Μαθηματική Λογική και Λογικός Προγραμματισμός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μαθηματική Λογική και Λογικός Προγραμματισμός"

Transcript

1 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός

2 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Page 2 Σχεσιακή Λογική Ή Κατηγορηματική Λογική ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

3 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Προτασιακή Λογική Page 3 Οι σταθερές αναφέρονται σε ατομικές προτάσεις βρεχει χιονίζει υγρο Σύνθετες προτάσεις δηλώνουν σχέσεις μεταξύ των σταθερών (προτάσεων) βρεχει χιονίζει υγρο Γεώργιος Βούρος

4 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Σχεσιακή Λογική Page 4 Οι σταθερές αναφέρονται σε αντικείμενα και σε σχέσεις μεταξύ αυτών νικος, μαιρη, γιωργος, αγαπαει, ευτυχισμενος Απλές προτάσεις εκφράζουν σχέσεις μεταξύ αντικειμένων αγαπαει(νικος, μαιρη) Σύνθετες προτάσεις δηλώνουν σχέσεις μεταξύ σχέσεων αγαπαει(χ,ψ) αγαπαει(ψ,χ) αγαπαει(χ,ψ) αγαπαει(ψ,χ) ευτυχισμενος(χ) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

5 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Δομή της Παρουσίασης Page 5 Συντακτικό και Άτυπη Σημασιολογία της Σχεσιακής Λογικής Τυπική Σημασιολογία Μεθοδος Herbrand Αποδεικτική μέθοδος Εννοποίηση Σχεσιακή μέθοδος της Επίλυσης Εφαρμογές Στρατηγικές Γεώργιος Βούρος

6 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Λέξεις Page 6 Οι μεταβλητές ξεκινούν πάντοτε με κεφαλαίο γράμμα Α,Β,Υ,Χ,Ψ,Ζ Οι σταθερές ξεκινούν με ψηφία ή με χαρακτήρες που αντιστοιχουν σε πεζα γράμματα α,β,γ,μαιρη, γιωργος,1,2,3... ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

7 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Σταθερές Page 7 Σταθερές οντοτήτων αναφέρονται σε οντότητες του «σύμπαντος» Συναρτησιακές σταθερές παριστούν συναρτήσεις πατερας1, μητερα1, ηλικια1, συν2, επι2 Σχεσιακές σταθερές παριστούν σχέσεις μεταξυ οντοτητων προσωπο1, ευτυχισμενος1, γονεας2, αγαπαει2 Δεν υπάρχει συντακτική διάκριση μεταξύ σταθερών οντοτήτων, συναρτησιακών σταθερών και σχεσιακών σταθερών. Ο τύπος κάθε τέτοιας λέξης καθορίζεται από τα συμφραζόμενα. Γεώργιος Βούρος

8 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Οροι Page 8 Ενας όρος είναι είτε μεταβλητή, είτε σταθερά οντοτήτων, ή συναρτησιακός όρος. Οι όροι αναφέρονται σε στοιχεία του «σύμπαντος» Οι όροι είναι ανάλογοι με τις ονοματικές φράσεις στη φυσική γλώσσα. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

9 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Συναρτησιακοί όροι Ένας συναρτησιακός όρος είναι μια έκφραση που σχηματίζεται από μια συναρτησιακή σταθερά βαθμού ν και ν όρους που περιέχονται σε παρενθέσεις και χωρίζονται με κόμα. πατερας(γιωργος) πατερας(νικος) συν(χ,2) Page 9 Συναρτησιακοί όροι είναι όροι, και ως τέτοιοι μπορούν να εμφωλιάζονται σε άλλους συναρτησιακούς όρους συν( ηλικια(πατερας(γιωργος)) ηλικια(μητερας(νικος))) Γεώργιος Βούρος

10 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Λογικές Προτάσεις Οι λογικές προτάσεις στη σχεσιακή λογική είναι ανάλογες αυτών στην προτασιακή λογική. Page 10 αγαπαει(νικος, μαρια) (αγαπαει(νικος, μπεττυ) αγαπαει(μπεττυ,νικος)) (αγαπαει(νικος, μπεττυ) αγαπαει(μπεττυ,νικος)) αγαπαει(χ,ψ) αγαπαει(ψ,χ) αγαπαει(χ,ψ) αγαπαει(ψ,χ) Οι κανόνες σε ότι αφορά τις παρενθέσεις είναι οι ίδιοι με την προτασιακή λογική. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

11 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Προτάσεις στη Σχεσιακή Λογική Μια πρόταση στη σχεσιακή λογική είναι μια έκφραση που σχηματίζεται από σχεσιακή σταθερά βαθμού ν και ν όρους που περιέχονται σε παρενθέσεις και χωρίζοντα από κόμα. Page 11 ευτυχισμενος(νικος) αγαπαει(νικος, μαρια) Οι προτάσεις δεν είναι όροι και επομένως δεν μπορούν να εμφωλιάζονται σε άλλες προτάσεις. Γεώργιος Βούρος

12 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Ποσοτικά προσδιορισμένες προτάσεις Page 12 Οι ποσοτικά προσδιορισμένες προτάσεις (αυτές που περιέχουν ποσοδείκτες και ) μπορούν να συνδυαστούν με άλλες προτάσεις Χ. μηλο(χ) Χ. βερυκοκο(χ) Χ. Ψ. αγαπαει(χ,ψ) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

13 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Συντακτικός Έλεγχος Σταθερές οντοτήτων: νικος, μαρια, τασος, 1,2,... Page 13 Συναρτησιακές σταθερές: πατερας1, μητερα1, ηλικια1, συν2, επι2 Σχεσιακές σταθερές: προσωπο1, ευτυχισμένος1, γονεας2, αγαπαει2, αβ2 αβ(πατερας(νικος), μητερα(νικος)) συν(πατερας(τασος), μαρια) ευτυχισμενος(πατερας(μαρια)) αγαπαει(χ,ψ) αγαπαει(ψ,χ) Γεώργιος Βούρος

14 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Συντακτικό σε ενθεματική μορφή συν(2,3) 2+3 Page 14 πλην(3,2) 3-2 επι(2,3) 2Χ3 ενωση(σ,τ) σ τ τομη(σ,τ) σ τ μελος(α,β) α β... ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

15 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Προτεραιότητα τελεστών + - = < > Page 15 Γεώργιος Βούρος

16 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Μανιτάρια Σχεσιακές σταθερές: μανιtαρι, μπλε, δηλητηριωδες Page 16 Τα μπλε μανιταρια ειναι δηλητηριωδη Αν κατι ειναι μπλε μανιταρι, τοτε ειναι δηλητηριωδες Αν κατι ειναι μανιταρι και μπλε, τότε είναι δηλητηριώδες Χ. (μανιταρι(χ) μπλε(χ) δηλητηριωδες(χ)) Κανένα μπλε μανιταρι δεν ειναι δηλητηριώδες Δεν υπάρχει κάτι που να είναι μπλε και μανιταρι και δηλητηριωδες Χ. (μανιταρι(χ) μπλε(χ) δηλητηριωδες(χ)) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

17 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Περισσότερα... Μανιτάρια Σχεσιακές σταθερές: μανιταρι, μπλε, δηλητηριωδες Page 17 Ένα μανιταρι ειναι δηλητηριωδες μόνο αν είναι μπλε Αν κατι ειναι μανιταρι, είναι δηλητηριωδες, μόνο αν ειναι μπλε Αν κατι ειναι μανιταρι, και είναι δηλητηριωδες, τότε ειναι μπλε Χ. (μανιταρι(χ) δηλητηριωδες(χ) μπλε(χ)) Ένα μανιταρι δεν ειναι δηλητηριωδες εκτός αν είναι μπλε Αν κατι ειναι μανιταρι, δεν είναι δηλητηριωδες, αν δεν ειναι μπλε Αν κατι ειναι μανιταρι, και είναι δηλητηριωδες, τότε ειναι μπλε Χ. (μανιταρι(χ) δηλητηριωδες(χ) μπλε(χ)) Γεώργιος Βούρος

18 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Διαπροσωπικές Σχέσεις Σταθερές οντοτήτων : μιχαλης, μαρια Page 18 Σχεσιακη σταθερά: αγαπαει Όλοι αγαπούν τη Μαρια Χ. αγαπαει(χ,μαρια) Η Μαρια αγαπάει οποιονδήποτε την αγαπάει Χ. αγαπαει(χ,μαρια) αγαπαει(μαρια,χ) Κανένας δεν αγαπάει τη Μαρία Χ. αγαπαει(χ,μαρια) ή Χ. αγαπαει(χ,μαρια) Κανένας που αγαπάει τη Μαρία δεν αγαπάει το Μιχάλη Χ. (αγαπαει(χ,μαρια) αγαπαει(χ, μιχαλης)) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

19 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Περισσότερες... Διαπροσωπικές Σχέσεις Σταθερές οντοτήτων : μιχαλης, μαρια Page 19 Σχεσιακη σταθερά: αγαπαει Όλοι αγαπούν κάποιον Χ. Ψ. αγαπαει(χ,ψ) Υπάρχει κάποιος που όλοι τον αγαπούν Ψ. Χ. αγαπαει(χ,ψ) Γεώργιος Βούρος

20 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Δυαδικά Δέντρα Αναπαράσταση ως όρος Page 20 ζευγος(ζευγος(α,β)), ζευγος(γ,δ)) α β γ δ Αξιώματα περιεχει(χ,χ) περιεχει(χ,υ) περιεχει(χ,ζ) περεχει(χ, ζευγος(υ,ζ)) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

21 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Παράδειγμα [α,β,γ,δ] Λίστες Μεταβλητού Μήκους Page 21 Αναπαράσταση ως όρος.(α,.(β,.(γ,.(δ,nil)))) Γλώσσα Σταθερά οντοτήτων nil Συναρτησιακή Σταθερά.2 Σχεσιακή Σταθερά μελος Αξιώματα μελος(χ,.(χ,υ)) μελος(χ,ζ) μελος(χ,.(υ,ζ)) Γεώργιος Βούρος

22 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Ειδικές Περιπτώσεις Σχεσιακής Λογικής Καθορισμένη Λογική Οχι μεταβλητές, οχι συναρτήσεις, οχι ποσοδείκτες Page 22 Καθολική Λογική Οχι συναρτήσεις, οχι ποσοδείκτες Οι ελεύθερες μεταβλητές θεωρούνται έμμεσα καθορισμένες με καθολικούς ποσοδείκτες Υπαρξιακή Λογική Οχι συναρτήσεις Συναστησιακή Λογική Οχι ποσοδείκτες. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

23 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Περιορισμοί της Καθορισμένης Λογικής Ο καθένας τους αγαπάει όλους αγαπαει(νικος,μαρια), αγαπαει(νικος,μπεττυ), αγαπαει(γιαννης,μαρια), αγαπαει(γιαννης,μπεττυ), αγαπαει(μπεττυ,μαρια),... Το άθροισμα δυο φυσικων αριθμών είναι μεγαλύτερος από τον καθένα από τους δύο 1+1>1 1+2>1 1+2>2... Τι γίνεται αν πρόκειται για τους πραγματικούς αριθμούς; Page 23 Γεώργιος Βούρος

24 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Περιορισμοί της Καθολικής Λογικής Page 24 Για κάθε αριθμό υπάρχει ένας αριθμός που είναι μεγαλύτερος από αυτόν. Καθολική Λογική Χ<Ψ ΟΧΙ (εκφράζει ότι για κάθε Χ και Ψ ισχύει η σχέση)! Χ<α ΟΧΙ (εκφράζει ότι για κάθε Χ και μια σεθερά α ισχύει η σχέση)! Υπαρξιακή Λογική Χ. Ψ. Χ<Υ Συναρτησιακή Λογική Χ < f(χ) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

25 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Υπαρξιακοί και Καθολικοί Ποσοδείκτες Page 25 Έστω ότι Χ.π(Χ) είναι αληθές.αυτό ισχύει, Ανν π(χ) είναι αληθές για κάποιο Χ Ανν π(χ) είναι ψευδές για κάποιο Χ Ανν π(χ) είναι δεν είναι αληθές για κάποιο Χ Ανν δεν είναι αληθές ότι το π(χ) είναι αληθές για όλα τα Χ Ανν Χ. π(χ) δεν είναι αληθές Ανν Χ. π(χ) είναι ψευδές Ανν Χ. π(χ) είναι αληθές Γενικά Χ.φ είναι ισοδύναμο με Χ. φ Γεώργιος Βούρος

26 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Ανάγκη για Ποσοδείκτες Αφού το Χ.φ(Χ) είναι ισοδύναμο με το Χ. φ(χ) και φ(χ) στη καθολική λογική είναι ισοδύναμο με το Χ. φ(χ), γιατί να μη μπορούμε να δηλώσουμε την ύπαρξη οντοτήτων στην καθολική λογική μέσω της άρνησης; Παράδειγμα: Πως μπορούμε να πούμε ότι κάποιος αγαπάει το Μιχάλη μισει(χ,υ) αγαπαει(χ,υ) μισει(χ, Μιχαλη) Page 26 Τι θέλουμενα πούμε: Χ. μισει(χ, Μιχαλης) Τι έχουμε δηλώσει: Χ. μισει(χ, Μιχαλης) Αυτό λέει ότι κανένας δεν μισεί το Μιχάλη, δηλαδή ότι όλοι τον αγαπούν. Στην Καθολική Λογική οι ποσοδείκτες δεν δίνονται άμεσα και επομένως σε αυτούς δεν μπορούμε να εφαρμόσουμε την άρνηση. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

27 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Υπαρξιακοί Ποσοδείκτες και Συναρτήσεις Οι συναρτήσεις μπορούν να αντικατασταθούν από υπαρξιακούς ποσοδείκτες Page 27 αγαπαει(χ, f(x)) Υ. αγαπαει(χ,υ) Οι υπαρξιακοί ποσοδείκτες μπορούν να αντικατασταθούν από συναρτήσεις Υ. αγαπαει(χ,υ) αγαπαει(χ, f(x)) Θεώρημα: Μια υπαρξιακή πρόταση είναι ικανοποιήσιμη αν και μόνο αν η αντίστοιχη συναρτησιακή πρόταση είναι ικανοποιήσιμη. Γεώργιος Βούρος

28 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Page 28 Σημασιολογία στη Σχεσιακή Λογική ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

29 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Σημασιολογία στη Προτασιακή Λογική Page 29 Μια πρόταση είναι ταυτολογία αν και μόνο αν ικανοποιείται υπό οποιαδήποτε ερμηνεία. Μια πρόταση είναι ικανοποιήσιμη αν και μόνο αν υπάρχει ερμηνεία που την ικανοποιεί. Μια πρόταση είναι μη-ικανοποιήσιμη αν και μόνο αν δεν υπάρχει ερμηνεία που να την ικανοποιεί. Από ενα σύνολο υποθέσεων Δ συνεπάγεται λογικά το συμπέρασμα φ αν και μόνο αν κάθε ερμηνεία που ικανοποιεί τις υποθέσεις ικανοποιεί και το συμπέρασμα. Μια επμηνεία στην προτασιακή λογική είναι μια απεικόνιση από προτασιακές σταθερές στις τιμές αληθείας Τ, F. Γεώργιος Βούρος

30 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Σημασιολογία στη Σχεσιακή Λογική Μια πρόταση είναι ταυτολογία αν και μόνο αν ικανοποιείται υπό οποιαδήποτε ερμηνεία. Μια πρόταση είναι ικανοποιήσιμη αν και μόνο αν υπάρχει ερμηνεία που την ικανοποιεί. Μια πρόταση είναι μη-ικανοποιήσιμη αν και μόνο αν δεν υπάρχει ερμηνεία που να την ικανοποιεί. Page 30 Από ενα σύνολο υποθέσεων Δ συνεπάγεται λογικά το συμπέρασμα φ αν και μόνο αν κάθε ερμηνεία που ικανοποιεί τις υποθέσεις ικανοποιεί και το συμπέρασμα. Ερώτηση: Τι είναι ερμηνεία στη σχεσιακή λογική; Δεν υπάρχουν προτασιακές σταθερές, αλλά σταθερές οντοτήτων, σχεσιακές σταθερές και συναρτησιακές σταθερές. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

31 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Δομή της Παρουσίασης Page 31 Εννοιολογική μορφοποίηση του σύμπαντος Μοντελοποίηση του σύμπαντος με βάση τα αντικείμενα και τις σχέσεις Μοντελοποίηση του σύμπαντος με τη μορφή γραφήματος Μοντελοποίηση του κόσμου με τη μορφή βάσης δεδομένων Σημασιολογία της Σχεσιακής Λογικής Ατομικές προτάσεις Λογικές-Σύνθετες προτάσεις Προτάσεις με ποσοδείκτες Γενικά σχόλια Οντολογικά θέματα Ο ρόλος της λογικής Γεώργιος Βούρος

32 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Σύμπαν Page 32 Το σύμπαν είναι το σύνολο των αντικειμένων για τα οποία θέλουμενα δηλώσουμε κάτι. Πρωταρχικά αντικείμενα quark Σύνθετα αντικείμενα μηχανή, αυτοκίνητο Πραγματικά αντικείμενα Φανταστικά αντικείμενα ήλιος, Μιχάλης Sherlock Holmes Φυσικά αντικειμενα γή, ωκεανός Αφηρειμενα εντικείμενα δικαιοσύνη ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

33 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Κόσμος των κύβων Page 33 Γεώργιος Βούρος

34 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Σύμπαν Page 34 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

35 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Κύβοι Άλλα Σύμπαντα Page 35 Στοίβες Κομάτια Γεώργιος Βούρος

36 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Σχέσεις Σχέση είναι ένα σύνολο από αντικείμενα ή σύνολο ν-άδων αντικειμένων που δηλώνουν μια συγκεκριμένη ιδιότητα ή συσχέτιση. Page 36 Παραδείγματα: Καθαρό αληθεύει αν ενας κύβος δεν έχει κανένα κύβο από επάνω του Τραπέζι αληθεύει αν ένας κύβος ακουμπάει στο τραπέζι Επάνω αληθεύει για δύο κύβους όπου ένας κύβος είναι πάνω στον άλλο Απο_επάνω αληθεύει για δυο κύβους, αν ο ένας είναι κάπου πάνω από τον άλλο Απο_κάτω - αληθεύει για δυο κύβους, αν ο ένας είναι κάπου κάτω από τον άλλο Στοίβα αληθεύει για τρεις κύβους αν σχηματίζουν μια στοίβα. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

37 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Εννοιολογική μορφοποίηση με τη μορφή γραφημάτων Page 37 α δ β ε γ Γεώργιος Βούρος

38 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Εννοιολογική μορφοποίηση με τη μορφή γραφημάτων Page 38 α επάνω επάνω β επάνω δ ε γ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

39 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Εννοιολογική μορφοποίηση με τη μορφή γραφημάτων Page 39 καθαρό α καθαρό δ επάνω επάνω β στοίβα τραπέζι επάνω ε τραπέζι γ Γεώργιος Βούρος

40 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Εννοιολογική μορφοποίηση ως βάση δεδομένων Page 40 Μια βάση δεδομένων είναι ένα σύνολο από καλά καθορισμένες, ατομικές προτάσεις όπου όλα τα ορίσματα είναι σταθερές. {καθαρο(α), καθαρό(δ), τραπέζι(ε), τραπέζι(γ), επάνω(α,β), επάνω(β,γ), επάνω(δ,γ), στοίβα(α,δ,γ)} ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

41 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Εννοιολογική μορφοποίηση ως βάση δεδομένων Μια βάση δεδομένων μπορεί να παρασταθεί και ως γράφημα, όπου κάθε πρόταση αντιστοιχεί και σε μια ακμή του γραφήματος. Page 41 καθαρό επάνω επάνω α β στοίβα καθαρό τραπέζι επάνω δ ε τραπέζι γ {καθαρο(α), καθαρο(δ), τραπεζι(ε), τραπεζι(γ), επανω(α,β), επανω(β,γ), επανω(δ,γ), στοιβα(α,δ,γ)} Γεώργιος Βούρος

42 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Δομή της Παρουσίασης Page 42 Εννοιολογική μορφοποίηση του σύμπαντος Μοντελοποίηση του σύμπαντος με βάση τα αντικείμενα και τις σχέσεις Μοντελοποίηση του σύμπαντος με τη μορφή γραφήματος Μοντελοποίηση του κόσμου με τη μορφή βάσης δεδομένων Σημασιολογία της Σχεσιακής Λογικής Ατομικές προτάσεις Λογικές προτάσεις Προτάσεις με ποσοδείκτες Γενικά σχόλια Οντολογικά θέματα Ο ρόλος της λογικής ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

43 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Γραφήματα/βάσεις δεδομένων ως Ερμηνείες Page 43 Ορίζουμε μια ερμηνεία ως ένα γράφημα με εττικέτες, ή ως μια βάση δεδομένων που αντιστοιχεί στο γράφημα αυτό. Για πολλούς είναι ευκολότερο να θεωρούν την ερμηνεία ως γράφημα. Η σημασιολογία είναι απλούστερη όταν ορίζεται ως μια βάση δεδομένων Πάντως και οι δύο θεωρήσεις είναι ισοδύναμες. Γεώργιος Βούρος

44 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Στιγμιότυπα Στιγμιότυπο μιας πρότασης που δεν περιέχει συναρτήσεις, σε σχέση με μια ερμηνεία, είναι μια πρόταση που προκύπτει από τη συνεπή αντικατάσταση κάθε ελεύθερης μεταβλητής με την εττικέτα ενός κόμβου του γραφήματος. Page 44 π(α,β) τ(α,β,γ) π(α,α) τ(α,β,γ) Σημειώστε ότι δεν αντικαθιστούμε μεταβλητές που είναι προσδιορισμένες. Α. Β. Π(Χ,Α,Β) Α. Β. Π(α,Α,Β) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

45 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Ατομικές Προτάσεις Page 45 Μια καθορισμένη ατομική πρόταση είναι αληθής υπό μια ερμηνεία αν και μόνο αν η πρόταση αυτή είναι μέλος της βάσης δεδομένων. Ερμηνεία/βάση δεδομένων {καθαρο(α), καθαρο(δ), τραπεζι(ε), τραπεζι(γ), επανω(α,β), επανω(β,γ), επανω(δ,γ), στοιβα(α,δ,γ)} Αληθές Ψευδες Καθαρο(α) καθαρό(β) Καθαρό(δ) καθαρό(γ) καθαρό(ε) Γεώργιος Βούρος

46 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Λογικές προτάσεις Page 46 Μια άρνηση είναι αληθής αν και μόνο αν ο στόχος της άρνησης είναι ψευδής Μια σύζευξη είναι αληθής αν και μόνο αν κάθε όρος της σύζευξης είναι αληθής Μια διάζευξη είναι αληθής αν και μόνο αν κάποιος όρος της διάζευξης είναι αληθής. Μια συνεπαγωγή είναι αληθής αν και μόνο αν η υπόθεση είναι ψευδής ή το συμπέρασμα είναι αληθές. Μια ισοδυναμία είναι αληθής αν και μόνο αν και οι δύο όροι της ισοδυναμίας έχουν την ίδια τιμή αληθείας. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

47 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Προτάσεις με ποσοδείκτες Μια καθολικά προσδιορισμένη πρόταση είναι αληθής αν και μόνο αν κάθε στιγμιότυπό της είναι αληθές. Μια υπαρξιακά προσδιορισμένη πρόταση είναι αληθής αν και μόνο αν υπάρχει ένα στιγμιότυπο της που είναι αληθές. Page 47 Ερμηνεία/βάση δεδομένων {καθαρο(α), καθαρο(δ), τραπεζι(ε), τραπεζι(γ), επανω(α,β), επανω(β,γ), επανω(δ,γ), στοιβα(α,δ,γ)} Αληθές Ψευδές Χ. (επάνω(χ,υ) επάνω(υ,χ)) Χ επάνω(χ,υ) Χ. καθαρό(χ) Χ. τραπέζι(χ) καθαρό(χ) Γεώργιος Βούρος

48 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Ανοικτές Προτάσεις Οι παραπάνω ορισμοί εφαρμόζονται σε κλειστές προτάσεις (δηλαδή σε προτάσεις δίχως ελεύθερες μεταβλητές) Page 48 Μια ερμηνεία αποτελεί μοντέλο μιας ανοικτής πρότασης αν και μόνο αν κάθε στιγμιότυπο της πρότασης αυτής ικανοποιείται σε σχέση με αυτή την ερμηνεία. Αληθές Ψευδές (επάνω(χ,υ) επάνω(υ,χ)) επάνω(χ,υ) Το παραπάνω απλώς δηλώνει ότι οι ελεύθερες μεταβλητές είναι προσδιορισμένες καθολικά ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

49 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Προσέξτε τα παρακάτω: Page x.p(x) p(x) H πρόταση αυτή είναι Ταυτολογία. Είναι στιγμιότυπο του αξιώματος UI 2. p(x) x.p(x) H πρόταση αυτή είναι Ικανοποιήσιμη. Αυτό ίσως να σας ξαφνιάσει. Θυμηθείτε ότι για να είναι μια πρόταση ταυτολογία θα πρέπει να είναι αληθής υπό οποιαδήποτε ερμηνεία (όλες οι ερμηνείες είναι μοντέλα): Έστω το σύμπαν {0, 1} και μια ερμηνεία για το p τέτοια ώστε μόνο το p(0) να είναι αληθές. Τότε για x = 0 η συνθήκη είναι αληθής αλλά το συμπέρασμα της συνεπαγωγής ψευδές. Γεώργιος Βούρος

50 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Συναρτήσεις Page 50 Μια συνάρτηση βαθμού ν θεωρείται ως μια (συνολοθεωρητική) σχέση που συσχετίζει κάθε συνδιασμό (ν-1)-αντικειμένων στο σύμπαν (καλούνται ορίσματα) με ένα αντικειμένο (καλείται η τιμή της συνάρτησης) Αριθμητικά παραδείγματα: Μοναδιαίες: sqrt, log Διμελείς: +,-,*,/ Άλλα Παραδείγματα Μοναδιαίες: πατέρας, μητέρα ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

51 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Συναρτήσεις Page 51 Οι συναρτήσεις μπορεί να είναι ολικές και μονότιμες μία και μόνο μια τιμή για κάθε συνδυασμό ορισμάτων Επιμέρους δεν ορίζονται για κάποιους συνδυασμούς ορισμάτων Πλειότιμες περισσότερες της μιας τιμής για κάθε συνδυασμό ορισμάτων Μιλάμε μόνο για ολικές και μονότιμες. Γεώργιος Βούρος

52 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Συναρτήσεις και Βάσεις Δεδομένων Page 52 Μια συνάρτηση παρίσταται ως μια οποιαδήποτε άλλη σχέση. {αφεντικό( γιωργος, γιωργος), αφεντικο(νίκος, γιώργος)} Όμως για να φαίνεται ότι μιλάμε για συναρτήσεις, τις γράφουμε με τη μορφή ισότητας. {αφεντικό( γιωργος)= γιωργος, αφεντικο(νίκος)= γιώργος } ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

53 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Στιγμιότυπα (τελική έκδοση) Page 53 Το στιγμιότυπο μιας πρότασης υπό μια ερμηνεία είναι μια πρόταση που προκύπτει αν (α) αντικαταστήσουμε κάθε ελεύθερη μεταβλητή με την εττικέτα ενός κόμβου από το γράφημα (την ερμηνεία) με συνέπεια (β) αντικαταστήσουμε κάθε καθορισμένο συναρτησιακό όρο με την τιμή του υπό την ερμηνεία αυτή. Ερμηνεία {αφεντικό( γιωργος)= γιωργος, αφεντικο(νίκος)= γιώργος } Παράδειγμα π(χ,αφεντικό(χ)) π(νικος, αφεντικό(νικος)) π(νικος, γιωργος) Γεώργιος Βούρος

54 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Σημείωση Page 54 Ο ορισμός μιας ερμηνείας που δίνεται εδώ δεν είναι ίδιος με αυτόν που δίνεται σε βιβλία λογικής. Όμως είναι ισοδύναμος σε σχέση με τα αποτελέσματα που παράγει. Επίσης, είναι σημαντικά απλούστερος από αυτούς τους ορισμούς και περισσότερο διαισθητικός για ανθρώπους που ενδιαφέρονται να δημιουργήσουν υπολογιστικά συστήματα. ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

55 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Δομή της Παρουσίασης Εννοιολογική μορφοποίηση του σύμπαντος Μοντελοποίηση του σύμπαντος με βάση τα αντικείμενα και τις σχέσεις Μοντελοποίηση του σύμπαντος με τη μορφή γραφήματος Μοντελοποίηση του κόσμου με τη μορφή βάσης δεδομένων Page 55 Σημασιολογία της Σχεσιακής Λογικής Ατομικές προτάσεις Λογικές προτάσεις Προτάσεις με ποσοδείκτες Γενικά σχόλια Οντολογικά θέματα Ο ρόλος της λογικής Γεώργιος Βούρος

56 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Κύβοι Οντολογικά θέματα Page 56 Στοίβες Κομάτια ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

57 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Εννοιολογική Μορφοποίηση Page 57 κόκκινο επάνω µπλέ επάνω α β κόκκινο πράσινο επάνω δ ε πράσινο γ Γεώργιος Βούρος

58 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αναγωγή Page 58 α χρώµα κόκκινο χρώµα δ επάνω β χρώµα µπλέ επάνω επάνω γ χρώµα πράσινο χρώµα ε ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

59 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Αναγωγή Page 59 επανω(α,β) επανω(α,β) επανω(β,γ) επανω(β,γ) επανω(δ,ε) επανω(δ,ε) κοκκινο(α) χρώμα(α,κοκκινο) κοκκινο(δ) χρώμα(δ,κοκκινο) μπλε(β) χρώμα(β,μπλε) πρασινο(γ) χρώμα(γ,πρασινο) πρασινο(ε) χρώμα(ε,πρασινο) Γεώργιος Βούρος

60 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αναγωγή Page 60 επανω(α,β) ιδιότητα(επανω, α,β) επανω(β,γ) ιδιότητα(επανω, β,γ) επανω(δ,ε) ιδιότητα(επανω, δ,ε) κοκκινο(α) ιδιότητα( χρώμα, α,κοκκινο) κοκκινο(δ) ιδιότητα( χρώμα, δ,κοκκινο) μπλε(β) ιδιότητα( χρώμα, β,μπλε) πρασινο(γ) ιδιότητα( χρώμα, γ,πρασινο) πρασινο(ε) ιδιότητα( χρώμα, ε,πρασινο) ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γεώργιος Βούρος

61 Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων 2007 Ρόλος της Λογικής Μη πλήρης Πληροφορία Ο κύβος α είναι πάνω στον κύβο β ή πάνω από τον κύβο γ Ο κύβος α δεν είναι πάνω στο κύβο β Page 61 Ακεραιότητα Ένας κύβος δεν είναι πάνω από τον εαυτό του Ενας κύβος μπορεί να είναι πάνω από ένα άλλο κύβο το πολύ Ορισμοί Ενας κύβος είναι κάτω από κάποιον άλλο αν ο δεύτερος είναι πάνω στον πρώτο Ένας κύβος είναι καθαρός αν δεν υπάρχει άλλος κύβος από πάνω του Ένας κύβος βρίσκεται πανω από το τραπέζι αν δεν υπάρχει άλλος κύβος κάτω από αυτόν. Γεώργιος Βούρος

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

Καθηγητής Γεώργιος Βούρος. Μαθηµατική Λογική και Λογικός Προγραµµατισµός

Καθηγητής Γεώργιος Βούρος. Μαθηµατική Λογική και Λογικός Προγραµµατισµός Καθηγητής Γεώργιος Βούρος Μαθηµατική Λογική και Λογικός Προγραµµατισµός Page 2 ΕΙΣΑΓΩΓΗ ΑΝΘΡΩΠΙΝΗ ΛΟΓΙΚΗ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2011 Τµήµατα Πληροφορίας Ο κόκκινος κύβος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF

Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα

Διαβάστε περισσότερα

Mαθηματική Λογική και Λογικός Προγραμματισμός

Mαθηματική Λογική και Λογικός Προγραμματισμός ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΤΗΜΑΤΩΝ ΦΕΒΡΟΥΑΡΙΟΥ 2004 Θέμα 1 ο : Αποδείξτε με τον κανόνα της επίλυσης τα ακόλουθα Α. Η πρόταση (Α (Β C)) & (A B) & (A C) είναι μη επαληθεύσιμη Β. Η Β είναι αποδείξιμη από το Δ={ (Β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο

Διαβάστε περισσότερα

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική)

ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) ΠΛΗ 20, 2 η ΟΣΣ (Προτασιακή Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 1 η Εργασία: Γενική Εικόνα Πολύ καλή εικόνα με εξαιρετική βαθμολογία

Διαβάστε περισσότερα

Κατηγορηµατική Λογική

Κατηγορηµατική Λογική Προβλήµατα της Προτασιακής Λογικής Γιατί δεν µας αρκεί η Προτασιακή Λογική; Εστω ότι ισχύουν τα P και Q: P : «Ο Σωκράτης είναι άνθρωπος» Q : «Κάθε άνθρωπος είναι ϑνητός» R : «Ο Σωκράτης είναι ϑνητός» Μπορούµε

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο

Λογική Πρώτης Τάξης. Γιώργος Κορφιάτης. Νοέµβριος Εθνικό Μετσόβιο Πολυτεχνείο Λογική Πρώτης Τάξης Γιώργος Κορφιάτης Εθνικό Μετσόβιο Πολυτεχνείο Νοέµβριος 2008 Σύνταξη Ορισµός (Σύνταξη της λογικής πρώτης τάξης) Λεξιλόγιο Σ = (Φ, Π, r) Συναρτήσεις f Φ Σχέσεις R Π r( ) η πληθικότητα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 10η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σημασιολογία πρωτοβάθμιας κατηγορηματικής λογικής. Υπενθύμιση: συντακτικό ΠΚΛ τύπος ατομικός_τύπος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες

Διαβάστε περισσότερα

Εντολές της LOGO (MicroWorlds Pro)

Εντολές της LOGO (MicroWorlds Pro) Εντολές της LOGO (MicroWorlds Pro) Εντολές εμφάνισης (εξόδου) και αριθμητικές πράξεις δείξε Εμφανίζει στην οθόνη έναν αριθμό, το αποτέλεσμα πράξεων, μια λέξη ή μια λίστα (ομάδα) λέξεων. δείξε 200 200 δείξε

Διαβάστε περισσότερα

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Γνώση γλώσσας από τη σκοπιά Του συντακτικού (syntax) Περιγραφή με γραμματικές

Διαβάστε περισσότερα

9.1 Προτασιακή Λογική

9.1 Προτασιακή Λογική ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv) ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ 1. Σε κάθε μία από τις παρακάτω προτάσεις να κυκλώσετε το γράμμα Α, αν θεωρείτε ότι ο ισχυρισμός που διατυπώνετε είναι αληθής, ενώ αν θεωρείτε ότι είναι ψευδής να κυκλώσετε το Ψ. Οι

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ

1. ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ MYY204 Διακριτά Μαθηματικά Μθ άii Προτασιακή Λογική ιδακτικές Σημειώσεις EPP : Παράγραφοι 1.1 1.2 Rosen: Παράγραφοι 1.1 1.3 1 η +2 η Εβδομάδα Άνοιξη 2015 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου)

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) 1. Εισαγωγή Χαρακτηριστικά της γλώσσας Τύποι δεδοµένων Γλώσσα προγραµµατισµού

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole

K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΣΧΕΣΙΑΚΟ ΜΟΝΤΕΛΟ ΔΕΔΟΜΕΝΩΝ

ΣΧΕΣΙΑΚΟ ΜΟΝΤΕΛΟ ΔΕΔΟΜΕΝΩΝ ΣΧΕΣΙΑΚΟ ΜΟΝΤΕΛΟ ΔΕΔΟΜΕΝΩΝ Στόχοι Η παρούσα ενότητα αναφέρεται σε ν-μελείς σχέσεις, παρουσιάζει το σχεσιακό μοντέλο δεδομένων και παραδείγματα τελεστών για τον χειρισμό των δεδομένων σε μια σχεσιακή βάση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ20, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 203, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με: Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα

Διαβάστε περισσότερα

Μηχανισμός Εξαγωγής Συμπερασμάτων

Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά: πυλώνες Image source: http://www.patrasevents.gr Διακριτά Μαθηματικά: λογική Διακριτά Μαθηματικά: αποδείξεις Διακριτά Μαθηματικά:

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΕΡΩΤΗΜΑΤΑ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 015, Α ΜΕΡΟΣ 1. Στους παρακάτω τύπους τα,, είναι προτασιακοί τύποι. Ισχύει ότι: 1. ( Σ / Λ ) O τύπος ( ) ( ) είναι αντίφαση.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Μαθηματική λογική και αποδεικτικές τεχνικές Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

επιµέλεια Θοδωρής Πιερράτος

επιµέλεια Θοδωρής Πιερράτος Βασικές έννοιες προγραµµατισµού Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως,

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Μάθημα: Άλγεβρα & Στοιχεία Πιθανοτήτων Α Λυκείου Διδακτική Ενότητα: Το λεξιλόγιο της Λογικής (2 διδακτικές ώρες)

Μάθημα: Άλγεβρα & Στοιχεία Πιθανοτήτων Α Λυκείου Διδακτική Ενότητα: Το λεξιλόγιο της Λογικής (2 διδακτικές ώρες) Μάθημα: Άλγεβρα & Στοιχεία Πιθανοτήτων Α Λυκείου Διδακτική Ενότητα: Το λεξιλόγιο της Λογικής (2 διδακτικές ώρες) Στόχοι του μαθήματος Αλέξανδρος Γ. Συγκελάκης Οι μαθητές στο τέλος της ενότητας θα πρέπει

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Λογική και Προτασιακός Λογισµός ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 16 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Λογική

Διαβάστε περισσότερα

Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού

Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Μεταγλωττιστής Πρόγραμμα Διαβάζει προγράμματα δεδομένης γλώσσας (πηγαία γλώσσα) και τα μετατρέπει

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Πώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ;

Πώς είναι δυνατόν να είναι ισοδύναµες οι εξισώσεις που αναφέρονται στο ερώτηµα ii, αφού δεν έχουν το ίδιο πεδίο ορισµού 2 ; 1 Ισοδύναµες εξισώσεις και η έννοια του «κοντά» ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-thedrpuls.gr Εισαγωγή Στην εργασία αυτή αναλύονται και αναπτύσσονται οι έννοιες που

Διαβάστε περισσότερα

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ )

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ ) Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ. 147 159) Για τις γλώσσες προγραμματισμού πρέπει να έχουμε υπόψη ότι: Κάθε γλώσσα προγραμματισμού σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας ιδιαίτερη

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Βασικά Στοιχεία Λογικής ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Βασικά Στοιχεία Λογικής 2 Η Πριγκίπισσα και το Κάστρο Αν ρώταγα ένα μέλος της φυλής που δεν ανήκεις για το ποιον δρόμο πρέπει να πάρω για το κάστρο τι θα μου έλεγε; Μία πριγκίπισσα

Διαβάστε περισσότερα

Σύνολα, Σχέσεις, Συναρτήσεις

Σύνολα, Σχέσεις, Συναρτήσεις Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,

Διαβάστε περισσότερα

Αφαίρεση στον FP. Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός

Αφαίρεση στον FP. Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός Αφαίρεση στον FP Πολυμορφισμός Συναρτήσεις υψηλότερης τάξης Οκνηρός και Άπληστος Υπολογισμός Πολυμορφισμός Θα χρησιμοποιήσουμε σαν παράδειγμα τη συνάρτηση ταυτότητας Ι, που ορίζεται ως: fun I x = x Ο ορισμός

Διαβάστε περισσότερα

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γλωσσική επιμέλεια και επιμέλεια διαδραστικού υλικού: Αλέξανδρος Χορταράς Copyright ΣΕΑΒ,

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model

Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model .. Εργαστήριο Βάσεων Δεδομένων Relational Model . Σχεσιακό Μοντέλο (Relational Model) Το σχεσιακό μοντέλο παρουσιάζει μια βάση ως συλλογή από σχέσεις Μια σχέση είναι ένας πίνακας με διακριτό όνομα Κάθε

Διαβάστε περισσότερα

Κεφάλαιο 9 Συναρτησιακός προγραμματισμός Υπολογισμός με συναρτήσεις

Κεφάλαιο 9 Συναρτησιακός προγραμματισμός Υπολογισμός με συναρτήσεις Κεφάλαιο 9 Συναρτησιακός προγραμματισμός Υπολογισμός με συναρτήσεις Σύνοψη Σκοπός του κεφαλαίου αυτού είναι η εισαγωγή του αναγνώστη στη φιλοσοφία του συναρτησιακού προγραμματισμού. Ο συναρτησιακός προγραμματισμός

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

Λογική πρώτης τάξης. Παραδοχές

Λογική πρώτης τάξης. Παραδοχές Λογική πρώτης τάξης First-Order Logic Παραδοχές Οντολογικές δεσµεύσεις λογικής πρώτης τάξης: Αντικείµενα Σχέσεις Μοναδιαίες σχέσεις (Ιδιότητες) Συναρτήσεις Ένα συν δύο ίσον τρία Ο κακός Βασιλιάς Ιωάννης

Διαβάστε περισσότερα

ΗΥ-150. Προγραμματισμός

ΗΥ-150. Προγραμματισμός ΗΥ-150 Εντολές Ελέγχου Ροής Σειριακή εκτέλεση εντολών Όλα τα προγράμματα «γράφονται» χρησιμοποιώντας 3 είδη εντολών: Σειριακές εντολές (sequential built in C) Εντολές απόφασης (if, if/else, switch) Περιλαμβάνει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 014, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση

Διαβάστε περισσότερα

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 23 ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 2ο Τμήμα Διοίκησης Επιχειρήσεων α εξάμηνο Β. Φερεντίνος I/O 24 Βασική βιβλιοθήκη συναρτήσεων εισόδου/εξόδου #include Η συνάρτηση εξόδου printf printf("συμβολοσειρά

Διαβάστε περισσότερα

Βάσεις δεδομένων. (2 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (2 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (2 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Μοντελοποίηση δεδομένων Μοντέλο Οντοτήτων Συσχετίσεων Παραδείγματα Διαγραμματικές τεχνικές Συμβολισμοί Τριαδικές συσχετίσεις 2

Διαβάστε περισσότερα