Αριθμοί. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 28 σελίδες. εκδόσεις. Καλό πήξιμο
|
|
- Σαπφώ Αγγελόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Αριθμοί Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 97 ασκήσεις και τεχνικές σε 8 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα Kgllkos..gr / 1 0 / εκδόσεις Καλό πήξιμο
2 τηλ. Οικίας : κινητό : Επιλεγμένες ασκήσεις στους αριθμούς Ασκήσεις για Α Λυκείου Πράξεις και ιδιότητες Να λυθούν οι ασκήσεις : Να αποδείξεις ότι Αν και να υπολογίσεις το άθροισμα d b b 0,c d 0 A c 1 c 4 d ; 15. Να βρεις πότε ορίζεται το κλάσμα : 16. Δίνονται οι αριθμοί , b Κανένας από τους αριθμούς α,β δεν έχει αντίστροφο Τουλάχιστον ένας από τους α,β έχει αντίστροφο Έχουν αντίστροφο και οι δύο Ιδιότητες Δυνάμεων : 1, να βρεις τις τιμές του χ ώστε : Υπολόγισε τις δυνάμεις : 6 4 A A A z 7 z A z z A b b b b
3 τηλ. Οικίας : κινητό : A A A : A 4 : A 4 1 Να μετατρέψεις σε γινόμενο τις παραστάσεις : Να απλοποιήσεις τις παραστάσεις : 4 4 b b Να βρεθούν τα αναπτύγματα : Αξιοσημείωτες ταυτότητες : b b b b b b b b b b b b b b Το νου σου : b 0 0ήb 0 b 0 0b 0 b c b c b c bc 1
4 τηλ. Οικίας : κινητό : Να βρεις τα αναπτύγματα : 147. Να βρεις τα αναπτύγματα : z z 148. Να γίνουν οι πράξεις : 149. Δίνεται 4 P () 5 1, να υπολογίσεις : P 1, P 1, P 150. Να υπολογίσεις : P() Αν, 4, υπολόγισε : 15. Αν, 6, 6 ;, ; Αν, να υπολογίσεις :, Αν, 0, να υπολογίσεις :, 155. Να αποδείξεις ότι :
5 τηλ. Οικίας : κινητό : Να βρεις τα, : Να γίνουν οι πράξεις : & 158. Να γράψεις ως μία δύναμη τις παραστάσεις : Αν 1, 1, να υπολογίσεις : 160. Αν,, να υπολογίσεις : 161. Να συμπληρώσεις τις ταυτότητες : Να αποδείξεις τις ταυτότητες που ακολουθούν : 1 1, 0 b b b ,, 165. b b b b 166. Ν.δ.ο Αν ισχύει 1, να υπολογίσεις :,, 4
6 τηλ. Οικίας : κινητό : Να βρεις τα αναπτύγματα 168.,,, , 7,, ,,, ,,, b 17., 4,, , 5 10,, 4 Το νου σου : (αναλογία) c... m b d n c m... k b d n kb c kd... m kn τότε θέτω ,,, ,,, b 176., 5 4, 5, 1 1 1, 7, 5, , 4,, ,,, , 7,, ,,, 4 18.,,, b 18., 4,, ,,,, ,, 4 5
7 τηλ. Οικίας : κινητό : ,,, b 187. Να βρεις τα αναπτύγματα : z z z z 188. Να βρεις τα αναπτύγματα : z 189. Να γίνουν οι πράξεις : Να υπολογίσεις : z z Να αποδείξεις τις σχέσεις που ακολουθούν :
8 τηλ. Οικίας : κινητό : Αν 199. Αν 00. Αν Αν Αν 0. Αν 04. Αν 4 1 1, 0 & 4 z 0 z 1 1 1,, z 0 & z 4 & 0, να αποδείξεις ότι : z z z 0 z Αν, 0 & Να αποδείξεις τις ταυτότητες που ακολουθούν : 1 1, 0 b b b b b b b Να βρεις πότε ορίζονται και μετά να απλοποιήσεις τις παραστάσεις : 6 9 7
9 τηλ. Οικίας : κινητό : Να αποδείξεις τις παρακάτω σχέσεις : 17. Αν Αν b c b b c c b c c b b c 0 bc 19. Ν.δ.ο Αν ισχύει, να υπολογίσεις : Αν ; 7. Αν,, να υπολογίσεις :. Αν 4. Αν , 9, να υπολογίσεις :, 18, να υπολογίσεις : 8
10 τηλ. Οικίας : κινητό : Διάταξη Να αποδείξεις ότι ισχύουν οι παρακάτω ανισώσεις : b 4b * Για, ν.δ.ο. 4. Αν, 1 4, 4 1. Αν 4. Αν 5. Αν 6. Αν 7. Αν 6 9 & z z z b b b 8. Ν.δ.ο. 9. Ν.δ.ο Αν 1& 41. Ν.δ.ο Ν.δ.ο. 4. Ν.δ.ο. z 4 z 44. Αν 1,4, 1,, να βρεις που ανήκουν οι παραστάσεις : 5 Διάταξη : b b 0 b b 0 b c b c b, c 0 c bc b, c 0 c bc b, c d c b d b 0, c d 0 c bd 1 1 b, b 0 b 1 1 b, b 0 b 9
11 τηλ. Οικίας : κινητό : Ν.δ.ο. 46. Αν,10 να βρεις που ανήκουν οι παραστάσεις : ,,,5, να βρεις που ανήκουν οι παραστάσεις : 47. Αν Ν.δ.ο Αν 50. Αν 5 0 *, Αν ομόσημοι αριθμοί, z z 5. Αν ομόσημοι αριθμοί,, z 6 z 5. Αν b b b 9 0 b c 54. Αν b c c b b 55. Αν b Αν 1, 0 1 new 10
12 τηλ. Οικίας : κινητό : Αν b c bb cc Αν 59. Αν, 0 & Αν 61. Αν Αν Να αποδείξεις ότι δεν είναι αρνητικές οι παραστάσεις : Να αποδείξεις ότι : Να αποδείξεις ότι : 66. Ν.δ.ο
13 τηλ. Οικίας : κινητό : b b 67. Ν.δ.ο Ν.δ.ο. 69. Ν.δ.ο Αν, Ν.δ.ο. για κάθε ισχύει : z z 7. Ν.δ.ο. 7. Αν ομόσημοι αριθμοί, 74. Αν 1 1 1,, z 0 & z z 1 1 1,, 0 9 z 75. Αν z z 76. Ν.δ.ο. 77. Αν z z z z z ,, ; 78. Αν,, 0 & z z z 79. Αν Αν 81. Αν, 0 & Να αποδείξεις ότι για κάθε, :
14 τηλ. Οικίας : κινητό : Να αποδείξεις ότι : z z 84. Να αποδείξεις ότι : 1 z z z Να αποδείξεις ότι : Αν, 0, να αποδείξεις ότι : 87. Αν Να αποδείξεις ότι : z z z z 89. Αν 1, Αν 91. Αν 1 9. Αν Αν,, 6,, ; 1
15 τηλ. Οικίας : κινητό : Αν Αν 96. Αν, 0, , 0, Αν z 0 z z Να αποδείξεις ότι : v v 99. Αν v 6 v 4 Να συγκρίνεις αριθμούς 00. Αν, να συγκρίνεις,,, 1 5, Αν 0, να συγκρίνεις :, 0. Αν, 1, να συγκρίνεις, 0. Αν, να συγκρίνεις :, 1, 5, Αν 0, να συγκρίνεις :, 05. Αν 0, να διατάξεις σε μία αύξουσα σειρά τους αριθμούς : 8 6 6,, 7 5,, 06. Αν 1, να συγκρίνεις : 1, Άθροισμα τετραγώνων ισούται με μηδέν 07. Να αποδείξεις ότι : , 0 14
16 τηλ. Οικίας : κινητό : Να λυθούν οι εξισώσεις : Να βρεις τα, : Να βρεις τα, : Να βρεις τα, : Να βρεις τα,, z : z 6 z z 4 z 0 4 z 1 4 Ελάχιστη και μέγιστη τιμή παραστάσεων 1. Αν 0 1,, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : 15
17 τηλ. Οικίας : κινητό : Αν 1 1, 1 1, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : Αν 1 1, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : Αν 1, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : Αν, 4 5, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : 18. Αν 0, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : 19. Αν,5 6, να βρεις μεταξύ ποιων αριθμών περιέχονται οι τιμές των παραστάσεων : 16
18 τηλ. Οικίας : κινητό : Απόλυτη τιμή Να υπολογίσεις τις τιμές των παραστάσεων : b, b b, b , 7. 1,0 8. A , 0. 4,0 1. A ,. 8, 7 4. A , 0 6., 0 7. A 6 8. A 1 9. A 40. A A 4. A A A A Το νου σου : (απόλυτα), 0, 0 Ιδιότητες 0
19 τηλ. Οικίας : κινητό : A 9 A A 1 A A A A A 4 4 Να απλοποιήσεις τις παραστάσεις : 54. A 55. A 56. A A 1, 0 1 A 1 1 A Να βρεις πότε είναι ανεξάρτητο του χ : 61. Να συμπληρώσεις τον πίνακα : 1 1 Απόσταση Απόλυτη τιμή Ανισότητα d,4 4 6 d,0 d,
20 τηλ. Οικίας : κινητό : d, ,, 1 1, A d, d, 1, 1 6. Να υπολογίσεις την παράσταση 6. Ν.δ.ο. d, d, d, 64. Αν 1, & 1 4 Απόσταση Απόλυτη τιμή Ανισότητα d,4 4 6 d, d d 1,, Να βρεις πότε ορίζεται και να απλοποιήσεις την παράσταση : 66. Να βρεις πότε ορίζεται και να απλοποιήσεις την παράσταση : 67. Να λυθεί d, Να λυθεί : Να λυθεί : ,,, 1 A 1 1 A 70. Να υπολογίσεις και να παραστήσεις γραφικά την ποσότητα A 4 19
21 τηλ. Οικίας : κινητό : Να βρεις το χ ώστε Να λυθεί d, Να λυθεί : 74. Να λυθεί : Να υπολογίσεις και να παραστήσεις γραφικά την ποσότητα A Να βρεις το χ ώστε 77. Να υπολογίσεις το χ ώστε : 8 1 Ρίζες Να υπολογίσεις τις ρίζες : ,, 81, , 15, 56, 1 7,, 8, ,, 81, ,,, 5 Να γίνουν οι πράξεις : ,,, , , :
22 τηλ. Οικίας : κινητό : , 5 4 6, , Να βρεις τις τιμές των παραστάσεων : ,7,8, , , : 4, , Αν 40. Αν : 6, ; 1, 1 ; Να υπολογίσεις τις τιμές των παραστάσεων :
23 τηλ. Οικίας : κινητό : , Αν , , να υπολογίσεις :, 1 1 Να βρεις τις τιμές του χ ώστε να ορίζονται οι παραστάσεις : , 6, , 6, 4 1 9, 16, , 4, 1, 5 5, 6 18 Να μετατρέψεις με ρητό παρονομαστή : 1 1 1,,, ,, ,,, 8 4 4,, ,, ,,, ,,
24 τηλ. Οικίας : κινητό : Να βρεις τις τιμές των παραστάσεων : Να απλοποιήσεις τις παραστάσεις :
25 τηλ. Οικίας : κινητό : Να υπολογίσεις : Να υπολογίσεις : Να υπολογίσεις : Να υπολογίσεις : Να απλοποιήσεις τις παραστάσεις : Αν 0, να απλοποιήσεις : Το νου σου : (ρίζες), 0, 0 v v, 0, 0 Ιδιότητες 0, b 0 b b b b
26 τηλ. Οικίας : κινητό : Να γράψεις με τη μορφή μίας ρίζας : Αν 0, 0, να απλοποιήσεις : Αν 0 1, να απλοποιήσεις : 460. Αν, να απλοποιήσεις : 461. Αν 1, να απλοποιήσεις : 46. Αν 1, να απλοποιήσεις : 46. Αν 1, να απλοποιήσεις : 464. Αν, να απλοποιήσεις : Να αποδείξεις για, 0 : Να συγκρίνεις : 47. 5, , 7 5
27 τηλ. Οικίας : κινητό : , , , 478., , , , , , Να απλοποιήσεις τις παραστάσεις :
28 τηλ. Οικίας : κινητό : , Να απλοποιήσεις την παράσταση 4 4 A, d, Να απλοποιήσεις την παράσταση 516. A, d, 1 1, ; 517.,, z z 1 Ιδιότητες ριζών 0, b 0 v v v v v v m v vk b b b m v v mk v v b mv v m m 518. Υπολόγισε 4 4 7
29 τηλ. Οικίας : κινητό : Ν.δ.ο
30 τηλ. Οικίας : κινητό :
Αλγεβρικές παραστάσεις
Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο
Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό
Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο
Ανισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 4 391 ασκήσεις και τεχνικές σε 17 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 1 0 / 0 1 6 εκδόσεις
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /
Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες
Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Συναρτήσεις Κώστας Γλυκός Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό πήξιμο
Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις. Καλό πήξιμο / 1 0 /
Ολοκληρώματα Κώστας Γλυκός 58 ΑΣΚΗΣΕΙΣ ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 5 / / 8 εκδόσεις Καλό πήξιμο Επιλεγμένες ασκήσεις από βιβλία Σε όλες τις επόμενες
Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο
Συναρτήσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 6 185 ασκήσεις και τεχνικές σε 16 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / / 0 1 7 εκδόσεις Καλό
Τριγωνομετρία. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Τριγωνομετρία Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr / 7 / 8 Άλγεβρα Κεφάλαιο 9 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 2 /
Κύκλος Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 9 / 1 2 / 2 0 1 8 Κατεύθυνση Κεφάλαιο 48 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό
Εκθετικές & Λογάριθμοι Κώστας Γλυκός
Εκθετικές & Λογάριθμοι Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr / / 0 9 Άλγεβρα Κεφάλαιο 4 ασκήσεις και τεχνικές σε 4 σελίδες εκδόσεις Καλό
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Συστήματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα κεφάλαιο 1 70 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Συστήματα Κώστας Γλυκός Άλγεβρα κεφάλαιο 1 70 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllkos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό
Θέματα Πανελληνίων. Κώστας Γλυκός. Στη νέα ύλη ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις. Καλό πήξιμο / 2 /
Θέματα Πανελληνίων Κώστας Γλυκός Στη νέα ύλη ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 7 / / 0 7 εκδόσεις Καλό πήξιμο Ημερήσια. Θέμα Δ 00 Έστω συνάρτηση
Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο 4 83 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Ολοκληρώματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 4 / 7 / 8 Κατεύθυνση κεφάλαιο 4 8 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο
Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Πολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 1 / 1 / 0 1 6 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.
Αριθμοί. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Αριθμοί Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7 0 0 8 8 8 8 Kgllykosgr 5 / 0 / 0 6 εκδόσεις τηλ Οικίας : 0-6078 κινητό : 697-008888 Ασκήσεις Πιθανότητες
Τριγωνομετρία. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Τριγωνομετρία Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 8 / / 0 5 Άλγεβρα Κεφάλαιο 9 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις & εκδόσεις. Καλό πήξιμο / 7 /
Ολοκληρώματα Κώστας Γλυκός Κατεύθυνση κεφάλαιο ασκήσεις & και τεχνικές σε σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr / 7 / 8 εκδόσεις Καλό πήξιμο τηλ.
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες.
Συναρτήσεις Κώστας Γλυκός Κατεύθυνση κεφάλαιο 98 ασκήσεις και τεχνικές & Θεωρία με ερωτήσεις και αποδείξεις σε 55 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Ολοκληρώματα Κώστας Γλυκός 9 ΑΣΚΗΣΕΙΣ Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7.. 8 8. 8 8 Kglykos.gr / / 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : -6.78 κινητό : 697-.88.88 Επιλεγμένες ασκήσεις από βιβλία Σε
8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.
Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην
Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.
Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες, Σειρές, Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 7 εκδόσεις Καλό
Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Συναρτήσεις Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 9 / 0 1 6 Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 10-610.178
1. Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ). i)
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΡΙΖΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ), 0 i Αν αβ 0 τότε Αν β 0 τότε Αν α 0 τότε v Αν α 0 τότε v Αν α 0 τότε
1.5 Αξιοσημείωτες Ταυτότητες
1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος
Ασκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο
Ασκήσεις Άλγεβρας Κώστας Γλυκός B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 65 ασκήσεις και τεχνικές σε 4 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 1 3 / 1 0 / 0 1 6
Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /
Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88 Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3. 8 8. 8 8 Kgllykos..gr / 7 / 8 Κατεύθυνση Κεφάλαιο 3 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας
x y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Τετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Ακολουθίες & Σειρές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ακολουθίες, Σειρές, Δυναμοσειρές. τεχνικές.
Ακολουθίες & Σειρές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ακολουθίες Σειρές Δυναμοσειρές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / / 0 9 εκδόσεις Καλό
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
α έχει μοναδική λύση την x α
ΚΕΦΑΛΑΙΟ 3 ο ΕΞΙΣΩΣΕΙΣ Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες είναι λάθος.. H εξίσωση ( α)( β) ( β)( γ) έχει τις ίδιες λύσεις με την εξίσωση α γ για οποιεσδήποτε τιμές των
1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.
Παράγωγοι Κώστας Γλυκός ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 59 ασκήσεις σε 9 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 6 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει
ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Κύκλος Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyks.gr 1 3 / 1 1 / 2 0 1 6 Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις και τεχνικές σε 5 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Δοκιμασίες πολλαπλών επιλογών
Δοκιμασίες πολλαπλών επιλογών ) Η απόλυτη τιμή θετικού αριθμού είναι: Α. Ο αντίθετός του Β. Ο ίδιος ο αριθμός Γ. Ο αντίστροφός του 2) Αν x =3, τότε Α. x=3 Β. x 0 Γ. x=-3 Δ. x=3 ή x=-3 3) Με το -x συμβολίζουμε
Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Διανύσματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / 7 / 0 1 8 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -
2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
1. Να λυθούν οι παρακάτω εξισώσεις : α. 3
. Να λυθούν οι παρακάτω εξισώσεις : α. 0 6 β. ( + ) + ( ) = ( + ) γ. ( + ) 4 = ( ) δ. ( 7) + = ε. ( ) + ( + 4)( 4) + 8 = ( + ) στ. ( 7) + = ζ. ( ) = ( )( 4) + 9. Ομοίως : α. ( + 5) (9 5) + 6 + 0 = 0 β.
g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου
ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ή ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου Με τη φράση «πρόσημο τριωνύμου» δηλώνουμε τη μέθοδο με την οποία μπορούμε να γνωρίζουμε ποιο πρόσημο
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)
ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις
4. Εξισώσεις 2ου βαθμού αx 2 + βx + γ = 0, α 0 α, β, γ παράμετροι και x η μεταβλητή Αν ρ ρίζα/λύση της εξίσωσης, τότε αρ 2 + βρ + γ = 0 Αν ρ 1, ρ 2 ρίζες/λύσεις της εξίσωσης, τότε το τριώνυμο γράφεται
Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.
Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες
Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Παράγωγοι Κώστας Γλυκός Για αρχή 598 ασκήσεις και τεχνικές σε 4 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 7 / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88
ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Ημερομηνία: Σάββατο 11 Μαΐου 019 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α1. Θεωρία. Σχολικό βιβλίο σελίδα 90 ΑΠΑΝΤΗΣΕΙΣ Α. α. (αα 1) β. (ββ 3) γ. (γγ ) δ. (δδ 5) Α3. α.
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x
Ασκήσεις. ι) α α ιι) α α ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ
ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ Ασκήσεις ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μικρότερη ή ίση του. ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μεγαλύτερη του. ) Η απόσταση δύο
ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»
ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους
0. Να λύσετε τις εξισώσεις: i) ( )( ) ( ). Να διερευνήσετε τις εξισώσεις i) ( ) ( 6) b, b 0. b. Ποιοι περιορισμοί πρέπει να ισχύουν για τα α και b ώστ
ΜΑΘΗΜΑ: Άλγεβρα ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΥΛΗ: Εξισώσεις και Ανισώσεις Πρώτου Βαθμού Απόλυτη Τιμή - Ρίζες Α. Εξισώσεις Πρώτου Βαθμού. Να λύσετε τις εξισώσεις i) 9(8 ) 0(9 ) ( ) 8 7y y i ( ) 0( ) 0 ( 0) iv) y. Να
ΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ
ΑΓΕΒΡΑ Α ΥΚΕΙΟΥ ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ - ΑΚΗΕΙ ΘΕΩΡΙΑ. Οι πράξεις και οι ιδιότητες τους Αν α, β, γ, δ πραγματικοί αριθμοί τότε ισχύουν οι ιδιότητες : α = β Û α + γ = β + γ Αν γ ¹ 0, α = β Û αγ = βγ αβ = 0 Û α
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;
EΞΙΣΩΣΕΙΣ Ε ξ ι σ ω σ η ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Εστω η εξισωση: α+β=0 () Λυση η ριζα. της Aν εξισωσης α, β θετικοι λεγεται, να συγκρινεται κάθε τιμη τους του πραγματικου
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης
Τάξη Τμήμα Διάρκεια: δ. ώρα/ες. Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών. Ποιοι τετράγωνοι αριθμοί υπάρχουν μέχρι το 100;
Φύλλο εργασίας Τάξη Τμήμα Διάρκεια: δ. ώρα/ες Ημερομηνία / / Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών Ομάδα 1 η Δραστηριότητα 1.1 Θυμάστε τους τετράγωνους αριθμούς; Ποιοι τετράγωνοι αριθμοί
ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής