1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
|
|
- Θυώνη Αλαβάνος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( - ) = ( - )(-) + 7 =. Να υπολογίσετε την τιμή της παράστασης : A = : Να κάνετε τις πράξεις : Α 7 = + : :. Ποιοι από τους παρακάτω αριθμούς είναι ρητοί και ποιοι άρρητοι : α), β) π γ) δ),... Αν οι αριθμοί α, β+ είναι αντίθετοι και γ, δ αντίστροφοι να βρεθεί η αριθμητική παράσταση : Α = α + γ δ + β + + δ 6. Αν α,β οι διαστάσεις ενός ορθογωνίου με εμβαδόν ίσο με 0m και γ, δ οι διαστάσεις ενός άλλου ορθογωνίου με περίμετρο ίση με 8m να υπολογιστεί αριθμητική παράσταση Α = γ + δ α + 0 β δ + 0 β Να βρείτε τις θετικές τιμές του ακεραίου k ώστε ο αριθμός Α = να είναι ακέραιος k + 8. Να γράψετε δίπλα από κάθε πρόταση αν είναι σωστή (Σ) και αν είναι λάθος (Λ). α) Ο είναι φυσικός, β) Το είναι πραγματικός, γ) Το είναι άρρητος, δ) Ο, είναι ρητός, ε) Ο 0 είναι ακέραιος 9. Να βρείτε την τιμή της παράστασης : A = ( α + β ) + ( α β ) ( α β + ) + αν α + β = 0. ***Να υπολογίσετε την παράσταση :, 6 + : ( : + 0,) Α = ( 0, 8 ): +
2 . *Να βρείτε τον αντίστροφο και τον αντίθετο του αριθμού : α = + 6 Τηλ /0600. **Αν α,β είναι οι διαστάσεις ενός ορθογωνίου που έχει περίμετρο 8 και x,y οι διαστάσεις ενός άλλου ορθογωνίου με περίμετρο 0 να υπολογίσετε την παράσταση : Α = ( x) (7 y) α. ***Να υπολογίσετε τις παραστάσεις : 9 7 :( 7 ) α), β) : 7 99: : 0 β. ***Βρείτε ποιοι από τους παρακάτω αριθμούς είναι ρητοί και ποιοι άρρητοι :,,, 7,,, π, 7,...,, *Να βρείτε τον αντίστροφο και τον αντίθετο του αριθμού : α = **Αν α,β είναι οι διαστάσεις ενός ορθογωνίου που έχει περίμετρο 8 και x,y οι διαστάσεις ενός άλλου ορθογωνίου με περίμετρο 0 να υπολογίσετε την παράσταση : Α = ( x) (7 y) α β Β. Δυνάμεις πραγματικών αριθμών 7. Να συμπληρωθεί το τετράγωνο ώστε κάθε στήλη, γραμμή και διαγώνιος του, να έχει το ίδιο γινόμενο Να γράψετε καθεμία από τις παρακάτω παραστάσεις ως μια δύναμη : Α = B = Γ = = Α = x = 9. Να λυθεί η εξίσωση : ν ν + 0. Να υπολογίσετε την τιμή της παράστασης : 0 Α = + ( ) ( ) + ( 990) +
3 Τηλ /0600. Να εφαρμόσετε ιδιότητες των δυνάμεων για να γράψετε με απλούστερη μορφή τις παραστάσεις : Α = x ψ x ψ ( α β γ ) B =, αν α β γ 0 9 α β γ. Να υπολογίσετε το x σε καθεμία από τις ισότητες : ( i) x x+ = 7 ii iii 7 iv 6 x x+ = 8 x x- = 8 =. Αφού γράψετε τον κάθε αριθμό στην τυποποιημένη του μορφή, να κάνετε πράξεις και να εκφράσετε το αποτέλεσμα της παράστασης : Α = 000 0, Να γίνει μια δύναμη με βάση ρητό η παράσταση :. **Να υπολογιστεί η παράσταση : Α = ( y x) ω( x + y) Όταν γνωρίζουμε ότι : x = ( ) :( ) y = ( 0) :( ) ω = :( 9) 9 : 0, στην τυποποιηµένη µορφή α β ν ν β α κ κ, µε α β 0 6. ***Να κάνετε τις πράξεις : ( x ) ( x x ) x x x : 7. ***Αν ν ένας ακέραιος αριθμός να αποδείξετε ότι : 8. *****Πόσα μηδενικά έχουν οι αριθμοί : 9. A = 0 00 Β = 000, ( ) + = 0 + v+ ( ) ( ) v v v ( )
4 Τηλ /0600 Γ. Τετραγωνική ρίζα πραγματικού αριθμού 0. Ποιος από τους παρακάτω αριθμούς είναι διαφορετικός : α),,,, β) 8, 7, 8, 6,, 6. Ποιοι από τους παρακάτω αριθμούς είναι ίσοι : i) α = 8, β =, γ =, δ =, ε =, στ = i) α = +, β =, γ =, δ = +, ε = 7. Να υπολογιστεί η τιμή των παραστάσεων : Α = Β = Να υπολογιστούν οι ρίζες : = = = = =. Να βρεθεί πλευρά τετραγώνου που έχει εμβαδόν ίσο με το εμβαδόν κύκλου ακτίνας r= 0cm. ***Να αποδείξετε ότι : α β = α β,όπου α 0 και β 0 6. Ποιος από τους παρακάτω αριθμούς είναι διαφορετικός από τους άλλους: 0,,,, 0 7. Να κάνετε την πρόσθεση και να φέρετε σε μορφή ρίζας την αριθμητική παράσταση :
5 8. Να αποδείξετε ότι : 6 + = 6 9. Να υπολογίσετε την τιμή της παράστασης: 7 A = Αν a = 0 να υπολογίσετε ως συνάρτηση του α τους αριθμούς : :0, 000, 0, Τηλ /0600. **Να απλοποιήσετε τις παραστάσεις : α) β) α x β y α x : β y. Να υπολογιστεί η τιμή της παράστασης : 0, Να υπολογίσετε τις παραστάσεις : 9000, 0,0009, 0, 8 0,,6 0-0,8 0,9. Να αποδείξετε ότι ο αριθμός Α είναι ακέραιος : Α = **** Να υπολογίσετε την παράσταση : Α = + 6. ***Να μετατρέψετε τα κλάσματα ώστε να έχουν ρητό παρονομαστή : Α = 6 Β = ****Να γράψετε τις παρακάτω παραστάσεις χωρίς το σύμβολο της ρίζας : y 9 x,, x, 8. Αν τα τετράγωνα ΒΓΔΘ και ΘΗΖΕ έχουν εμβαδόν 7cm και cm αντίστοιχα, να βρείτε το εμβαδόν του τετραγώνου ΑΒΗΔ
6 ΑΣΚΗΣΕΙΣ στα ΜΟΝΩΝΥΜΑ 9. Να προσδιορίσετε την τιμή του φυσικού αριθμού ν,ώστε το μονώνυμο Α) Να είναι μηδενικού βαθμού ως προς x Β) Να είναι έβδομου βαθμού ως προς x,y Γ) Να έχει αριθμητική τιμή 60 για x=y= Τηλ /0600 x y ν ν + 0. Να βρείτε για ποιες τιμές των φυσικών αριθμών μ και ν είναι όμοια τα μονώνυμα : ν + α) x και x β) 6 x y και x y γ) ν + µ x y και yx µ ν 6+ µ. Να βρείτε μια αλγεβρική παράσταση που να παριστάνει : Α) Την ακτίνα του κύκλου C Β) Την ακτίνα του κύκλου C Γ) Την ακτίνα του κύκλου C C C C. Να κάνετε τις πράξεις : Α) x i x 7 Β) xy ω + xy ω xy ω ( 60x ω) i Γ) ) Ε) ( x ) : ( x ) ΣΤ) (-βω ) 6 : βω - α β γ : α γ µ µ x x x x ( ω : ω ) ( ω : ω ) Η) xyω ( xy ω) x y ω i : Θ) α βγ ( αβ γ ) i 9 α β γ : 6
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΚεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ
1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός
Διαβάστε περισσότεραΑσκήσεις. ι) α α ιι) α α ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ
ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ Ασκήσεις ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μικρότερη ή ίση του. ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μεγαλύτερη του. ) Η απόσταση δύο
Διαβάστε περισσότεραΜονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν
Διαβάστε περισσότεραΤις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών.
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Ερωτήσεις «Σωστού - Λάθους» 1) Για όλους τους πραγματικούς α, β ισχύει: ( ) ( ) 3 3 ) Για όλους τους
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΝα γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότεραΝα υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.
Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
Διαβάστε περισσότεραΑ σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών
Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει
Διαβάστε περισσότερα1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ
ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Διαβάστε περισσότεραΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΜ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 51 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Πολυώνυμα Όπως είδαμε στην προηγούμενη ενότητα Το άθροισμα όμοιων μονώνυμων είναι ένα μονώνυμο όμοιο
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ
Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ - Πράξεις ρητών
1 ΑΣΚΗΣΕΙΣ - Πράξεις ρητών 1. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 5 7 ii. 8 6 iii. 6 4 iv. 9 5 v. 15 15 vi. 17 0 vii. 0 15 viii. 13 14 ix. 12 16 2. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 6,35
Διαβάστε περισσότερα1.5 Αξιοσημείωτες Ταυτότητες
1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις-Μονώνυμα
ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Β Αλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές στην προσπάθειά μας να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν μόνο
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ
ΥΜΝΑΣΙΟ ΑΙΟΥ ΒΑΣΙΕΙΟΥ ΣΧΟΙΚΗ ΧΡΟΝΙΑ 2016 2017 Βαθμός αριθμητικώς:. =. 100 20 Ολογράφως: Υπογραφή Καθηγητή/τριας: ΡΑΠΤΕΣ ΠΡΟΑΩΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2017 Μάθημα: Μαθηματικά Τάξη: B Ημερομηνία: 31
Διαβάστε περισσότεραΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Διαβάστε περισσότεραΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Διαβάστε περισσότεραΆλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Διαβάστε περισσότεραAπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
Διαβάστε περισσότερα1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΜαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των
Διαβάστε περισσότερα2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Διαβάστε περισσότερααπλοποιείται, γιατί οι όροι της είναι γινόμενα και έχουν κοινό παράγοντα το xy. Αν διαιρέσουμε και τους δύο όρους με τον κοινό παράγοντα,
ΜΕΡΟΣ Α 9 ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 9 ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Ρητές αλγεβρικές παραστάσεις Μια αλγεβρική παράσταση με την μορφή κλάσματος που οι όροι του είναι πολυώνυμα λέγεται ρητή αλγεβρική
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.2 Μονώνυμα-Πράξεις με Μονώνυμα 1 1.2 Μονώνυμα-Πράξεις με Μονώνυμα Α Άλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές για να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότερα8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.
Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότερα1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
Διαβάστε περισσότερα3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ). i)
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΡΙΖΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ), 0 i Αν αβ 0 τότε Αν β 0 τότε Αν α 0 τότε v Αν α 0 τότε v Αν α 0 τότε
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Διαβάστε περισσότεραΑ Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότεραΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)
1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) α) Για την εξίσωση 6x 3x 1 0 ισχύει α = 3, β = -6, γ = 1 β) Η εξίσωση 3 0 δέχεται σαν λύση τον αριθμό. x 3x 3 ιι) Να συμπληρώσετε
Διαβάστε περισσότεραΝα αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη
Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς
Διαβάστε περισσότεραβ) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΚάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.
ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Διαβάστε περισσότερα1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότερα2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Διαβάστε περισσότεραΦ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότερα7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΚ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί
Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Διαβάστε περισσότεραΒ Γυμνασίου. Θέματα Εξετάσεων
υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx
Διαβάστε περισσότεραΡητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΜαθημαηικά Γ Γυμμαζίου
Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις
Διαβάστε περισσότεραΑλγεβρικές παραστάσεις
Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0
Διαβάστε περισσότεραR={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
Διαβάστε περισσότεραΘέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ
Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε
Διαβάστε περισσότεραΤάξη Τμήμα Διάρκεια: δ. ώρα/ες. Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών. Ποιοι τετράγωνοι αριθμοί υπάρχουν μέχρι το 100;
Φύλλο εργασίας Τάξη Τμήμα Διάρκεια: δ. ώρα/ες Ημερομηνία / / Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών Ομάδα 1 η Δραστηριότητα 1.1 Θυμάστε τους τετράγωνους αριθμούς; Ποιοι τετράγωνοι αριθμοί
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότερα