ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
|
|
- Αναστασούλα Δοξαράς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Σκελετοί Λύσεων Ημερομηνία : Σάββατο, 27 Οκτωβρίου 2012 Διάρκεια : 11:00 13:00 Διδάσκουσα : Άννα Φιλίππου Άσκηση 1 [25 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα κανόνων του Προτασιακού Λογισμού (μέρος (α)) και του Κατηγορηματικού Λογισμού (μέρος (β)). (α) [10 μονάδες] p q, p r, q r (p q) (p r) (q r) (Υπόδειξη: Μπορείτε να χρησιμοποιήσετε τον κανόνα LEM) 1. p q προϋπόθεση 2. p r προϋπόθεση 3. q r προϋπόθεση 4. p p LEM 5. p υπόθεση 6. q υπόθεση r υπόθεση 7. p q i 5, 6 p r i 5, 6 8. (p q) (p r) i 7 (p q) (p r) i 7 9. (p q) (p r) e 3, (p q) (p r) (q r) i p υπόθεση 12. p υπόθεση q υπόθεση 13. e 11, q e q e 1, p υπόθεση r υπόθεση 17. e 11, r e r e 2, (q r) i 15, (p q) (p r) (q r) i (p q) (p r) (q r) e , 11-21
2 (β) [15 μονάδες] x [F(x) y (S(y) R(x,y))] x [S(x) y (F(y) R(y,x))] 1. x [F(x) y (S(y) R(x,y))] προϋπόθεση 2. x0 3. S(x0) υπόθεση 4. a F(a) y (S(y) R(a,y)) υπόθεση 5. F(a) e y (S(y) R(a,y)) e S(x0) R(a, x0) y e 6 8. R(a, x0) MP 7, 3 9. F(a) R(a, x0) i 5, y (F(y) R(y,x0)) y i y (F(y) R(y,x0)) x e S(x0) y (F(y) R(y,x0)) i x [S(x) y (F(y) R(y,x))] x 2-12 Άσκηση 2 [25 μονάδες] Θεωρήστε το λογικό επακόλουθο x R(x,x), x y [(R(x, y) R(y, y)) x = y] x y (R(y,y) x = y) (α) [6 μονάδες] Η απόδειξη που ακολουθεί για το λογικό επακόλουθο είναι λανθασμένη. Να εντοπίσετε όλα τα σημεία της απόδειξης που περιέχουν λάθη και να εξηγήσετε σύντομα γιατί είναι λανθασμένα. 1. x R(x,x) προϋπόθεση 2. a R(a,a) υπόθεση 3. R(a,a) R(a,a) i 2, 2 4. x y [(R(x, y) R(y, y)) x = y] προϋπόθεση 5. y [(R(a, y) R(y, y)) a = y] x e 4 6. (R(a, a) R(a, a)) a = a y e 5 7. a = a MP 3, 6 8. R(a, a) a = a i 2, 7 9. y R(y, y) a = y y i x y (R(y, y) x = y) x i x y (R(y,y) x = y) x e Λάθη υπάρχουν στις γραμμές 8 και 9. Το λάθος στη γραμμή 8 οφείλεται στο γεγονός ότι, για να γίνει εισαγωγή συνεπαγωγής, πρέπει να υπάρξει κουτί που να ξεκινά υποθέτοντας τη συνθήκη της συνεπαγωγής και στο τέλος να προκύπτει το συμπέρασμα. Αυτό όμως δεν υλοποιείται κατά την εισαγωγή της συνεπαγωγής που δηλώνεται στη συγκεκριμένη γραμμή.
3 Το λάθος στη γραμμή 9 οφείλεται στο γεγονός ότι η εισαγωγή του καθολικού ποσοδείκτη βασίζεται στο γεγονός ότι η τιμή a ικανοποιεί την πρόταση R(a, a) a = a (γραμμή 8). Εντούτοις, η τιμή a δεν είναι μια τυχαία μεταβλητή αλλά μια τιμή για την οποία υπάρχει συγκεκριμένη υπόθεση (γραμμή 2). Ως εκ τούτου δεν μπορούμε να συμπεράνουμε ότι η πρόταση της γραμμής 8 ισχύει για κάθε τιμή y όπως αναφέρεται λανθασμένα στη γραμμή 9. (β) [5 μονάδες] Να αποδείξετε με ακρίβεια ότι το λογικό επακόλουθο x R(x,x), x y [(R(x, y) R(y, y)) x = y] x y (R(y,y) x = y) είναι ψευδές. Θα δείξουμε ότι x R(x,x), x y [(R(x, y) R(y, y)) x = y] x y (R(y,y) x = y) (*) Τότε, από την ορθότητα του Κατηγορηματικού Λογισμού, το επακόλουθο είναι ψευδές. Για να δείξουμε το (*) πρέπει να δείξουμε ότι υπάρχει μοντέλο στο οποίο Μ x R(x,x), Μ x y [(R(x, y) R(y, y)) x = y] και Μ x y (R(y,y) x = y) Θεωρούμε το μοντέλο: Α = οι ακέραιοι και R(x, y) αν x = y. Προφανώς για κάθε ακέραιο x έχουμε R(x,x) και για κάθε x, y αν x = y y = y τότε x = y. Από την άλλη όμως δεν ισχύει ότι υπάρχει x που να είναι ίσο με όλους τους ακέραιους. (γ) [4 μονάδες] Να δείξετε ότι η πρόταση [ x R(x,x) x y ((R(x, y) R(y, y)) x = y) ] x y (R(y,y) x = y) είναι ικανοποιήσιμη. Θα πρέπει να δώσουμε μοντέλο στο οποίο η πρόταση να γίνεται αληθής. Λύση 1: Τέτοιο μοντέλο μπορεί να είναι οποιοδήποτε μοντέλο Μ στο οποίο η συνθήκη της πρότασης παίρνει την τιμή False, δηλαδή Μ x R(x,x) x y ((R(x, y) R(y, y)) x = y) Ένα τέτοιο μοντέλο είναι το εξής: Α = οι ακέραιοι και R(x, y) αν ο ακέραιος x διαιρεί τον ακέραιο y. Αν και κάθε ακέραιος διαιρεί τον εαυτό του (Μ x R(x,x)) υπάρχουν ακέραιοι που έχουν διαιρέτες διάφορους από τον εαυτό τους (Μ x y ((R(x, y) R(y, y)) x = y)). Κατά συνέπεια και Λύση 2: Μ x R(x,x) x y ((R(x, y) R(y, y)) x = y) Μ [ x R(x,x) x y ((R(x, y) R(y, y)) x = y) ] x y (R(y,y) x = y) Α = {1,2,3} R = {(1,1), (1,2), (3,3)}
4 (δ) [10 μονάδες] Να αποδείξετε ότι ισχύει η πιο κάτω σημασιολογική συνεπαγωγή χρησιμοποιώντας τη σημασιολογία του Κατηγορηματικού Λογισμού (Αλήθεια του Tarski): P(a) Q(c), x (P(x) R(x,a)) y R(y,y) z Q(z) Πρέπει να δείξουμε ότι για οποιαδήποτε μοντέλο Μ, αν Μ P(a) Q(c), Μ x (P(x) R(x,a)) τότε Μ y R(y,y) z Q(z) Ας υποθέσουμε ότι σε ένα μοντέλο Μ έχουμε Μ P(a) Q(c) (1) και Μ x (P(x) R(x,a)) (2) Τότε από το (1) και σύμφωνα με την Αλήθεια του Tarski, ισχύει ότι Μ P(a) (3) Επιπλέον, από το (2) έχουμε ότι για οποιαδήποτε τιμή του σύμπαντος, έστω b, Μ P(b) R(b,a) Αφού όμως η πρόταση ισχύει για οποιαδήποτε τιμή b, θα πρέπει να ισχύει και για την τιμή a: Μ P(a) R(a,a) (4) Επομένως, από (3) και (4) παίρνουμε Μ R(a,a) που συνεπάγεται ότι Μ y R(y,y) και από τη σημασιολογία του τελεστή της διάζευξης Μ y R(y,y) z Q(z) που είναι και το ζητούμενο. Άσκηση 3 [25 μονάδες] (α) [10 μονάδες] Nα μετατρέψετε τις πιο κάτω προτάσεις σε προτασιακή μορφή επιδεικνύοντας τα ενδιάμεσα στάδια της εργασίας σας. (i) y [(( x P(x,y)) Q(y,z)) w x (R(x,w) Q(x,y))] y [(( x P(x,y)) Q(y,z)) w x (R(x,w) Q(x,y))] y [( x P(x,y) Q(y,z)) w x (R(x,w) Q(x,y))] y [( x P(x,y) Q(y,z)) w x ( R(x,w) Q(x,y))] y [( x P(x,y) Q(y,z)) w z ( R(z,w) Q(z,y))] y x [( P(x,y) Q(y,z)) w z ( R(z,w) Q(z,y))] y x w z [( P(x,y) Q(y,z)) ( R(z,w) Q(z,y))] Εφαρμογή Μεθόδου Skolem: ( P(f(y),y) Q(y,z)) R(z,g(y)) Q(z,y) Προτασιακό σύνολο: {{ P(f(y),y), Q(y,z)}, { R(z,g(y))}, { Q(z,y)})
5 (ii) [ x y P(x,y) x y R(x,y)] x ( y Q(x,y)) [ x y P(x,y) x y R(x,y)] x ( y Q(x,y)) [ x y P(x,y) x y R(x,y)] x ( y Q(x,y)) [ x y P(x,y) x y R(x,y)] x ( y Q(x,y)) [ x y P(x,y) x y R(x,y)] x y Q(x,y) [ x1 y1 P(x1,y1) x2 y2 R(x2,y2)] x3 y3 Q(x3,y3) x1 y1 [P(x1,y1) x2 y2 R(x2,y2)] x3 y3 Q(x3,y3) x1 y1 x2 y2 [P(x1,y1) R(x2,y2)] x3 y3 Q(x3,y3) x1 y1 x2 y2 x3 y3 [[P(x1,y1) R(x2,y2)] Q(x3,y3)] x1 y1 x2 y2 x3 y3 [(P(x1,y1) Q(x3,y3)) ( R(x2,y2) Q(x3,y3))] Εφαρμογή Μεθόδου Skolem: (P(x1,f(x1)) Q(x3,y3)) ( R(x2,y2) Q(x3,y3)) Προτασιακό σύνολο: {{P(x1,f(x1)), Q(x3,y3)}, { R(x2,y2), Q(x3,y3)}} (β) [15 μονάδες] Να αποδείξετε με τη Μέθοδο της Επίλυσης ότι αν ισχύουν οι προτάσεις x y z [ (p(x,y) p(y,z)) p(x,z) ] x y [ p(x,y) p(y,x) ] τότε ισχύει και το πιο κάτω συμπέρασμα: x y z [ (p(x,y) p(z,y)) p(x,z) ] Μετατροπή σε Κανονική Μορφή Prenex: 1. x y z [ (p(x,y) p(y,z)) p(x,z) ] x y z [ p(x,y) p(y,z) p(x,z) ] 2. x y [ p(x,y) p(y,x) ] x y [ p(x,y) p(y,x) ] 3. x y z [ (p(x,y) p(z,y)) p(x,z) ] (Άρνηση Συμπεράσματος) x y z [ (p(x,y) p(z,y)) p(x,z) ] x y z [ (p(x,y) p(z,y)) p(x,z) ] Εφαρμογή Μεθόδου Skolem: 1. p(x,y) p(y,z) p(x,z) 2. p(x,y) p(y,x) 3. p(a,b) p(c,b) p(a,c) Προτασιακά σύνολα: 1. {{ p(x,y), p(y,z), p(x,z)}} 2. {{ p(x,y), p(y,x)}} 3. {{p(a,b)}, {p(c,b)}, { p(a,c)}}
6 Εφαρμογή της Μεθόδου Επίλυσης: p(x,y), p(y,z), p(x,z) p(a,b) p(a,c) p(x,y), p(y,x) p(c,b) p(b,z), p(a,z) p(b,c) p(b,c) Άσκηση 4 [25 μονάδες] Θεωρήστε το πιο κάτω πρόγραμμα λογικού προγραμματισμού (οι γραμμές εμφανίζονται αριθμημένες). 1. προαπ(επλ131,επλ132) 2. προαπ(επλ132,επλ231) 3. προαπ(επλ111,επλ231) 4. προαπ(επλ111,επλ211) 5. προαπ(επλ231,επλ342) 6. προαπ(επλ231,επλ323) 7. προαπ(επλ211,επλ323) 8. αλυσίδα(x, x, [x]) 9. αλυσίδα(x, y, x:xs) προαπ(x,w), αλυσίδα(w,y,xs) 10. αλυσίδα(επλ111, ΕΠΛ342, [X,Y,Z]) Η βάση δεδομένων προαπ περιγράφει τη σχέση προαπαιτούμενων που υπάρχει ανάμεσα σε ένα σύνολο από μαθήματα (π.χ. Το μάθημα ΕΠΛ131 είναι προαπαιτούμενο για το ΕΠΛ132), ενώ η διαδικασία αλυσίδα είναι σε θέση να υπολογίσει αλυσίδες ανάμεσα σε μαθήματα. Για παράδειγμα, ισχύει ότι αλυσίδα(επλ131,επλ231,[επλ131,επλ132,επλ231]) αφού η λίστα [ΕΠΛ131,ΕΠΛ132,ΕΠΛ231] αποτελεί αλυσίδα μαθημάτων ανάμεσα στα μαθήματα ΕΠΛ131 και ΕΠΛ231. (Υπενθύμιση: Αν xs = [x1,,xn], τότε γράφουμε x0:xs για τη λίστα [x0,x1,,xn]. Για παράδειγμα, a:[b,c] = [a,b,c] και c:[] = [c]. ) (α) [10 μονάδες] Να εφαρμόσετε τη μέθοδο της SLD-επίλυσης για να φτάσετε σε διάψευση του στόχου που βρίσκεται στη γραμμή 10 του προγράμματος.
7 1. προαπ(επλ131,επλ132) 2. προαπ(επλ132,επλ231) 3. προαπ(επλ111,επλ231) 4. προαπ(επλ111,επλ211) 5. προαπ(επλ231,επλ342) 6. προαπ(επλ231,επλ323) 7. προαπ(επλ211,επλ323) 8. αλυσίδα(x, x, [x]) 9. αλυσίδα(x, y, x:xs) προαπ(x,w), αλυσίδα(w,y,xs) 10. αλυσίδα(επλ111, ΕΠΛ342, [X,Y,Z]) 11. προαπ(επλ111,w), αλυσίδα(w, ΕΠΛ342, [Y,Z]) από (9) και (10) x ΕΠΛ111, y ΕΠΛ342, X ΕΠΛ111, xs [Y,Z] 12. αλυσίδα(επλ231, ΕΠΛ342, [Y,Z]) από (3) και (11), w ΕΠΛ προαπ(επλ231,w), αλυσίδα(w, ΕΠΛ342, [Z]) από (9) και (12) x ΕΠΛ231, y ΕΠΛ342, Y ΕΠΛ231, xs [Z] 14. αλυσίδα(επλ342, ΕΠΛ342, [Z]) από (5) και (13), w ΕΠΛ από (8) και (14), x ΕΠΛ342, Z ΕΠΛ342 (β) [3 μονάδες] Ποια αντικατάσταση ορθής απάντησης προέκυψε κατά την εκτέλεση του προγράμματος στο μέρος (α); X ΕΠΛ111 Y ΕΠΛ231 Z ΕΠΛ342 (γ) [12 μονάδες] Θεωρήστε τώρα την πιο κάτω παραλλαγή του προγράμματος από το μέρος (α). 1. προαπ(επλ131,επλ132) 2. προαπ(επλ132,επλ231) 3. προαπ(επλ111,επλ231) 4. προαπ(επλ111,επλ211) 5. προαπ(επλ231,επλ342) 6. προαπ(επλ231,επλ323) 7. προαπ(επλ211,επλ323) 8. αλυσίδα(x, x, [x]) 9. αλυσίδα(x, y, x:xs) προαπ(x,w), αλυσίδα(w,y,xs) 10. αλυσίδα(επλ111, ΕΠΛ323, Ζ) Να παρουσιάσετε εκτελέσεις του προγράμματος οι οποίες να επιδεικνύουν κάθε ένα από τα πιο κάτω φαινόμενα: (1) Διαφορετικές εκτελέσεις ενός προγράμματος δυνατόν να εμφανίσουν διαφορετικές διαψεύσεις/αντικαταστάσεις ορθής απάντησης για τον στόχο του προγράμματος.
8 Εκτέλεση 1: 10. αλυσίδα(επλ111, ΕΠΛ323, Z) 11. προαπ(επλ111,w), αλυσίδα(w, ΕΠΛ323, xs) από (9) και (10) x ΕΠΛ111, y ΕΠΛ323, Ζ ΕΠΛ111:xs 12. αλυσίδα(επλ231, ΕΠΛ323, xs) από (3) και (11), w ΕΠΛ προαπ(επλ231,w ), αλυσίδα(w, ΕΠΛ323, xs ) από (9) και (12) x ΕΠΛ231, y ΕΠΛ323, xs ΕΠΛ231:xs 14. αλυσίδα(επλ323, ΕΠΛ323, xs ) από (6) και (13), w ΕΠΛ από (8) και (14), x ΕΠΛ323, xs [ ΕΠΛ323] Αντικατάσταση ορθής απάντησης: Z ΕΠΛ111: xs = ΕΠΛ111:επλ231:xs = ΕΠΛ111: ΕΠΛ231:[ΕΠΛ323] Εκτέλεση 2: 10. αλυσίδα(επλ111, ΕΠΛ323, Z) 11. προαπ(επλ111,w), αλυσίδα(w, ΕΠΛ323, xs) από (9) και (10) x ΕΠΛ111, y ΕΠΛ323, Ζ ΕΠΛ111:xs 12. αλυσίδα(επλ211, ΕΠΛ323, xs) από (4) και (11), w ΕΠΛ προαπ(επλ211,w ), αλυσίδα(w, ΕΠΛ323, xs ) από (9) και (12) x ΕΠΛ211, y ΕΠΛ323, xs ΕΠΛ211:xs 14. αλυσίδα(επλ323, ΕΠΛ323, xs ) από (7) και (13), w ΕΠΛ από (8) και (14), x ΕΠΛ323, xs [ ΕΠΛ323] Αντικατάσταση ορθής απάντησης: Z ΕΠΛ111: xs = ΕΠΛ111: ΕΠΛ211:xs = ΕΠΛ111: ΕΠΛ211:[ΕΠΛ323] (2) Δυνατόν να υπάρχουν εκτελέσεις οι οποίες αποτυγχάνουν να τερματίσουν ακόμη και αν υπάρχει διάψευση. Μη τερματισμός μπορεί να εμφανιστεί αν επιλέγουμε συνεχώς να συνδυάζουμε τη γραμμή 9 του προγράμματος με τον αντίστοιχο όρο από τον στόχο: 10. αλυσίδα(επλ111, ΕΠΛ323, Z) 11. προαπ(επλ111,w), αλυσίδα(w, ΕΠΛ323, xs) από (9) και (10) x ΕΠΛ111, y ΕΠΛ323, Ζ ΕΠΛ111:xs 12. προαπ(επλ111,w), προαπ(w,w ), αλυσίδα(w, ΕΠΛ323, xs ) από (9) και (11) x w, y ΕΠΛ323, xs w:xs 13. προαπ(επλ111,w), προαπ(w,w ), προαπ(w,w ), αλυσίδα(w, ΕΠΛ323, xs ) από (9) και (12), x w, y ΕΠΛ323, xs w :xs 14.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη 24 Οκτωβρίου, 2018 Διάρκεια : 12:00 13:30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: ΠΡΟΧΕΙΡΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα
Κατ οίκον Εργασία 2 Λύσεις
Κατ οίκον Εργασία 2 Λύσεις Άσκηση 1 Ακολουθεί η διατύπωση των προτάσεων στον προτασιακό λογισμό. (α) Κάθε ενεργός χρήστης είναι είτε διαχειριστής είτε κανονικός χρήστης του συστήματος. x [Ενεργός (x) Διαχειριστής(x)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Δευτέρα 2 Νοεμβρίου 2015 Διάρκεια : 10:30 12:00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: Αριθμός
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Λύσεις Σειράς Ασκήσεων 3
Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να υπολογίσετε την προτασιακή μορφή των πιο κάτω προτάσεων. (α) xyz [(P(x,y) Q(y,z)) Q(x,y)] x P(x,f(x)) Βήμα 1: Μετατροπή σε Κανονική Μορφή Prenex: xyz [(P(x,y) Q(y,z))
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Λύσεις Σειράς Ασκήσεων 2
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,
Λύσεις 2 ης Σειράς Ασκήσεων
Λύσεις 2 ης Σειράς Ασκήσεων Άσκηση 1 Στην άσκηση αυτή σας ζητείται να διατυπώσετε στον Κατηγορηματικό Λογισμό ένα σύνολο από απαιτήσεις/προτάσεις που σχετίζονται με ένα κοινωνικό δίκτυο χρησιμοποιώντας
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Λύσεις Σειράς Ασκήσεων 3
Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να εφαρμόσετε τη διαδικασία της επίλυσης στα πιο κάτω προτασιακά σύνολα. (α) { P(a,f(f(x))) }, { P(y,z), P(y, f(f(z))) }, {P(x,b), Q(x)}, {P(x,b),Q(x)} Η Μέθοδος της Επίλυσης
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός
Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό Λογισμό 1 ης Τάξης (First Order Predicate Calculus) Οι περισσότερες γλώσσες επερώτησης σχεσιακών βάσεων δεδομένων βασίζονται στον Σχεσιακό Λογισμό
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013
ΗΥ118 - Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2013 2 η Σειρά Ασκήσεων Λύσεις Άσκηση 2.1 [2 μονάδες] Έστω μεταβλητές και σταθερές στο σύνολο των ανθρώπων και η προτασιακή μορφή Ρ(x, y) με το νόημα "o x αγαπά
Σειρά Προβλημάτων 2 Λύσεις
Σειρά Προβλημάτων 2 Λύσεις Άσκηση 1 Χρησιμοποιώντας τα πιο κάτω κατηγορήματα και σταθερές και υποθέτωντας ως σύμπαν το σύνολο όλων των ανθρώπων, να διατυπώσετε τις προτάσεις που ακολουθούν στον Κατηγορηματικό
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 7η: Σχεσιακός Λογισμός Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes
Ασκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
Λύσεις Σειράς Ασκήσεων 2
Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 N φιλόσοφοι κάθονται γύρω από ένα τραπέζι με N καρέκλες, N πιάτα και N πιρούνια. Όταν κάποιος φιλόσοφος πεινάσει παίρνει τα δύο πιρούνια που βρίσκονται δίπλα από το πιάτο
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18
\5. Κατηγορηματικός Λογισμός (Predicate Calculus)
\5 Κατηγορηματικός Λογισμός (Predicate Calculus) 51 Αντικείμενα Ιδιότητες και Σχέσεις Θεωρείστε την παρακάτω εξαγωγή συμπεράσματος: Κανένας ακέραιος δεν είναι μεγαλύτερος από το τετράγωνό του Το 1 2 είναι
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΕΠΛ 412 Λογική στην Πληροφορική 4-1
Επίλυση Resolution Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: H Μέθοδος της Επίλυσης στον Προτασιακό Λογισμό στον Κατηγορηματικό Λογισμό ΕΠΛ 412 Λογική στην Πληροφορική 4-1 Το όνειρο του
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)
Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (
Στοιχεία Προτασιακής Λογικής
Μαθηματικές Προτάσεις Στοιχεία Προτασιακής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Κατηγορηµατική Λογική
Προβλήµατα της Προτασιακής Λογικής Γιατί δεν µας αρκεί η Προτασιακή Λογική; Εστω ότι ισχύουν τα P και Q: P : «Ο Σωκράτης είναι άνθρωπος» Q : «Κάθε άνθρωπος είναι ϑνητός» R : «Ο Σωκράτης είναι ϑνητός» Μπορούµε
Στοιχεία Κατηγορηματικής Λογικής
Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική
HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Ικανοποιητική βαθμολογική εικόνα
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά
Mαθηματική Λογική και Λογικός Προγραμματισμός
ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΤΗΜΑΤΩΝ ΦΕΒΡΟΥΑΡΙΟΥ 2004 Θέμα 1 ο : Αποδείξτε με τον κανόνα της επίλυσης τα ακόλουθα Α. Η πρόταση (Α (Β C)) & (A B) & (A C) είναι μη επαληθεύσιμη Β. Η Β είναι αποδείξιμη από το Δ={ (Β
Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε
Στοιχεία Κατηγορηµατικής Λογικής ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηµατική
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Ανάλυση της Ορθότητας Προγραμμάτων
Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες Απόδειξης Μερικής
Ασκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Ασκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ
ΗΥ8: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 07 Τελική Εξέταση Ιουνίου - Τετάρτη, 4/06/07 ΛΥΣΕΙΣ Σημείωση: Οι παρακάτω λύσεις είναι ενδεικτικές. Ενδεχομένως, υπάρχουν και άλλοι σωστοί τρόποι επίλυσης. Θέμα
Ανάλυση της Ορθότητας Προγραμμάτων
Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων ΚανόνεςΑπόδειξηςΜερικήςΟρθότητας
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Εισαγωγή στην προτασιακή μορφή της γνώσης Μετατροπή γνώσης σε προτασιακή μορφή Κανόνες μετατροπής Παραδείγματα μετατροπής σε προτασιακή
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων
Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού
Λύσεις Σειράς Ασκήσεων 3
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4-23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 p q r p (q r) (p q) p q r ( r p q) T T T T F T T T T F F F F T T F T T T T T T F F T T T T F T T T F T T F T F T F T T F F T T F T F F F F T F T T Ο πιο πάνω πίνακας παρουσιάζει
Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις
ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2018
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 2 η Σειρά Ασκήσεων Λύσεις Άσκηση 2.1 [1.5 μονάδα] Έστω Τ(x): O x έχει σταθερό υπολογιστή, L(x): O x έχει laptop, S(x): O x έχει smartphone, με τη μεταβλητή
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι
Στοιχεία Προτασιακής Λογικής
Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις (Μαθηματική)
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Λογικοί Πράκτορες Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Πράκτορες βασισμένοι
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/24/2017
4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.
Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός
Λύσεις 1 ης Σειράς Ασκήσεων
Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 α) p q r (p s) ((s t) t) 1. p q r προϋπόθεση 2. p s προσωρινή υπόθεση 3. s t προσωρινή υπόθεση 4. p e 1 5. s ΜP 2,4 6. t ΜP 3,5 7. (s t) t i 3, 6 8. (p s) ((s t) t)
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1
Ασκήσεις στο μάθημα της Λογικής 15 Οκτωβρίου 2015 Άσκηση 1. Να δειχτεί ότι δεν υπάρχουν τύποι μήκους 2,3,6 αλλά κάθε άλλο (θετικό ακέραιο) μήκος είναι δυνατό (άσκηση 2, σελίδα 39) Απόδειξη. Δείχνουμε πρώτα
Επίλυση Resolution. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: H Μέθοδος της Επίλυσης στον Λογικό Προγραμματισμό
Επίλυση Resolution Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: H Μέθοδος της Επίλυσης στον Λογικό Προγραμματισμό ΕΠΛ 412 Λογική στην Πληροφορική 5-1 Λογικός Προγραμματισμός Εξαγωγή συμπερασμάτων
Φυλλάδια 2&3: Κατηγορηµατική Λογική
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδια 2&3: Κατηγορηµατική Λογική ΕΚΕΜΒΡΙΟΣ 2007 ΣΗΜΕΙΩΣΗ: ΟΙ ΛΥΣΕΙΣ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ ΕΧΟΥΝ ΟΘΕΙ ΑΠΟ ΣΥΝΑ ΕΛΦΟΥΣ ΣΑΣ ΤΩΝ ΟΠΟΙΩΝ ΤΑ ΟΝΟΜΑΤΑ ΑΝΑΓΡΑΦΟΝΤΑΙ. A.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017
x < y ή x = y ή y < x.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 (15 μονάδες) Σειρά Προβλημάτων 5 Λύσεις Να δώσετε προδιαγραφές (τριάδες Hoare) για τα πιο κάτω προγράμματα: (α) Ένα πρόγραμμα το οποίο παίρνει ως δεδομένο εισόδου δύο πίνακες Α και Β και ελέγχει
2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και
Υποθετικές προτάσεις και λογική αλήθεια
Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας
Λύσεις Σειράς Ασκήσεων 3
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4 23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:
1 Επικοινωνία: spzygouris@gmail.com 2 Ποιοι είναι οι τελεστές σύγκρισης; Απάντηση Οι τελεστές σύγκρισης είναι: Ίσον = Διάφορο Μικρότερο < Μικρότεροήίσο Μεγαλύτερο > Μεγαλύτερο ή ίσο Που χρησιμοποιούνται
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου Θέμα 1: a. Δείξτε κατά πόσον η πρόταση ((p q) r) ((p q) (q r)) αποτελεί ή όχι ταυτολογία. Κάποιος ιδιόρρυθμος δικαστής ρωτήθηκε κατά
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w
Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης
Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................
Κεφάλαιο 8 Σημασιολογία λογικών προγραμμάτων
Κεφάλαιο 8 Σημασιολογία λογικών προγραμμάτων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η μοντελοθεωρητική σημασιολογία του λογικού προγραμματισμού, δηλαδή αυτή που βασίζεται σε ερμηνείες και μοντέλα, με τελικό
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση /Πίνακες Αληθείας /Λογική Συνεπαγωγή /Ταυτολογίες /Αντινομίες Πλήρης αλγόριθμος μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 3/3/2016 Κατερίνα Δημητράκη
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF
Βασικές Ισοδυναμίες με Άρνηση, Πίνακες Αληθείας, Λογική Συνεπαγωγή, Ταυτολογίες, Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής CNF 2 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2018 Κρεατσούλας
Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Σειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο