 a b c d e f g h G P P = (S, <) S = n P B U D U = S v S v D (v, u) S S v < u B v U u D u D v U v D v v P a R U a b c d e f g h b c B d e f R D g h a b c d e f g h B B R {a, c, f, h} {b, d} {e, g} d e f P M B R B M = µ(b) = (B) = R = k R k S n k S P F P S F = E M {v, u } E A F v A u A F u

108 A v F [v, u] E E\{{v, u }} E = F n k U M M F = n k ρ = n k P = (S, <) P (P) F = {L 1,..., L k } S L i F P P = (S, <) P P F P ρ I ρ F P I F I = F F F P F I F = I I P = (S, <) S α(g P ) = (P) P G P α(g P ) P P P = (S, <) S (P) = χ(g P ) P G P F P ρ V (G P ) ρ G χ(g) ρ P (P) = χ(g P ) G n χ(g) ω(g) χ(g) ω(g) P = (V (G), <) G G = G P χ(g) = χ(g P ) = (P) = α(g P ) = α(g) = ω(g)

109 a a b c b c d e f d e f g h g h G P P G P G P G P G D (x, y), (y, z) E(D) (x, z) E(D) G (G) = ω(g) 1

110 ΚΕΦΑΛΑΙΟ 12 G G W = [v 0,..., v r 1, v 0 ] G W = [v 1,..., v r, v 1 ] e E(G) {i {v i, v i+1 r } = e} = 1.

111 G C = [v 0,..., v r 1, v 0 ] v G I {0,..., r 1} v = v i I = {i {0,..., r 1} v = v i } i I v = v i {v i 1 r, v i } {v i, v i+1 r } I C (v) = 2 I v ρ(g) = v V (G) ((v) 2). ρ(g) = 0 G G ρ(g) ρ(g) > 0 v 4 G v G {x, v} {y, v} v G w x y v G G G G (v) = G (v) 2 G G G w G v ρ(g ) < ρ(g) G G G G W = [v 0,..., v r 1 ] G

112 C A B D A B C D G G v 0 v r 1 G G G v 0 v r 1 G G G G G

113 G G G G G G I = {1,..., k} I 1, I 2 I I 1 + I 2 k + 2 i I 1 i + 1 I 2 j I 2 j + 1 I 1 G n(g) G x y G (x) + G (y) n(g) 2 < n(g) G P = [v 1,..., v r ] G r n(g) G P {v 1, v r } E(G) v 1 v r N G (v 1 ), N G (v 2 ) {v 2,..., v r 1 } N G (v 1 ) N G (v 2 ) r 2 n(g) 2 N G (v 1 ) + N G (v r ) n(g) i {2,..., r 2} v i N G (v r ) v i+1 N G (v 1 ) G C = [v 0, v i+1, v i+2,..., v r, v i, v i 1,..., v 0 ]

114 G r < n G w G C v C G w v C r + 1 P n(g)/2 G α(g) κ(g) C G G u V (G)\V (C) V (C) κ(g) V (C) < κ(g) x x C κ(g) G x x e = {x, x } V (C)\{x, x } < κ(g) 2 P V (C)\{x, x } P (C\e) r r κ(g) G + G v C V (C) κ(g) κ(g + ) κ(g) v u G + κ(g) v u G + (u, S) G S V (C) S κ(g) S u V (C)\S x S x C S C\{x, x } P 1 P 2 P 1, P 2 u x x C I V (C) S I G x, y I e C\{{x, x }, {y, y }} (e, {e}) P x P y x y x y P x P y u x y I V (C)\S u V (C)\S {u} I G κ(g) + 1 α(g) > κ(g)

115

116 n

117 k 3

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&

! # $%%&$$'($)*#'*#&+$ $&#! #, &,$-.$! $-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& ! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#

Διαβάστε περισσότερα

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ

Για αραιά διαλύματα : x 1 0 : μ i = μ i 0 RTlnx i χ. όπου μ i φ =μ i 0 χ Για ιδανικά διαλύματα : μ i = μ i lnx i x= γ=1 Για αραιά διαλύματα : x 1 : μ i = μ i lnx i χ μ i = μ i φ lnx i όπου μ i φ =μ i χ Χημική Ισορροπία λ Από σελ. 7 Χημική Ισορροπία όταν ν i μ i = (T,P σταθερό)

Διαβάστε περισσότερα

X vu = Γ 1 21X u + Γ 2 21X v + fn. X vv = Γ 1 22X u + Γ 2 22X v + gn, (7.2) X u = (cos u cos v, cos u sin v, sin u)

X vu = Γ 1 21X u + Γ 2 21X v + fn. X vv = Γ 1 22X u + Γ 2 22X v + gn, (7.2) X u = (cos u cos v, cos u sin v, sin u) Κεφάλαιο 7 Οι εξισώσεις Codazzi και Gauss Σύνοψη Στο κεφάλαιο αυτό θα ασχοληθούμε με μια βαθύτερη κατανόηση της καμπυλότητας Gauss. Θα ορίσουμε τα σύμβολα του Christoffel, τα οποία είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί

Εισαγωγή στη Μικροηλεκτρονική 1. Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική 1 Στοιχειακοί ηµιαγωγοί Εισαγωγή στη Μικροηλεκτρονική Οµοιοπολικοί δεσµοί στο πυρίτιο Κρυσταλλική δοµή Πυριτίου ιάσταση κύβου για το Si: 0.543 nm Εισαγωγή στη Μικροηλεκτρονική

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА

ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА ПРАВИЛА О РАДУ ДИСТРИБУТИВНОГ СИСТЕМА Верзија 1.0 децембар 2009. године На основу члана 107. Закона о енергетици (''Службени гласник Републике Србије'' број 84/04) и чл. 32. ст. 1. т. 9. Одлуке о измени

Διαβάστε περισσότερα

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

!#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%'  (&! #!$/001 !"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')

Διαβάστε περισσότερα

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! #  $ %& ' %$(%& % &'(!!)!*!&+ ,! %$( - .$'! ! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

1.4 8v 78hp 1.4 8v 78hp. Progression Distinctive Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1

1.4 8v 78hp 1.4 8v 78hp. Progression Distinctive Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1 1.4 8v 78hp 1.4 8v 78hp 1368 1368 Progression Βενζίνη Βενζίνη 14.600 15.700 145.B3N.1 145.E3N.1 ΘΟΦΝΠ ΦΥΡΗΠΚΝΠ NIGHT PANEL ΚΔ LED ---- ΦΥΡΗZOMENOI ΘΑΘΟΔΞΡΔΠ ΠΡΑ ΑΙΔΜΖΙΗΑ ---- ΡΑΚΞΙΥ SPRINT ---- ΡΑΚΞΙΥ

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΥΠΟΛΟΓΙΣΜΩΝ x x x y y x y?? Ευριπίδης Μάρκου Ευάγγελος Κρανάκης Άρης Παγουρτζής Ντάννυ Κριζάνκ ΕΥΡΙΠΙΔΗΣ ΜΑΡΚΟΥ Τµήµα Πληροφορικής µε Εφαρµογές στη Βιοϊατρική Πανεπιστήµιο

Διαβάστε περισσότερα

f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n

A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ III ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN 1 Εστω f : V V γραμμική απεικόνιση Εστω A = ker(f i ) και B = ker(f i+1 ) Δείξτε ότι (i) A B και (ii) f(b) A Αποδ: (i) Εστω x ker(f i ) Τότε f i (x)

Διαβάστε περισσότερα

! " #! $ %! & & $ &%!

!  #! $ %! & & $ &%! !" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια - Συνέχεια ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Όρια Συνέχεια ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ mail: info@iliaskosgr wwwiliaskosgr f] g,! R f] g,, f] g

Διαβάστε περισσότερα

ΕΠΙΣΗΜΗ ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΠΡΙΑΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΥΡΙΟ ΜΕΡΟΣ ΤΜΗΜΑ Α

ΕΠΙΣΗΜΗ ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΠΡΙΑΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΥΡΙΟ ΜΕΡΟΣ ΤΜΗΜΑ Α ΕΠΙΣΗΜΗ ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΠΡΙΑΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΥΡΙΟ ΜΕΡΟΣ ΤΜΗΜΑ Α Αριθμός 4672 Παρασκευή, 8 Φεβρουαρίου 2013 119 Αριθμός 88 Ο Παναγιώτης Κουτσού, μόνιμος Τεχνικός Επιθεωρητής, Τμήμα Δημοσίων Έργων, απεβίωσε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

K r i t i k i P u b l i s h i n g - d r a f t

K r i t i k i P u b l i s h i n g - d r a f t T ij = A Y i Y j /D ij A T ij i j Y i i Y j j D ij T ij = A Y α Y b i j /D c ij b c b c a LW a LC L P F Q W Q C a LW Q W a LC Q C L a LC Q C + a LW Q W L P F L/a LC L/a LW 1.000/2 = 500

Διαβάστε περισσότερα

Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli

Υδροδυναμική. Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική Περιγραφή της ροής Μορφές ροών Είδη ροών Εξίσωση συνέχειας Εξίσωση ενέργειας Bernoulli Υδροδυναμική - γενικά Ρευστά σε κίνηση Τμήματα με διαφορετικές ταχύτητες και επιταχύνσεις Αλλαγή μορφής

Διαβάστε περισσότερα

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 9: Προσδιορισμός Γεωειδούς με Ολοκληρωματικές, Στοχαστικές και Φασματικές Μεθόδους Η.Ν. Τζιαβός -

Διαβάστε περισσότερα

Κεφάλαιο 2: Τυχαίος Περίπατος

Κεφάλαιο 2: Τυχαίος Περίπατος Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Κεφάλαιο : Τυχαίος Περίπατος Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K

Διαβάστε περισσότερα

x y 2 = 2 sin θ 2 dx = K R n e x pt n+p 1 e tp dt. dx = pt p 1 e tp dt dx. t x 1 e t dt.

x y 2 = 2 sin θ 2 dx = K R n e x pt n+p 1 e tp dt. dx = pt p 1 e tp dt dx. t x 1 e t dt. Συναρτησιακές Ανισότητες και Συγκέντρωση του Μέτρου (-) Ασκήσεις Κεφάλαιο : Ισοπεριμετρικές ανισότητες και συγκέντρωση του μέτρου Θεωρούμε την μοναδιαία Ευκλείδεια σφαίρα S n = {x R n : x = } στον R n

Διαβάστε περισσότερα

!"#$%&' ()*%!&"' «$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 <.5-8+9: $=5-.>057=9/7/=9» !"#$%&$'( trafficking %)*+!,,-.$. /0"1%µ$)$ 2"(%3$)*4 5"67+$4

!#$%&' ()*%!&' «$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 <.5-8+9: $=5-.>057=9/7/=9» !#$%&$'( trafficking %)*+!,,-.$. /01%µ$)$ 2(%3$)*4 567+$4 1!"#$%&' ()*%!&"' «$+,-./0µ12 3410567/8+9 5+9 :1/.;./:69 057=9/7/=9»!"#$%$&"'$ «NOVOTEL» ()*. +,-. 4-6, /01#/ 14 & 15 /23)4567 2011!"#$%&$'( trafficking %)*+!,,-.$. /0"1%µ$)$ 2"(%3$)*4 5"67+$4

Διαβάστε περισσότερα

l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 2η Δια λεξη

Θεωρι α Γραφημα των 2η Δια λεξη Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος 2015 23 / 47 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) =

Διαβάστε περισσότερα

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 ) Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(

)# * ' +, -.(. / ( 01(#(' ( 0 #('( +' )# *'+,+ (. 20#('( / )%345 +56336% (%1/ :8;434( ! "#$" %& ' ' ' ( )# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/7338897394:8;434( * ''

Διαβάστε περισσότερα

ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Πρώτοι αριθµοί και τα Βασικά Θεωρήµατά τους Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 1 Πρωτοι αριθµοι και τα Βασικα Θεωρηµατα τους Στη µνήµη

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα Ο Αρχιμήδης 22 Φεβρουαρίου 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

5 σ σ σ σ σ σ σ (θ) θ (n, θ) n θ σ. σ. 2o σ. σ. σ. σ. P oisson P oisson σ. (stable) N {1, 2,...} Z Q R N 0 : {0, 1, 2,...} N m : {1, 2,..., m} Z : Z\{0} Q : Q\{0} R : R\{0} R + : {x R : x

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Συμμετρία μορίων και θεωρία ομάδων

Συμμετρία μορίων και θεωρία ομάδων Συμμετρία μορίων και θεωρία ομάδων Συμμετρία πολυατομικών μορίων Τι μας χρειάζεται; Προβλέπει τη φαματοκοπία και τη υμπεριφορά ατόμων και μορίων Πράξεις Συμμετρίας: κινήεις του μορίου κατά τις οποίες η

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B

&,'-- #- > #'$,/'3&)##3!0'0#!0#/# 0'0';&'$8 ''#&$'!&0-##-#;-# B !"#"# $%"&$' ('#')#''$# * +,-""&$'.-,-"#!&"!##/'#')#''$# ** '$#/0'!0#'&!0"#"/#0"## * 1--'/''00#&'232232223#24 *5 ##-'"-&1-$6'#76#!$#0"$8&9-1$" * '$#&$'!&&1:"-#;6"/'-#

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

2.1. ΑΠΛΟΣ ΤΥΧΑΙΟΣ ΠΕΡΙΠΑΤΟΣ

2.1. ΑΠΛΟΣ ΤΥΧΑΙΟΣ ΠΕΡΙΠΑΤΟΣ Κεφ. ΙΙ Τυχαίος Περίπατος.. ΑΠΛΟΣ ΤΥΧΑΙΟΣ ΠΕΡΙΠΑΤΟΣ Ας θεωρήσουµε ότι σωµατίδιο ανά µονάδα χρόνου κινείται πάνω επάνω στον οριζόντιο άξονα x x µε βήµατα σταθερού µήκους l =. Με πιθανότητα p (0 < p < )

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε. ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

ο χάρτης το γράφημα Σχήμα 5.3

ο χάρτης το γράφημα Σχήμα 5.3 KΕΦΑΛΑΙΟ 5 ΓΡΑΦΗΜΑΤΑ 5.1. Ανακάλυψη Ο W. Leibniz, σε επιστολή του το 1679 προς τον C. Huygens, παρατήρησε ότι "μας χρειάζεται ένα άλλο είδος ανάλυσης, γεωμετρικής ή γραμμικής, που να ασχολείται απ' ευθείας

Διαβάστε περισσότερα

l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ KYΡIAKH 18 MAΡTIOY 2012 ΔΙΑΡΚΕΙΑ:ΤΡΕΙΣ (3) ΩΡΕΣ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Να μελετήσετε

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

Περιεχόµενα Παρουσίασης 2.11

Περιεχόµενα Παρουσίασης 2.11 Κεφάλαιο2ο Πυρηνική Τεχνολογία - ΣΕΜΦΕ Παρουσίαση2.11 1 Περιεχόµενα Παρουσίασης 2.11 1. Αρχή Λειτουργίας των ΠΑΙ : Η Σχάση 2. Πυρηνική Ηλεκτροπαραγωγή ΠΗΣ 3. Πυρηνικά Υλικά και Τύποι ΠΑΙ 4. Σύγχρονοι ΠΑΙ

Διαβάστε περισσότερα

ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου

ΣΧΑΣΗ. Τονετρόνιοκαιησχάση. Πείραµα Chadwick, 1930. Ανακάλυψη νετρονίου ΣΧΑΣΗ Τονετρόνιοκαιησχάση Πείραµα Chadwick, 1930 4 9 12 2 α+ 4 Be 6 C+ Ανακάλυψη νετρονίου 1 0 n Irène & Jean Frédéric Joliot-Curie 1934 (Nobel Prize) Σειράπειραµάτων: Βοµβαρδισµόςελαφρών στοιχείων µε

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ Τμημα Μαθηματικων Αθανάσιος Κωνσταντινίδης Αλγοριθμοι και Πολυπλοκοτητα της Ισχυρης Τριαδικης Κλειστοτητας σε Κλασεις Γραφηματων ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Ιωάννινα, 2016 Η παρούσα Μεταπτυχιακή

Διαβάστε περισσότερα