ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
|
|
- ÍΕρρίκος Παπακωνσταντίνου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
2 . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,... ii. Ακέραιοι αριθμοί : iii. Ρητοί αριθμοί : Q /, 0 iv. Άρρητοι αριθμοί : Q...,,...,,..,... (οι αριθμοί που δεν είναι ρητοί) v. Πραγματικοί αριθμοί : R Q Q (οι ρητοί και άρρητοι) Διαστήματα πραγματικών αριθμών i. Κλειστό διάστημα :, ii. Ανοικτό διάστημα :, iii. Ανοικτό - κλειστό διάστημα : (, ] iv. Κλειστό - ανοικτό διάστημα : [, ) Επίσης : v. (, ) ή [, ) vi. (, ) ή (, ]. ΔΥΝΑΜΕΙΣ : Ισχύουν οι παρακάτω ιδιότητες Αν α πραγματικός αριθμός και ν φυσικός τότε:...,, 0 ( 0),, Αν ν περιττός : ενώ αν ν άρτιος : ή,,,,. ΤΑΥΤΟΤΗΤΕΣ : ( )( ) ( )( ) ( )( ) ( )(... ( ) ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
3 ΑΣΚΗΣΗ Να βρείτε τα αναπτύγματα των ταυτοτήτων : i) ( ) ii) ( ) iii) ( ) iv) ( ) v) 9 vi) vii) 8 viii) 7 i) ( )( ) ) ( )( ) i) ( ) ii) ( ) iii) ( ). ΡΙΖΕΣ Ισχύουν οι ιδιότητες :, και ν θετικός ακέραιος. (Συνήθως :, ), θετικός ή 0 και ν θετικός ακέραιος. (Συνήθως :, ), θετικός ή 0 και ν, μ θετικοί ακέραιοι.(συνήθως :, ), χ εir και ν, μ θετικοί ακέραιοι. ΠΡΟΣΟΧΗ : ενώ. Όταν κάτω από τη ρίζα υπάρχει αριθμός που είναι τέλειο τετράγωνο τότε εύκολα υπολογίζω το αποτέλεσμα. π.χ., κτλ. Όταν όμως ο αριθμός δεν είναι τέλειο τετράγωνο κοιτώ μήπως μπορώ να απλοποιήσω τη ρίζα γράφοντας τον αριθμό σαν γινόμενο δυο αριθμών εκ των οποίων ο ένας να είναι τέλειο τετράγωνο. π.χ. 8 π.χ. π.χ. 7 Όταν έχω κλάσμα που στον παρανομαστή υπάρχει μια ρίζα, τότε πολλαπλασιάζω αριθμητή και παρανομαστή με τη ρίζα αυτή ώστε να προκύψει κλάσμα που στον παρανομαστή δεν έχει ρίζα. π.χ. π.χ. Όταν έχω κλάσμα που στον παρανομαστή υπάρχει παράσταση της μορφής,,, τότε για να απαλλαγώ από τη ρίζα στον παρανομαστή πολλαπλασιάζω αριθμητή και παρανομαστή με τη συζυγή παράσταση του παρανομαστή. ( ) π.χ. ( ) ( ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
4 0 π.χ. 0 0 ( ( ) ( ) ) π.χ. ( ( ) ) ( ) Η ΕΞΙΣΩΣΗ : αχ+β=0 Μια εξίσωση πρώτου βαθμού έχει τελικά τη μορφή αχ+β=0 ή αχ=-β () Αν α 0, η () έχει μόνο μια λύση (ρίζα), την. Αν α=0 και β 0, η () είναι αδύνατη (δεν έχει λύση). Αν α=0 και β=0, η () είναι ταυτότητα ή αόριστη (αληθεύει για κάθε πραγματικό αριθμό χ). π.χ. Να λύσετε την εξίσωση : ( ) ( ) Λύση : ( ) ( ) ( ) 7 π.χ. Να λύσετε την εξίσωση : Λύση : Πρώτα από όλα θέλω να απαλλαγώ από τα κλάσματα. Βρίσκω (,,) και στη συνέχεια πολ/ζω κάθε όρο με το ΕΚΠ ώστε να κάνω απαλοιφή παρανομαστών. ( ) 7 ( ) ( ) άρα η εξίσωση είναι αδύνατη. ΑΣΚΗΣΗ Να λύσετε τις εξισώσεις : i) 8 0 ii) ( ) ( ) 8 iii) ( ) ( 0) iv) ( ) 0. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 0 0 Αν Δ>0 τότε, Διακρίνουσα Αν Δ=0 τότε η εξίσωση έχει μια διπλή ρίζα Αν Δ<0 τότε η εξίσωση είναι αδύνατη. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
5 π.χ. Να λύσετε την εξίσωση : 0 Είναι 9 8 0, έχει δυο πραγματικές ρίζες άνισες τις ( ), π.χ. Να λύσετε την εξίσωση : 0 0 Είναι , έχει μια πραγματική διπλή ρίζα την π.χ. Να λύσετε την εξίσωση : ( ) ( ) Είναι ( ) 8 0, άρα η εξίσωση είναι αδύνατη. Προσοχή : Όταν β=0 ή γ=0, τότε η εξίσωση 0 μπορεί να λυθεί πιο εύκολα χωρίς τη χρήση της διακρινουσας. Πιο συγκεκριμένα : Αν β=0 τότε 0 π.χ. 0 π.χ π.χ. 0 π.χ. 0 Αδύνατη. Αν γ=0 τότε 0 π.χ. 0 ( ) 0 0 ή 0 π.χ. 0 ( ) 0 0 ή 0 ΑΣΚΗΣΗ Να λύσετε τις εξισώσεις : i) 0 ii) 9 0 iii) ( ) iv) 9 0 v) 9 0 vi) 7 0 vii) 0 ( 9) viii) 7 7. ΔΙΤΕΤΡΑΓΩΝΕΣ ΕΞΙΣΩΣΕΙΣ Έχουν τη μορφή 0 0 y 0. και λύνονται με αντικατάσταση : y με π.χ. Να λύσετε την εξίσωση : 7 0 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
6 Λύση : Θέτω y άρα η εξίσωση γίνεται y 7y 0. Είναι 9 ( ) 9 8 0, y, Για y Για y Αδύνατη. ( 7) y ή y ΑΣΚΗΣΗ Να λύσετε την εξίσωση : 0 8. ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ Έχουν τη μορφή *,. Οι λύσεις της εξίσωσης είναι : ) Αν α>0 και ν περιττός έχει ακριβώς μια λύση a ) Αν α>0 και ν άρτιος έχει ακριβώς δυο λύσεις a ) Αν α<0 και ν περιττός έχει ακριβώς μια λύση a ) Αν α<0 και ν άρτιος δεν έχει λύσεις (αδύνατη) π.χ.) Να λύσετε την εξίσωση : π.χ.) Να λύσετε την εξίσωση : 0 π.χ.) Να λύσετε την εξίσωση : 0 π.χ.) Να λύσετε την εξίσωση : 0 Αδύνατη. ΑΣΚΗΣΗ Να λύσετε τις εξισώσεις : i) 8 0 ii) 0 iii) 7 0 iv) 8 0 v) 0 9. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Για να λύσω μια κλασματική εξίσωση, δηλ. εξίσωση που έχει άγνωστο στον παρανομαστή, ον παραγοντοποιώ τους παρανομαστές και βρίσκω το ΕΚΠ τους, ον παίρνω περιορισμούς, ον πολλαπλασιάζω κάθε όρο με το ΕΚΠ ώστε να γίνει απαλοιφή παρανομαστών και λύνω την εξίσωση που προκύπτει, ον ελέγχω αν οι λύσεις που βρήκαμε ικανοποιούν τους περιορισμούς. π.χ. Να λύσετε την εξίσωση : 8 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
7 8 8 Λύση : ( )( ) ( )( ) Πρέπει ( )( ) 0 & 8 ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) (δεκτή) ή (δεκτή). ΑΣΚΗΣΗ Να λύσετε την εξίσωση : 0 0. ΑΡΡΗΤΕΣ ΕΞΙΣΩΣΕΙΣ Είναι οι εξίσωσης που περιέχουν τουλάχιστον ρίζα. Για να τις λύσουμε : ον παίρνουμε τους περιορισμούς (υπόρριζη ποσότητα 0), ον βάζουμε το ένα ριζικό στο ο μέλος και πηγαίνουμε όλους τους υπόλοιπους όρους στο ο, ον αν στο ο μέλος έχει άγνωστο τότε παίρνουμε περιορισμό και για το ο μέλος 0, ον υψώνουμε και τα δυο μέλη σε δύναμη ίση με την τάξη του ριζικού του ου μέλους και ον τέλος εξετάζουμε ποιες από τις λύσεις είναι δεκτές και ποιες απορρίπτονται. π.χ. Να λύσετε την εξίσωση : Λύση : πρέπει 0 δεκτή π.χ. Να λύσετε την εξίσωση : Λύση : Έχω : πρέπει 0 () και 0 (). Από ()&() ισχύει. ( ) 0 π.χ. Να λύσετε την εξίσωση : (δεκτή) ή (απορ.) Λύση : Έχω : πρέπει 0 () και 0 (). Από ()&() ισχύει. εδώ επίσης πρέπει 0 (). Άρα από (), ()&() ισχύει. Οπότε : ( ) 0 (απορ.) (δεκτή) ή ΑΣΚΗΣΗ 7 Να λύσετε την εξίσωση : i) iι) 7 iiι) 0 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 7
8 . ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΑΓΝΩΣΤΟΥΣ i. Μέθοδος αντικατάστασης ii. Μέθοδος αντίθετων συντελεστών y π.χ. Να λύσετε τo σύστημα : 7y 8 y y () 0y Λύση : προσθέτοντας κατά μέλη 7y 8 7y 8 ( ) y προκύπτει y y και αντικαθιστώντας στη η έχω : 9. (Μέθοδος Αντίθετων Συντελεστών) y 0 π.χ. Να λύσετε τo σύστημα : y y 0 Λύση: y y 0() η () λογω της () γίνεται : y () (y ) ( y ) y 0 (y y ) y y 0 y 0y 8 0 y 0y 0 y ή y. Για y από () 8. Για y από (). (Μέθοδος της Αντικατάστασης) ΑΣΚΗΣΗ 8 Να λύσετε τα παρακάτω συστήματα : i) ( y )( y) 0 y y 0 iii) iv) y y 8 0 y y ii) 8 y y 9. ΑΝΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και στη συνέχεια διαιρώ με το συντελεστή του αγνώστου. Αν σε κάποιο στάδιο πολλαπλασιάσω ή διαιρέσω και τα μέλη με αρνητικό αριθμό αλλάζει η φορά της ανίσωσης. ος τρόπος : Αν θέλω να λύσω την ανίσωση με τη βοήθεια του πίνακα πρόσημου τότε λύνω την αντίστοιχη εξίσωση και στη συνέχεια βάζω τη ρίζα στο πινακάκι. Για τα πρόσημα ισχύει ότι δεξιά από το 0 είναι ομόσημο του α ενώ αριστερά ετερόσημο του α. Δηλ. - + α+β ετερόσημο α 0 ομόσημο α π.χ. Να λυθεί και με τους τρόπους η ανίσωση : 8 0 Λύση: ος ή (,] Λύση: ος Έχω Άρα επειδή θέλω 8 0 τότε (,] ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 8
9 . ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΑΝΙΣΩΣΕΙΣ Για να λύσουμε μια ανίσωση της μορφής : 0 ή 0 Αρκεί να βρούμε το πρόσημο του τριωνύμου 0 και τις τιμές του που γίνεται θετικό ή αρνητικό. Πιο συγκεκριμένα λύνω την εξίσωση 0 βρίσκω τις ρίζες, και τις τοποθετώ στο πινακάκι από το οποίο και βρίσκω το πρόσημο τις συνάρτησης στο διάστημα που θέλω. η περίπτωση: Δ>0 Τιμές του χ - + Πρόσημο του αχ +βχ+γ ομόσημο του α 0 ετερόσημο του α η περίπτωση: Δ=0 Τιμές του χ - + Πρόσημο του αχ +βχ+γ ομόσημο του α ομόσημο του α η περίπτωση: Δ<0 Τιμές του χ - Πρόσημο του αχ +βχ+γ ομόσημο του α π.χ. Να λυθεί η ανίσωση : 0 Λύση: Έχω : 0 0 άρα, Άρα επειδή θέλω 0 τότε (,) (, ) 0 ομόσημο του α Παρατήρηση Αν είχα να λύσω την ανίσωση 0 θα έκανα ακριβώς την ίδια διαδικασία απλά στο τέλος θα έγραφα (,] [, ) Παρατήρηση Αν είχα να λύσω την ανίσωση 0 θα έκανα ακριβώς την ίδια διαδικασία απλά στο τέλος θα έγραφα (,) Παρατήρηση Αν είχα να λύσω την ανίσωση 0 θα έκανα ακριβώς την ίδια διαδικασία απλά στο τέλος θα έγραφα [,] π.χ. Να λυθεί η ανίσωση : 9 0 Λύση: Έχω : άρα (Διπλή ρίζα) Άρα επειδή θέλω 9 0 τότε ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 9
10 (Όταν η Διακρίνουσα είναι Ο το τριώνυμο είναι ανάπτυγμα ταυτότητας δηλ. 9 ( ) οπότε μπορούμε να καταλάβουμε ακόμα καλυτέρα γιατί ισχύουν τα πρόσημα στο πινακάκι) Παρατήρηση Αν είχα να λύσω την ανίσωση 9 0 θα έκανα ακριβώς την ίδια διαδικασία απλά στο τέλος θα έγραφα Παρατήρηση Αν είχα να λύσω την ανίσωση 9 0 θα έκανα ακριβώς την ίδια διαδικασία απλά στο τέλος θα έγραφα ότι είναι αδύνατη Παρατήρηση Αν είχα να λύσω την ανίσωση 9 0 θα έκανα ακριβώς την ίδια διαδικασία απλά στο τέλος θα έγραφα π.χ. Να λυθεί η ανίσωση : 0 Λύση: Έχω Άρα επειδή θέλω 0 τότε [,] ΑΣΚΗΣΗ 9 Να λυθούν οι ανισώσεις : i) 0 ii) 0 iii) 0 iv) 0 v) 0 vi) 9 0 vii) 9 0 viii) 0. ΚΛΑΣΜΑΤΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ( ) ( ) Μια κλασματική ανίσωση της μορφής 0 ή 0 γράφεται ισοδύναμα ( ) ( ) ( ) ( ) 0 ή ( ) ( ) 0 [όπου ( ) 0 ] και αυτό γιατί το γινόμενο και το πηλίκο δυο αριθμών έχουν το ίδιο πρόσημο. π.χ. Να λυθεί η ανίσωση : 0 Λύση: Πρέπει 0 και Έχω : 0 ( )( ) 0 ( )( ) 0 0 ( ) 0 0, ή, 0 ή 0 ή Γινόμενο - Πηλίκο ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 0
11 Άρα επειδή θέλω 0 ( )( ) 0 (Στο (,) είναι ανοιχτό λόγο του περιορισμού) τότε [,0] (, ). π.χ. Να λυθεί η ανίσωση : 0 Λύση: Πρέπει 0 και Έχω : 0 ( )( ) 0 ( )( ) 0 0, ύ ή 0 ή Γινόμενο - Πηλίκο Άρα επειδή θέλω 0 ( )( ) 0 τότε (,). (Όταν μια παράσταση είναι πάντα θετική τότε δεν επηρεάζει το πρόσημο στην τελευταία σειρά στο πινακάκι. Οπότε θα μπορούσε να παραληφτεί εντελώς.) ( ) Μια κλασματική ανίσωση της μορφής ( ) γράφεται : ( ) ( ) ( ) ( ) ( ) ( ) 0 0 [ ( ) ( ) ( )] ( ) 0 και λύνεται ( ) ( ) όπως η προηγούμενη. 8 π.χ. Να λυθεί η ανίσωση : 8 Λύση: Έχω : 0 ( )( ) ( )( ) Πρέπει ( )( ) 0 &. (Σε αυτό το σημείο όμως δεν κάνω απαλοιφή παρανομαστών όπως στις αντίστοιχες κλασματικές εξισώσεις, αλλά ομώνυμα κλάσματα. Αυτό γιατί η απαλοιφή παρανομαστών δεν επιτρέπεται στις ανισώσεις καθώς η παράσταση με την οποία θα πολλαπλασιάσω κάθε όρο, δεν γνωρίζω αν είναι θετική ή αρνητική) 8 ( ) ( ) ( )( ) ( )( ) 0 ( )( ) 0 Έχω : ( )( ) 0 0 ή ή 0 ή ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
12 Γινόμενο Πηλίκο Άρα επειδή θέλω 0 ( )( ) 0 τότε (, ] (,) [, ). (Στο (-,) είναι ανοιχτό λόγο του περιορισμού) 9 ΑΣΚΗΣΗ 0 Να λυθούν οι ανισώσεις : i) 0 iii) iv) 0 0 ii) 0. ΑΡΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ Είναι οι ανισώσεις που περιέχουν τουλάχιστον ρίζα. Για να τις λύσουμε : ) θέτουμε τους περιορισμούς (υπόρριζη ποσότητα 0), ) βάζουμε το ένα ριζικό στο ο μέλος και πηγαίνουμε όλους τους υπόλοιπους όρους στο ο, ) υψώνουμε και τα δυο μέλη σε δύναμη ίση με την τάξη του ριζικού του ου μέλους και ) τέλος κάνουμε συναλήθευση της λύσης με τους περιορισμούς. π.χ. Να λυθεί η ανίσωση : Λύση: Πρέπει : Από () και () ισχύει : [,) ή [,8] () ΑΣΚΗΣΗ Να λυθούν οι ανισώσεις : i) 9 ii) 9 (). ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ, 0 Ορισμός :, 0 Ιδιότητες :,,,, ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
13 ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Όταν σε μια άσκηση υπάρχουν απόλυτες τιμές και θέλω να απαλλαγώ από αυτές τότε : Αν η παράσταση που βρίσκεται μέσα στην απόλυτη τιμή είναι πάντα θετική, τότε φεύγει η απόλυτη τιμή και η παράσταση που είναι μέσα της γράφεται όπως είναι. Δηλ. π.χ., επειδή 0 για κάθε. π.χ. 7 7, επειδή 7 0 Αν η παράσταση που βρίσκεται μέσα στην απόλυτη τιμή είναι πάντα αρνητική, τότε η απόλυτη τιμή γίνεται παρένθεση και βγαίνει ένα μείων (-) απέξω. Δηλ. π.χ. ( ), επειδή 0 για κάθε. π.χ. 8 ( 8 ) 8, επειδή 8 0. Αν η παράσταση που βρίσκεται μέσα στην απόλυτη τιμή δεν διατηρεί σταθερό πρόσημο τότε πρέπει να διακρίνω περιπτώσεις με βάση τον ορισμό. ( ),, ( ) 0,, 0,, ( ). Δηλ ( ),, ( ) 0 ( ),, 0,, Το ίδιο μπορεί να γίνει με πινακάκι και περιπτώσεις : Μηδενίζω την παράσταση που βρίσκεται μέσα στην απόλυτη τιμή, βρίσκω τη ρίζα ή τις ρίζες της και κάνω πινακάκι. Από το πινακάκι διακρίνω τις αντίστοιχες περιπτώσεις και βγάζω το πρόσημο της παράστασης στο διάστημα που θέλω. Δηλ., το δεν διατηρεί σταθερό πρόσημο άρα, Αν ή [, ) τότε (αφού 0 για κάθε [, ) ) Αν ή (, ) τότε ( ) (αφού 0 για κάθε (, ) ) ΕΞΙΣΩΣΕΙΣ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Συχνά σε εξισώσεις με απόλυτη τιμή καταλήγουμε σε μια από τις εξισώσεις : ΠΕΡΙΠΤΩΣΗ α<0 είναι αδύνατη. f () για α>0 δίνει f()=α ή f()= -α για α=0 δίνει f()=0 και για π.χ. Να λυθεί η εξίσωση : Λύση: ή ή ή =- ΠΕΡΙΠΤΩΣΗ f ( ) g( ) f ( ) g( ) ή f ( ) g( ) π.χ. Να λυθεί η εξίσωση : Λύση: ή ή ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
14 π.χ. Να λυθεί η εξίσωση : Λύση: 9 ( ) 9 ή ( ) ΠΕΡΙΠΤΩΣΗ f ( ) g( ) h( ) Σε αυτή την περίπτωση βρίσκω τις ρίζες των f ( ) 0 και g ( ) 0, φτιάχνω πινακάκι στο οποίο βάζω τις ρίζες των παραπάνω εξισώσεων και στη συνέχεια διακρίνω περιπτώσεις για τα αντίστοιχα διαστήματα που δημιουργούνται. π.χ. Να λυθεί η εξίσωση : Λύση: () Έχω : Διακρίνουμε τις περιπτώσεις : Αν (, ) η () γίνεται : ( ) ( ) αδύνατο γιατί (, ) Αν [, ) η () γίνεται : ( ) (δεκτή) Αν [, ) η () γίνεται : ( ) (δεκτή) ΑΣΚΗΣΗ Να λυθούν οι εξισώσεις : i) ii) iii) ΑΝΙΣΩΣΕΙΣ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Για τις ανισώσεις με απόλυτη τιμή υπάρχουν οι παρακάτω σημαντικές ιδιότητες : ) (α>0) ) ή (α>0) π.χ. Να λυθεί η ανίσωση : Λύση: ή αλλιώς, π.χ. Να λυθεί η ανίσωση : 7 Λύση: 7 7 () ή 7 9 () ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
15 ,, Αν συναληθευσω της () και () π.χ. Να λυθεί η ανίσωση : Λύση: π.χ. Να λυθεί η ανίσωση : Λύση: () Διακρίνουμε τις περιπτώσεις : Αν (, ) η () γίνεται : ( ) ( ) 0, οπότε αν το συναληθευσουμε με το (, ) παίρνουμε (, 0) Αν [, ) η () γίνεται : ( ) ( ), οπότε αν το συναληθευσουμε με το [, ) παίρνουμε, Αν [, ) η () γίνεται : ( ), οπότε αν το συναληθευσουμε με το [, ) παίρνουμε [, ). Άρα οι λύσεις της ανισώσεις είναι (, 0) ή, ή [, ) δηλ. (, 0) ή, ΑΣΚΗΣΗ Να λυθούν οι ανισώσεις : i) ii) iii) iv) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
16 7. ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ Η διαδικασία κατά την οποία μια παράσταση από άθροισμα μετατρέπεται σε γινόμενο παραγόντων. ΚΟΙΝΟΣ ΠΑΡΑΓΟΝΤΑΣ. ΑΠΛΗ ΜΟΡΦΗ π.χ. y y y(y ), π.χ. ( ) ( ) ( ) ( ) ( )( ). ΚΑΤΑ ΟΜΑΔΕΣ π.χ. 0 ( ) ( ) ( )( ) ΤΑΥΤΟΤΗΤΕΣ. ΔΙΑΦΟΡΑ ΤΕΤΡΑΓΩΝΩΝ. ΔΙΑΦΟΡΑ ΚΥΒΩΝ ( )( ). ΑΘΡΟΙΣΜΑ ΚΥΒΩΝ ( )( ) π.χ. Να παραγοντοποιηθούν οι παραστάσεις : i) ( )( ) ii) ( ) 8 ( ) 9 ( 9)( 9) ( 0)( 8) ΤΡΙΩΝΥΜΟ αν Δ>0 όπου, οι ρίζες, a( ) ( ) αν Δ=0 όπου η διπλή ρίζα a( ) αν Δ<0 τότε δεν παραγοντοποιείται π.χ. ( )( ) π.χ. 9 ( ) ΑΣΚΗΣΗ Να παραγοντοποιηθούν οι παραστάσεις : i) 8, ii) 9 8. ΤΡΙΓΩΝΟΜΕΤΡΙΑ Η τριγωνομετρία είναι δύο πράγματα: Οι τύποι και ο τριγωνομετρικός πίνακας. Βασικοί τριγωνομετρικοί τύποι και αριθμοί. ημ +συν = ή ημ = -συν ή συν = -ημ, για κάθε.,, για κάθε. για -, : ακέραιος ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
17 . Πίνακας τριγωνομετρικών αριθμών Γωνία ω 0 ο ή 0 ο ημω 0 συνω εφω σφω 0 ή ο Δεν ορίζεται ή 0 ο ή 90 ο 0 Δεν ορίζεται 0. Αναγωγή στο ο τεταρτημόριο : AΠΟ Ο -> Ο AΠΟ Ο -> Ο AΠΟ Ο -> Ο ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 7
18 π.χ. Να υπολογιστούν οι παρακάτω τριγωνομετρικοί αριθμοί : i) 0 ii) iii) 0 iv) v) vi) 7 viii) i) ) i) Λύση : i) 0 (80 0) 0 ( ο -> ο ) ii) (80 ) ( ο -> ο ) iii) 0 (80 0) 0 ( ο -> ο ) iv) ( ) ( ο -> ο ) v) ( ) ( ο -> ο ) vi) ( ) ( ο -> ο ) vii) ( ) ( ο -> ο ) 7 viii) ( ) ( ο -> ο ) i) ( ) ( ο -> ο ) 7 ) vii) 0 i) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 8
19 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 9 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΞΑΣΚΗΣΗ. Να λυθούν οι εξίσωσης : i. ) ( ii. ) ( iii. iv. v. 0 8 vi. vii. 0 viii. 0 i. 0. ) ( i. ) ( ii. iii. 8 iv. 0 0 v. 0. Να λυθούν οι εξίσωσης : i. ) ( ii. ) ( iii. ) ( iv. v. 0 vi. vii. viii. 0 i.
20 . i.. α. ( ) 7 0 να βρεθεί το λ ώστε η εξίσωση να έχει διπλή ρίζα. β. ( ) ( ) 0 να βρεθεί το λ ώστε η εξίσωση να έχει ρίζες άνισες. γ. Αν ( ) 0 με 0, νδο η εξίσωση έχει πραγματικές ρίζες.. Να λύσετε τις εξίσωσης : i. 7 0 ii. 0 iii. 0. Να λυθούν οι παρακάτω εξισώσεις : i ii. 0. Να λυθούν οι παρακάτω εξισώσεις : i. ii. iii. 7 8 iv Να λύσετε τα παρακάτω συστήματα : i. y 0 y ii. y y iii. y y iv. ( y) 0 y ( y) ( ) y v. y y vi. y y vii. y y y viii. y y ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 0
21 i.. i. y y y 0 y 0 y y y y 0 y 8. Να λύσετε τις ανισώσεις : i. 0 ii. 0 iii. 0 iv. 0 v. 0 vi. 0 vii. 9. Να λυθούν οι παρακάτω ανισώσεις : i. ii. 7 8 iii Να λυθούν οι παρακάτω εξισώσεις : i. ii. iii.. Να λυθούν οι παρακάτω ανισώσεις : i. ii. iii.. Να παραγοντοποιήσετε και στη συνέχεια να απλοποιήσετε τις παρακάτω παραστάσεις, αφού πρώτα βρείτε τις τιμές του για τα οποίες ορίζονται. i. ii. iii. 9 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
22 ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα iv. 9 v. vi. vii. 9 viii. i.. i. ii. iii. 8 0 iv. 9 v. 9 7) )( ( ) )( ( vi. 8 vii.
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
Διαβάστε περισσότερα4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
Διαβάστε περισσότερα4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ
4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Για να λύσω μια κλασματική εξίσωση, δηλ. μια εξίσωση που έχει άγνωστο στον παρανομαστή, Βήμα : παραγοντοποιώ
Διαβάστε περισσότερα3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
Διαβάστε περισσότερα2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότερα2.3 Πολυωνυμικές Εξισώσεις
. Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (
Διαβάστε περισσότερα( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότεραΕξισώσεις πρώτου βαθμού
Εξίσωση ου βαθμού με ένα άγνωστο 0ρισμός Εξισώσεις πρώτου βαθμού Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή αχ=β λέγεται εξίσωση ου βαθμού με ένα άγνωστο. Σε μια εξίσωση η μεταβλητή λέγεται άγνωστος.οι
Διαβάστε περισσότεραΙγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότεραΕισαγωγή Το σύνολο αναφοράς και οι περιορισμοί
ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα
Διαβάστε περισσότερα4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ
5 ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙ ΑΝΙΣΩΣΕΩΝ ου ΒΑΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ Για να βρούμε το πρόσημο του τριωνύμου αχ +βχ+γ βρίκουμε την διακρίνουσα Δ=β - 4αγ και αν: Δ>0,το τριώνυμο έχει δυο ρίζες χ 1,χ και το προσημό
Διαβάστε περισσότεραΠολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές
0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)
Διαβάστε περισσότερα3.1 Εξισώσεις 1 ου Βαθμού
1 3.1 Εξισώσεις 1 ου Βαθμού 1. Να διερευνήσετε την εξίσωση. Ισχύει: Διακρίνουμε τώρα τις περιπτώσεις: Αν τότε: ΘΕΩΡΙΑ Απάντηση Επομένως, αν η εξίσωση έχει ακριβώς μία λύση, την. Αν, τότε η εξίσωση γίνεται,
Διαβάστε περισσότεραεξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες
Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο
Διαβάστε περισσότεραΑνισώσεις Γινόμενο και Ανισώσεις Πηλίκο
Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότερα3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ
ΚΕΦΑΛΑΙΟ Ο : ΤΡΙΓΩΝΟΜΕΤΡΙΑ. ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΟΞΕΙΑΣ ΓΩΝΙΑΣ έ _ ά ί ί _ ά ί έ _ ά ί _ ά ί _ ά έ _ ά ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΤΥΧΑΙΑΣ ΓΩΝΙΑΣ y y y όπου η απόσταση του
Διαβάστε περισσότεραΠ.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
Διαβάστε περισσότεραΕπίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
Διαβάστε περισσότεραΗ Θεωρία που πρέπει να θυμάσαι!!!... b a
Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b
Διαβάστε περισσότεραΚεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής
Διαβάστε περισσότεραΑνισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις
1 Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις Ανίσωση με έναν άγνωστο ονομάζουμε κάθε ανισότητα που περιέχει μια μεταβλητή και η οποία αληθεύει για ορισμένες τιμές της μεταβλητής. Πχ: Οι x + > 7, 2(y
Διαβάστε περισσότεραΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΠαραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
0 Παραγοντοποίηση Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ενότητα 4 η Ταυτότητες Παραγοντοποίηση Σκοπός Ο σκοπός της 4 η ενότητας είναι να αποκτήσουν την ικανότητα
Διαβάστε περισσότερα4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ
1 4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Ασκήσεις σχολικού βιβλίου σελίδας 1 14 A Οµάδας 1.i) Να λύσετε την εξίσωση 1 + = 1 Είναι = ( 1) Ε.Κ.Π = ( 1) 0 0 και 1 0 0 και 1 (περιορισµοί)
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότεραΜέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3
Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
Διαβάστε περισσότεραA N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
Διαβάστε περισσότερα3.4 3.5 ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ
ΚΕΦΑΛΑΙΟ Ο.. ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΜΕΘΟΔΟΛΟΓΙΑ : ΟΛΟΚΛΗΡΩΜΑΤΑ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Συμφώνα με το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Θ.Θ.Ο.Λ ισχύει : I. d II. d III. d ln IV. d V. d VI. d VII. d
Διαβάστε περισσότεραΕξισώσεις 2 ου βαθμού
Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Διαβάστε περισσότεραΠολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α
Διαβάστε περισσότεραΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότερα3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;
3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού; Βασικό! Το να έχεις τον άγνωστο x με εκθέτη 2 εξ αρχής στην εξίσωση, δεν είναι σίγουρο ότι θα δώσει εξίσωση δευτέρου βαθμού! Αυτό θα προκύψει μετά την εκτέλεση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΌταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε
Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι
Διαβάστε περισσότεραΑνισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο
Ανισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 4 391 ασκήσεις και τεχνικές σε 17 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 1 0 / 0 1 6 εκδόσεις
Διαβάστε περισσότερα) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις
4. Εξισώσεις 2ου βαθμού αx 2 + βx + γ = 0, α 0 α, β, γ παράμετροι και x η μεταβλητή Αν ρ ρίζα/λύση της εξίσωσης, τότε αρ 2 + βρ + γ = 0 Αν ρ 1, ρ 2 ρίζες/λύσεις της εξίσωσης, τότε το τριώνυμο γράφεται
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr
1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότεραΗ Έννοια της εξίσωσης:
Η Έννοια της εξίσωσης: Θεωρία και λυμένα παραδείγματα Εξίσωση με έναν άγνωστο λέμε μια ισότητα η οποία περιέχει αριθμούς και έναν άγνωστο γράμμα ( μεταβλητή). Εξισώσεις είναι οι: χ+=8, χ-21=4,χ+1, 8χ=26.
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότεραΤαυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"
Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)
Διαβάστε περισσότεραΓιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ
Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ του ορίου συνάρτησης όταν χ χ Για να έχει νόημα το όριο συνάρτησης f με πεδίο
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραAπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =
ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,
Διαβάστε περισσότερα4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού
1 Ανισώσεις 1 ου Βαθμού Ανισώσεις 1. Πρωτοάθμιες Ανισώσεις Επιλύονται όπως οι εξισώσεις με την διαφορά ότι, όταν πολλαπλασιάζω ή διαιρώ με αρνητικό αριθμό αλλάζει φορά η ανίσωση.. Υπενθύμιση α), ή, ) ή,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1
Διαβάστε περισσότερα4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού
Ανισώσεις ου Βαθμού Ανισώσεις. Πρωτοάθμιες Ανισώσεις Επιλύονται όπως οι εξισώσεις με την διαφορά ότι, όταν πολλαπλασιάζω ή διαιρώ με αρνητικό αριθμό αλλάζει φορά η ανίσωση.. Υπενθύμιση α) χ χ, ή χ, ) χ
Διαβάστε περισσότερα9.""Πώς"θα"λύσω"μια"κλασματική"ανίσωση;
3ο βήμα. (Δίνω την λύση της ανίσωσης από την τελευταία γραμμή της αριστερής στήλης του πίνακα (στήλη «Γινόμενο»)). Από τον πίνακα προκύπτει ότι x (,1) (2,3). 9.""Πώς"θα"λύσω"μια"κλασματική"ανίσωση; Πρώτο
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι
Διαβάστε περισσότεραΒασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Διαβάστε περισσότεραmath-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,
Διαβάστε περισσότερα2ο video (επίλυση ανίσωσης 1 ου βαθμού)
2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα
Διαβάστε περισσότερα1.1 ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ
. ΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Α. ΣΥΝΑΡΤΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P Q Q v P P ln P P P P, P P, Q P P Ποιο είναι το πεδίο ορισμού των
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΔ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ. ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ. Τελευταία ενημέρωση 16 Μαρτίου w w w. c o m m o n m a t h s. w e e b l y. c o m
Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου Τελευταία ενημέρωση 16 Μαρτίου 2016 ΒΑΘΜΟΥ w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους είναι
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΣχόλια στα όρια. Γενικά
Σχόλια στα όρια. Γενικά Η αναζήτηση του ορίου έχει νόημα όταν η συνάρτηση ορίζεται κοντά στο x, δηλαδή σε διάστημα (α,x ) (x,β) ή φυσικά σε (α,β) με x (α,β) και όχι κατ ανάγκη στο ίδιο το x. Για παράδειγμα
Διαβάστε περισσότεραΠολυώνυµα - Πολυωνυµικές εξισώσεις
4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ
ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΜ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η
Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη
Διαβάστε περισσότερα5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για
5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον
Διαβάστε περισσότεραg 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου
ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ή ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου Με τη φράση «πρόσημο τριωνύμου» δηλώνουμε τη μέθοδο με την οποία μπορούμε να γνωρίζουμε ποιο πρόσημο
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότερα1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής
Διαβάστε περισσότεραΠεριληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:
Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να
Διαβάστε περισσότερα2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Τελευταία ενημέρωση: 21 Φεβρουαρίου 2015 w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους
Διαβάστε περισσότεραΑ. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότερα5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι
Διαβάστε περισσότεραΠεριεχόμενα μεθόδευση του μαθήματος
Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότερατριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:
κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Διαβάστε περισσότερα