Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών"

Transcript

1 Εργαστήριο 5: Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών Η ενότητα αυτή θα αρχίσει παρουσιάζοντας την δυνατότητα ενός κυψελωτού ράδιοσυστήματος να εξασφαλίζει την υπηρεσία σε έναν μεγάλο αριθμό από χρήστες. Όπως και στο τηλεφωνικό σταθερό δίκτυο έτσι και στην κινητή τηλεφωνία η ποιότητα της υπηρεσίας εξασφαλίζεται ανάλογα με το διαθέσιμο ράδιο φάσμα ή/και τον αριθμό των διαθέσιμων καναλιών. Η μοντελοποίηση της κίνησης στατιστικά παρουσιάζεται με τον ακόλουθο τρόπο: 1. Ένας χρήστης έχει πρόσβαση στο σύστημα, και ο οποίος αιτείται μια κλήση, σε μία τυχαία βάση κατά την διάρκεια μιας χρονικής περιόδου, και το διάστημα τ μεταξύ δύο αλλεπάλληλων αιτήσεων από τον ίδιο χρήστη, ακολουθούν μία εκθετική κατανομή. Έτσι η υποκείμενη pdf είναι p ( τ ) = λ exp( λ τ ) τ όπου λ είναι ο μέσος αριθμός από αιτήσεις κλήσεων ανά μονάδα χρόνου (κλήσεις ανά χρόνο) που γίνονται από έναν χρήστη. Αν θεωρήσουμε τον πλυθησμό από U χρήστες, η κατανομή του χρονικού διαστήματος μεταξύ δύο αλλεπάλληλων αιτήσεων, που γίνονται από δύο οποιοσδήποτε χρήστες είναι επίσης εκθετικές. Ο μέσος αριθμός των αιτήσεων είναι λ = Uλ.. Η διάρκεια της κλήσης είναι επίσης μια τυχαία μεταβλητή η οποία ακολουθεί μία εκθετική κατανομή, έτσι ώστε μικρής διάρκειας κλήσεις είναι περισσότερο πιθανόν να συμβούν από ότι οη μεγάλης διάρκειας. Δηλώνοντας την διάρκεια μιας κλήσης με s, η pdf της s είναι f S ( s) = µ exp( µ s) όπου 1/ µ = Η είναι η μέση διάρκεια των κλήσεων. Βασισμένοι σε αυτή την στατιστική συμπεριφορά, ένας μεγάλος αριθμός από χρήστες μπορούν να διαμοιραστούν ένα σχετικά μικρό αριθμό από κανάλια. Για κάθε ένα σταθμό βάσης σε ένα κυψελωτό σύστημα, ένα σύνολο από κανάλια είναι ελεύθερα σε όλους τους χρήστες, οι οποίοι βρίσκονται στην περιοχή κάλυψης του σταθμού βάσης. Επειδή ένας απλός χρήστης δεν απαιτεί σύνδεση συνεχώς με το δίκτυο, για αυτό και τα κανάλια μπορούν να εκχωρούνται σε σχέση με τον χρόνο χρησιμοποίησης ενός καναλιού. Για παράδειγμα όταν μια κλήση τερματίζεται μπορεί τότε το κανάλι να γυρίσει διαθέσιμο στο σύνολο των καναλιών. Παρόλα αυτά, μπορεί ένας χρήστης να μην μπορεί να καθιερώσει μια ράδιοεπικοινωνία με τον σταθμό βάσης λόγω έλλειψης των καναλιών στον σταθμό βάσης. Σε αυτή την περίπτωση, όλα τα κανάλια πρέπει να είναι απασχολημένα από άλλους χρήστες και έτσι η αίτηση της κλήσης να μπλοκαριστεί. Βασισμένοι στην στατιστική συμπεριφορά των χρηστών, τον αριθμό των καναλιών και κάποιων χαρακτηριστικών του συστήματος, μπορούμε να καθορίσουμε την πιθανότητα να μπλοκάρονται όλες οι αιτήσεις του χρήστη λόγω της έλλειψης idle καναλιών. Η πιθανότητα αυτή είναι γνωστή ως blocking probability, και αποτελεί τον βαθμό της υπηρεσίας ή ποιότητα της υπηρεσίας (grade of service or qality of service). Η στατιστική συμπεριφορά ενός απλού χρήστη μπορεί να χαρακτηρισθεί από την κίνηση που παράγει A η οποία υπολογίζεται σε Erlangs A = λ H MobLab5 Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών 1/5

2 Για ένα σύστημα που περιέχει U χρήστες, η συνολική προσφερόμενη κίνηση σε Erlangs είναι A = UA = λη Ένα άλλο σημαντικό στοιχείο στον υπολογισμό της κίνησης ενός δικτύου είναι πως το σύστημα χειρίζεται της μπλοκαρισμένες κλήσεις. Βασικά, υπάρχουν δύο στρατηγικές. Στην πρώτη περίπτωση οι αιτήσεις που μπλοκάρονται καθαρίζονται από το σύστημα (blocked calls cleared) ενώ στην δεύτερη περίπτωση οι κλήσεις που μπλοκάρονται διατηρούνται σε μία ουρά και εξυπηρετούνται όταν υπάρξουν διαθέσιμα κανάλια (blocked calls delayed). Στις παρακάτω ασκήσεις, θεωρούμε την πρώτη περίπτωση όπου οι κλήσεις καθαρίζονται από το σύστημα. Επιπλέον, οι ακόλουθες θεωρήσεις γίνονται: -οι αφίξεις των κλήσεων είναι χωρίς μνήμη που σημαίνει ότι οι κλήσεις δεν σχετίζονται μεταξύ τους άρα και ο κάθε χρήστης μπορεί οποιαδήποτε στιγμή να ξανακαλέσει - υπάρχει ένας άπειρος αριθμός από χρήστες - υπάρχει ένα σύνολο καναλιών Υπό αυτές τις συνθήκες η πιθανότητα αποκλεισμού μια κλήσης P δίνεται από τον τύπο Erlang ως εξής A /! P = k A / k! k = 0 Εργαστηριακή άσκηση 5.1 Δεδομένης της προσφερόμενης κίνησης A και τον αριθμό των καναλιών c, να δημιουργήσετε μια συνάρτηση στο Matlab fnction erb = erlang_b(a,c) για τον υπολογισμό της πιθανότητα μπλοκαρίσματος. Εργαστηριακή άσκηση 5. Με την χρήση της παραπάνω συνάρτησης του Matlab, να υπολογισθεί η πιθανότητα μπλοκαρίσματος των κλήσεων σε σχέση με την προσφερόμενη κίνηση σε Erlangs όταν το δίκτυο διαθέτει =[1,,3,4,5,10,1,0,30,50,100]. Τα αποτελέσματα φαίνονται στην παρακάτω εικόνα. Να τα ελέγξετε με τον πίνακα Erlang που θα σας δωθεί. MobLab5 Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών /5

3 Εργαστηριακή άσκηση 5.3 Θεωρείστε ένα κυψελωτό σύστημα με ένα σύνολο 400 ζευγαριών από reverse και forward κανάλια. Κάθε κυψέλη έχει ακτίνα 5 km, και οι σταθμοί βάσης περιέχουν κεραίες πανκατευθυντικές. Θεωρείστε επίσης ότι ο χρήστης παράγει μία κίνηση των 0.0 Erlang και ότι το μέγεθος της συστοιχίας είναι N=7 κυψέλες. Θεωρώντας ότι η κατανομή των χρηστών είναι ομοιόμορφη στην περιοχή εξυπηρέτησης να βρεθουν - πόσα κανάλια διαθέτει κάθε κυψέλη N - ποια είναι η μέγιστη κίνηση που περιέχει κάθε κυψέλη A, όταν η επιτρεπόμενη πιθανότητα μπλοκαρίσματος είναι P = ο αριθμός των χρηστών που εξυπηρετεί κάθε κυψέλη όταν A U = 0. 0 Να επαναλάβεται τους ίδιους υπολογισμούς για N = 3. Ποιο το συμπέρασμα σας; Δεδομένης της απόστασης επαναχρησιμοποίησης τεκμηριώστε το πρόβλημα που εμφανίζεται όταν Ν=3. Εργαστηριακή άσκηση 5.4 Στην ενότητα «επίδραση της τμηματοποίησης» είδαμε 1. την περίπτωση πανκατευθυντικών κεραιών και. την περίπτωση κατευθυντικών με λοβό εκπομπής 10 ο. Να υπολογήσεται για τις 1 και αντίσοτιχα omni 1. την μέγιστη κίνηση ανά κυψέλη A θεωρώντας N = 4 τον αριθμό των κυψελών, N = 395 τον αριθμό των καναλιών και P = 0. 0 την πιθανότητα αποκλεισμού των κλήσεων. omni. την μέγιστη κίνηση ανά κυψέλη A S στην περίπτωση τμηματοποίησης Εργαστηριακή άσκηση 5.5 MobLab5 Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών 3/5

4 Θεωρείστε την περίπτωση 15 καναλιών τα οποία μπορούν να διεκπεραιώσουν Α=9.01 erlangs. Η περίπτωση αυτή για παράδειγμα ισοδυναμεί για λ=55 και h=10 (55 κλήσεις ανά ώρα με 10 λέπτα ομιλία ανά ώρα). Ποιά η πιθανότητα κάποιος συνδρομητής να μη βρεί ελεύθερο κανάλι (είναι όλα κατειλημμένα από άλλους); Επιβεβαιώστε το με τον πίνακα τιμών του πίνακα Erlang. Εργαστηριακή άσκηση 5.6 Ο παραπάνω τύπος της πιθανότητας μπλοκαρίσματος μιας κλήσης μπορεί να υπολογισθεί και πιο εύκολα με την θεωρία της αναδρομής (recrsive theory). Σε αυτή την περίπτωση η πιθανότητα ισούται με P A * P / i =, i = 1,.., N (1 + A * P / i) Θεωρείστε την περιπτωση ενός κυψελοειδούς συστήματος 10 κυψελών παρέχουν ομοιόμορφη κάλυψη σε 5000 συνδρομητές. Το μοντέλο κίνησης είναι 0.05 erl/sb και GOS=4%. Εχουμε συνολικά 15 erl κίνησης στο σύστημα των 10 κυψελών. Αρα κάθε κυψέλη πρέπει να σχεδιαστεί έτσι ώστε να εξυπηρετήσει 1.5 erl. Πόσα κανάλια απαιτούνται σε κάθε κυψέλη; Επιβεβαιώστε το με τον πίνακα τιμών του πίνακα Erlang. Συνολική Εργαστηριακή Άσκηση Με βάση λοιπόν τα στατιστικά στοιχεία των μετρήσεων κίνησης, υποθέτουμε ότι υπάρχουν W συνδρομητές ανά κυψέλη κατά μέσο όρο και ότι κατά τη διάρκεια της ώρας μέγιστης κίνησης ένα ποσοστό η c από αυτούς κάνει ή δέχεται μία κλήση μέσης διάρκειας h mintes. Ετσι λοιπόν ο συνολικός αριθμός των κλήσεων στη διάρκεια της ώρας μέγιστης κίνησης είναι λ = W και η προσφερόμενη κίνηση σε erlangs είναι ίση με Α = λ h. η c Από τους πίνακες του Erlang λοιπόν βρίσκουμε ότι τα 15 κανάλια μπορούν να διεκπεραιώσουν Α=9.01 erlangs με πιθανότητα % κάποιος συνδρομητής να μη βρει ελεύθερο κανάλι (είναι όλα κατειλημμένα από άλλους). Από τις παραπάνω σχέσεις προκύπτει ότι: οπότε A = λ h = η W h = 9.01 c W = 9.01/( η T ) c MobLab5 Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών 4/5

5 Μέχρι στιγμής συσχετίσαμε τον αριθμό των συνδρομητών ανά κυψέλη με τη μέση διάρκεια Τ μιας κλήσεως σε min και το ποσοστό των συνδρομητών ηc που καλούν στην ώρα μέγιστης κίνησης. Οι μετρήσεις δείχνουν ότι Τ= min περίπου. Από τις μετρήσεις επίσης μπορούμε να καθορίσουμε και την μέση τιμή του ηc. Για την ολοκλήρωση των επιχειρημάτων μας υποθέτουμε nc=0.6 (το 60% των συνδρομητών επιχειρούν κλήση στην ώρα μέγιστης κίνησης). Ετσι λοιπόν έχουμε τελικά W = 9.01/(0.6* ) = Βλέπουμε λοιπόν ότι έτσι όπως σχεδιάζουμε το δίκτυό μας (% πιθανότητα κατά την απόπειρα κλήσης να βρεθούν όλα τα κυκλώματα κατειλημμένα) τα 15 κανάλια μιας κυψέλης μπορούν να υποστηρίξουν 450 συνδρομητές. Αν τώρα η κυψέλη έχει ακτίνα R (τη θεωρούμε όπως αναφέραμε παραπάνω κυκλική) η πυκνότητα των χρηστών που μπορεί να υποστηρίξει το δίκτυο είναι 450 / πr χρήστες ανά Km (μετρούμε την ακτίνα R σε Km). Μετρήσεις μας όμως της γεωγραφικής περιοχής που θέλουμε να καλύψουμε με την κυψέλη έχουν δείξει ότι υπάρχουν U χρήστες/ Km. Ετσι έχουμε U = 450 /( πr Και από τη σχέση αυτή υπολογίζουμε την ακτίνα R σε Km. Για παράδειγμα αν η έρευνα αγοράς έδειξε ότι υπάρχουν U=800χρήστες/ Km τότε από την παραπάνω σχέση προκύπτει R=0.43 Km. Βρήκαμε λοιπόν ότι η κυψέλη του δικτύου μας θα έχει ακτίνα περίπου 500 μέτρα, αν θέλουμε να εξυπηρετήσουμε την τηλεπικοινωνιακή κίνηση των συνδρομητών που βρίσκονται σ αυτήν με τα χαρακτηριστικά (προφίλ συνδρομητών) που αναφέραμε. ) MobLab5 Υπολογισμός της Κίνησης στα Δίκτυα Κινητών Επικοινωνιών 5/5

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Διαστασιοποίηση Ασύρματου Δικτύου Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Τηλεπικοινωνιακή κίνηση στα κυψελωτά συστήματα Βασικός στόχος

Διαβάστε περισσότερα

ίκτυα Επικοινωνίας Υπολογιστών

ίκτυα Επικοινωνίας Υπολογιστών ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 3 4 (Μαρκοβιανά συστήματα απωλειών Εφαρμογή των τύπων Erlng και Enget) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Άσκηση 1. Ερώτηση 1: ο αριθμός των συνδρομητών που θα εξυπηρετηθούν στη συγκεκριμένη τυχαία κυψέλη.

Άσκηση 1. Ερώτηση 1: ο αριθμός των συνδρομητών που θα εξυπηρετηθούν στη συγκεκριμένη τυχαία κυψέλη. Άσκηση 1 Ένα δίκτυο κινητής τηλεφωνίας τεχνολογίας GSM, ελέγχεται κατά την ώρα αιχμής (busy hour) από πλευράς εξυπηρέτησης συνδρομητών. Συγκεκριμένα, ο έλεγχος πραγματοποιείται σε μια τυχαία κυψέλη, στην

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ Τέλεια δέσµη: όλες οι γραµµές της είναι προσπελάσιµες από οποιαδήποτε είσοδο. Ατελής δέσµη: όλες οι γραµµές της δεν είναι προσπελάσιµες από οποιαδήποτε είσοδο

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου

Κινητές επικοινωνίες. Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου Κινητές επικοινωνίες Κεφάλαιο 7 Άσκηση επανάληψης Καθολική σχεδίαση δικτύου 1 Σχεδίαση συστήματος Η εταιρία μας θέλει να καλύψει με κυψελωτό σύστημα τηλεφωνίας μία πόλη επιφάνειας 20000 km 2 (συχνότητα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Προβλήματα 11 ου Κεφαλαίου

Διαβάστε περισσότερα

ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών

ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών Περίληψη Κυψελωτή δομή Επαναχρησιμοποίηση συχνοτήτων Μονοδιάστατα κυψελωτά συστήματα Κυψελωτά συστήματα

Διαβάστε περισσότερα

Κινητές Επικοινωνίες

Κινητές Επικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Κινητές Επικοινωνίες Ενότητα 2: Βασικές Αρχές Σχεδίασης Ασύρματων και Κυψελωτών Συστημάτων Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών

Διαβάστε περισσότερα

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τις βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τις βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τις βασικές

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Κλήσεις σε εξέλιξη 22/6/2013 ΘΕΩΡΙΑ ΚΙΝΗΣΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ Θ. ΣΦΗΚΟΠΟΥΛΟΣ 1 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ

Διαβάστε περισσότερα

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου

ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου ιαστασιοποίηση του Ασύρµατου Μέρους του ικτύου Συγκέντρωση/Οµαδοποίηση Πόρων Τα συστήµατα απευθύνονται σε µεγάλο πλήθος χρηστών Η συγκέντρωση (trunking) ή αλλιώς οµαδοποίηση των διαθέσιµων καναλιών επιτρέπει

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση

Κινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση Κινητές επικοινωνίες Εργαστηριακό Μάθημα 1 Κυψελοποίηση 1 Αρχική Μορφή της Αρχιτεκτονικής του Τηλεφωνικού Συστήματος Κινητές Υπηρεσίες πρώτης γενιάς το σχέδιο με το οποίο έχει δομηθεί είναι παρόμοιο με

Διαβάστε περισσότερα

Εργαστήριο 6: Προσομοίωση ενός Κυψελωτού ράδιο-συστήματος

Εργαστήριο 6: Προσομοίωση ενός Κυψελωτού ράδιο-συστήματος Εργαστήριο 6: Προσομοίωση ενός Κυψελωτού ράδιο-συστήματος Η μεθοδολογία προσομοίωσης αποτελείται από την μοντελοποίηση μιας στιγμής της θέσης των κινητών σταθμών. Σε κάθε στιγμή, τα στατιστικά (μέση τιμή

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παραδείγματα χρήσης ουρών Μ/Μ/c/K και αξιολόγησης συστημάτων αναμονής Β. Μάγκλαρης, Σ. Παπαβασιλείου 5-6-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Θεμελιώδεις σχέσεις Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή βασικών μοντέλων τηλεπικοινωνιακής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: Συστήματα Τηλεπικοινωνιών / Εργαστήριο

ΜΑΘΗΜΑ: Συστήματα Τηλεπικοινωνιών / Εργαστήριο ΜΑΘΗΜΑ: Συστήματα Τηλεπικοινωνιών / Εργαστήριο ΔΙΔΑΣΚΩΝ: Βανδίκας Ιωάννης Ε.ΔΙ.Π. Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ίκτυα Κινητών και Προσωπικών Επικοινωνιών

ίκτυα Κινητών και Προσωπικών Επικοινωνιών ίκτυα Κινητών και Προσωπικών Επικοινωνιών Βασικές αρχές των κυψελωτών συστημάτων κινητών επικοινωνιών Περίληψη Κυψελωτή δομή Επαναχρησιμοποίηση συχνοτήτων Μονοδιάστατα κυψελωτά συστήματα Κυψελωτά συστήματα

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 5 Σχεδιασμός Δικτύου

Κινητές επικοινωνίες. Κεφάλαιο 5 Σχεδιασμός Δικτύου Κινητές επικοινωνίες Κεφάλαιο 5 Σχεδιασμός Δικτύου 1 Προϋπολογισμός ισχύος ραδιοζεύξης (Ιink budget) Συνυπολογίζοντας διάφορες παραμέτρους (απώλειες καλωδίωσης, χαρακτηριστικά κεραιών κτλ), υπολογίζουμε

Διαβάστε περισσότερα

Άσκηση 1. Απάντηση Άσκησης 1

Άσκηση 1. Απάντηση Άσκησης 1 Άσκηση 1 Σε μια χώρα υπάρχουν δύο (2) Πάροχοι κινητών επικοινωνιών. Με βάση το πρότυπο του κυψελωειδούς δικτύου κινητής τηλεφωνίας GSM, να πραγματοποιηθεί η καταχώρηση συχνοτήτων (channel assignment) για

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές:

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Μοντέλα Ουρών Markov και Εφαρμογές: Ουρά Μ/Μ/2 Σύστημα Μ/Μ/Ν/Κ, Erlang-C Σύστημα Μ/Μ/c/c, Erlang-B Ανάλυση & Σχεδιασμός Τηλεφωνικών Κέντρων Βελτιστοποίηση Μέσου Μήκους

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τις παρεμβολές

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 1 Κυψελωτά Συστήματα

Κινητές επικοινωνίες. Κεφάλαιο 1 Κυψελωτά Συστήματα Κινητές επικοινωνίες Κεφάλαιο 1 Κυψελωτά Συστήματα Ιστορικά στοιχεία 1940 1946 1975 1985 1 ο ασύρματο τηλέφωνο από την Bell System 1 η υπηρεσία παροχής κινητής τηλεφωνίας (Missouri, USA) 1 o κυψελωτό σύστημα

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 4: Eφαρμογή των τύπων Erlang και Engset

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 4: Eφαρμογή των τύπων Erlang και Engset Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 4: Eφαρμογή των τύπων Erlang και Engset Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις

Διαβάστε περισσότερα

Εργαστήριο 9: Άλλες Λειτουργίες στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 9: Άλλες Λειτουργίες στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 9: Άλλες Λειτουργίες στα Δίκτυα Κινητών Επικοινωνιών 9.1 Ανάθεση καναλιών (channel allocation) Η κατανομή καναλιών σχετίζεται με την ανάθεση το καναλιών στις κυψέλες ενός κυψελωτού δικτύου.

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 1 2 (Εισαγωγή Θεμελιώδεις σχέσεις) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα 1.

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 11 13 (Συστήματα υπερροής Εναλλακτική δρομολόγηση - Προσομοίωση) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 1/3/2017 ΠΕΡΙΕΧΟΜΕΝΑ (1/3) http://www.netmode.ntua.gr/main/index.php?option=com_content&task=view& id=130&itemid=48

Διαβάστε περισσότερα

Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία

Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία Τηλεματική, Διαδίκτυα και Κοινωνία Κυψελωτή Τηλεφωνία 1 Κυψελωτή Τηλεφωνία Για την ανάπτυξη νέων δικτύων κινητών επικοινωνιών υιοθετήθηκε η σχεδιαστική αρχή της κυψελωτής τηλεφωνίας που παρά την περιορισμένη

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής & Δρ. Στυλιανός Π. Τσίτσος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2)

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή (2/2) Επισκόπηση Γνώσεων Πιθανοτήτων (1/2) Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 8/3/2017 ΠΑΡΑΜΕΤΡΟΙ (1/4) (Επανάληψη) Ένταση φορτίου (traffic intensity)

Διαβάστε περισσότερα

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής

Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Κεφάλαιο 6: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Γιάννης Γαροφαλάκης Αν. Καθηγητής ιατύπωση του προβλήματος (1) Τα συστήματα αναμονής (queueing systems), βρίσκονται

Διαβάστε περισσότερα

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΙΝΗΤΕΣ & ΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ 3 Ο ΚΕΦΑΛΑΙΟ 1 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΙΣΑΓΩΓΉ Συµβατικά συστήµατα: µεγάλη εριοχή κάλυψης υψηλή εκ εµ όµενη ισχύ αρεµβολές αδυναµία

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 7 8 (Πολυδιάστατη Κίνηση Αναδρομικός τύπος Kaufman- Roberts) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Κυψέλη-Σταθµός Βάσης-Εµβέλεια

Κυψέλη-Σταθµός Βάσης-Εµβέλεια Κυψέλη-Σταθµός Βάσης-Εµβέλεια P T downlink Uplink ή downlink P T uplink P P Προσεγγιστ ικό µοντέλο απωλειών () : P P T k h r m 4 h f b c P min max P T / P min και f(r γ ) άρα r max f( max max ) Οκτ-07

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αρχές και Σχεδίαση Κυψελωτών Συστημάτων Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Ένα κυψελωτό σύστημα (πρόταση

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 1: Εισαγωγή. Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 1: Εισαγωγή. Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 1: Εισαγωγή Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου Θεωρία Τηλεπικοινωνιακής

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 1: Προσομοίωση ενός συστήματος αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Διατύπωση του προβλήματος

Διαβάστε περισσότερα

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων

ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Ασκήσεις για τη διαχείριση ραδιοδιαύλων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για τη διαχείριση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little. Β. Μάγκλαρης, Σ. Παπαβασιλείου ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Β. Μάγκλαρης, Σ. Παπαβασιλείου 8-5-2014 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Παράμετροι Συστημάτων Αναμονής Τύπος Little Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 2/3/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟΧΟΙ ΚΥΨΕΛΩΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΡΑ ΙΟΚΑΛΥΨΗ ΚΑΙ ΚΙΝΗΤΙΚΟΤΗΤΑ - Ευρεία Ραδιοκάλυψη Εξωτερικών χώρων -Βάθος Ραδιοκάλυψης -Interwoking µεταξύ συστηµάτων ΧΩΡΗΤΙΚΟΤΗΤΑ -Μεγάλος αριθµός συνδροµητών -Μικρή απόρριψη

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ)

Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Δίκτυα Επικοινωνίας Υπολογιστών Ενότητα 5: Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης (Στοιχεία ΘΤΚ) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1

Εργαστηριακή Άσκηση Το σύστημα αναμονής M/G/1 Εργαστηριακή Άσκηση 2011-2012 Το σύστημα αναμονής M/G/1 Γιάννης Γαροφαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ. Διδάκτορας Σκοπός της παρούσας εργασίας είναι η εξερεύνηση των βασικών ιδιοτήτων

Διαβάστε περισσότερα

Οι βασικές βαθμίδες του συστήματος των δορυφορικών επικοινωνιών δίνονται στο παρακάτω σχήμα :

Οι βασικές βαθμίδες του συστήματος των δορυφορικών επικοινωνιών δίνονται στο παρακάτω σχήμα : Εισαγωγικά Τα δορυφορικά δίκτυα επικοινωνίας αποτελούν ένα σημαντικό τμήμα των σύγχρονων τηλεπικοινωνιακών συστημάτων. Οι δορυφόροι παρέχουν τη δυνατότητα κάλυψης μεγάλων γεωγραφικών περιοχών. Η δυνατότητα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Επικοινωνιών, Ηλεκτρονικής & Συστημάτων Πληροφορικής Εργαστήριο Διαχείρισης και Βέλτιστου Σχεδιασμού Δικτύων - NETMODE

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 11: Συστήματα υπερροής

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 11: Συστήματα υπερροής Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 11: Συστήματα υπερροής Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου Θεωρία

Διαβάστε περισσότερα

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec Τµήµα Μηχανικών Υπολογιστών, Τηλεπικοινωνιών και ικτύων ΗΥ 44: Ασύρµατες Επικοινωνίες Εαρινό Εξάµηνο -3 ιδάσκων: Λέανδρος Τασιούλας η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Θεωρήστε ένα κυψελωτό σύστηµα, στο οποίο ισχύει το

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός:

Ονοματεπώνυμο: Ερώτημα: Σύνολο Μονάδες: Βαθμός: ΕΤΥ: Ανάλυση Απόδοσης Πληροφοριακών Συστημάτων Χειμερινό Εξάμηνο 2014-15 Τελική Εξέταση 28/02/15 Διάρκεια Εξέτασης: 3 Ώρες Ονοματεπώνυμο: Αριθμός Μητρώου: Υπογραφή: Ερώτημα: 1 2 3 4 5 6 Σύνολο Μονάδες:

Διαβάστε περισσότερα

ΚΥΨΕΛΩΤΑ ΣΥΣΤΗΜΑΤΑ CELLULAR SYSTEM. Alexandros-Apostolos A. Boulogeorgos WCS GROUP, EE Dept, AUTH

ΚΥΨΕΛΩΤΑ ΣΥΣΤΗΜΑΤΑ CELLULAR SYSTEM. Alexandros-Apostolos A. Boulogeorgos   WCS GROUP, EE Dept, AUTH ΚΥΨΕΛΩΤΑ ΣΥΣΤΗΜΑΤΑ CELLULAR SYSTEM Alexandros-Apostolos A. Boulogeorgos e-mail: ampoulog@auth.gr WCS GROUP, EE Dept, AUTH ΑΝΑΛΥΣΗ ΤΗΣ ΚΥΨΕΛΩΤΗΣ ΙΔΕΑΣ Κυψέλη: είναι η γεωγραφική περιοχή που εξυπηρετείται

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 9 0 ( ίκτυα απωλειών μορφής γινομένου Προσέγγιση μειωμένου φορτίου) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τοµέας Επικοινωνιών, Ηεκτρονικής & Συστηµάτων Πηροφορικής Εργαστήριο ιαχείρισης & Βετίστου Σχεδιασµού ικτύων - NETMODE Πουτεχνειούποη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εφαρμογές Θεωρήματος Jackson: (i) Δίκτυα Μεταγωγής Πακέτου (ii) Υπολογιστικά Μοντέλα Πολυεπεξεργασίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 3/5/2017 ΑΝΟΙΚΤΑ ΔΙΚΤΥΑ

Διαβάστε περισσότερα

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων

Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C. Κατανομή εξυπηρετήσεων Συμβολισμός Kedel Χρησιμοποιείται για να δηλώσουμε τους διάφορους τύπους ουρών. A/B/C Κατανομή αφίξεων Κατανομή εξυπηρετήσεων Αριθμός των εξυπηρετητών Όπου Α,Β μπορεί να είναι: M κατανομή Posso G κατανομή

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Διαδικασίες Birth-Death, Ουρές Markov: 1. Διαγράμματα Μεταβάσεων Εργοδικών Καταστάσεων 2. Εξισώσεις Ισορροπίας 3. Προσομοιώσεις Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr

Διαβάστε περισσότερα

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 3: Μοντέλα Θεωρίας Αναμονής Γαροφαλάκης Ιωάννης Πολυτεχνική Σχολή Τμήμα Μηχ/κών Η/Υ & Πληροφορικής Σκοποί ενότητας Κατά τη διάρκεια των καθημερινών μας

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ ΙΚΤΥΟΥ GSM ΕΝΤΟΣ ΤΟΥ ΟΛΥΜΠΙΑΚΟΥ ΣΤΑ ΙΟΥ ΚΑΤΑ ΤΗ ΙΕΞΑΓΩΓΗ ΤΩΝ ΟΛΥΜΠΙΑΚΩΝ

ΜΕΛΕΤΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ ΙΚΤΥΟΥ GSM ΕΝΤΟΣ ΤΟΥ ΟΛΥΜΠΙΑΚΟΥ ΣΤΑ ΙΟΥ ΚΑΤΑ ΤΗ ΙΕΞΑΓΩΓΗ ΤΩΝ ΟΛΥΜΠΙΑΚΩΝ ΜΕΛΕΤΗ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΗΣ ΚΙΝΗΣΗΣ ΙΚΤΥΟΥ GSM ΕΝΤΟΣ ΤΟΥ ΟΛΥΜΠΙΑΚΟΥ ΣΤΑ ΙΟΥ ΚΑΤΑ ΤΗ ΙΕΞΑΓΩΓΗ ΤΩΝ ΟΛΥΜΠΙΑΚΩΝ ΑΓΩΝΩΝ ΤΟΥ 2004 Αντώνης Γ. ηµητρίου, Θεόδωρος Γ. Βασιλειάδης, Γεώργιος. Σεργιάδης Αριστοτέλειο Πανεπιστήµιο

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 5: Μαρκοβιανό σύστημα αναμονής Μ/Μ/s Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις :

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ6 / ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ # - Λύσεις Ασκήσεων Θέµα Α Έστω T t ο µέσος χρόνος µετάδοσης ενός πλαισίου δεδοµένων και Τ f, αντίστοιχα, ο χρόνος µετάδοσης πλαισίου επιβεβαίωσης αρνητικής, na, ή θετικής ac

Διαβάστε περισσότερα

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x).

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Κεφάλαιο 2, άσκηση 1: Δίνονται οι συναρτήσεις: α) 2, β), Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Λύση : Για να είναι

Διαβάστε περισσότερα

Συμφωνία Διασύνδεσης - MyTelco Ltd. Υπόδειγμα Προσφοράς Διασύνδεσης και Παροχέα. Παράρτημα 3 Κόμβοι Διασύνδεσης

Συμφωνία Διασύνδεσης - MyTelco Ltd. Υπόδειγμα Προσφοράς Διασύνδεσης και Παροχέα. Παράρτημα 3 Κόμβοι Διασύνδεσης Συμφωνία Διασύνδεσης - MyTelco Ltd Υπόδειγμα Προσφοράς Διασύνδεσης και Παροχέα Παράρτημα 3 Κόμβοι Διασύνδεσης ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΡΤΗΜΑ 3 - ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ MYTELCO 2 1. ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ MYTELCO 2 2. ΔΙΑΣΤΑΣΙΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Η Ουρά Μ/Μ/1/N Σφαιρικές & Τοπικές Εξισώσεις Ισορροπίας Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 22/3/2017 ΔΙΑΔΙΚΑΣΙΑ ΓΕΝΝΗΣΕΩΝ ΘΑΝΑΤΩΝ (1/4) Birth Death Processes

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ ΚΑΙ ΑΡΧΕΣ ΔΙΑΣΥΝΔΕΣΗΣ

ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ ΚΑΙ ΑΡΧΕΣ ΔΙΑΣΥΝΔΕΣΗΣ ΠΑΡΑΡΤΗΜΑ 3 ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ ΚΑΙ ΑΡΧΕΣ ΔΙΑΣΥΝΔΕΣΗΣ 1. ΚΟΜΒΟΙ ΔΙΑΣΥΝΔΕΣΗΣ MTN 1.1 Η ΜΤΝ προσφέρει τις επιλογές διασύνδεσης στο Σταθερό Δημόσιο Τηλεφωνικό Δίκτυό της και στο Κινητό Δημόσιο Δίκτυο Ηλεκτρονικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Εισαγωγή Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr Χρύσα Παπαγιάννη chrisap@noc.ntua.gr 24/2/2016 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1 Απόδειξη Τύπου Little Ιδιότητα PASTA (Poisson Arrivals See Time Averages) Βασικοί

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

Πιθανότητα Διακοπής Λειτουργίας Σύνδεσης σε Κυψελωτά Συστήματα Επικοινωνιών

Πιθανότητα Διακοπής Λειτουργίας Σύνδεσης σε Κυψελωτά Συστήματα Επικοινωνιών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων Πιθανότητα Διακοπής Λειτουργίας Σύνδεσης σε Κυψελωτά Συστήματα Επικοινωνιών Άννα Ν. Γεώργιζα Μεταπτυχιακή Διπλωματική Εργασία

Διαβάστε περισσότερα

Επεξεργασία Στοχαστικών Σημάτων

Επεξεργασία Στοχαστικών Σημάτων Επεξεργασία Στοχαστικών Σημάτων Τυχαίες μεταβλητές Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η απεικόνιση των εκβάσεων ενός πειράματος

Διαβάστε περισσότερα

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ

3.ΟΥΡΕΣ ΑΝΑΜΟΝΗΣ www.olieclaroom.gr.ουρεσ ΑΝΑΜΟΝΗΣ Ως ουρά αναμονής ή ισοδύναμα ένα σύστημα εξυπηρέτησης, ορίζεται το σύστημα το οποίο παρέχει εξυπηρέτηση σε πελάτες που προσέρχονται σε αυτό. Πρόκειται για τη μοντελοποίηση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΑΛΛΑΚΤΙΚΗΣ ΡΟΜΟΛΟΓΗΣΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΑΛΛΑΚΤΙΚΗΣ ΡΟΜΟΛΟΓΗΣΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΙΚΤΥΩΝ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΝΑΛΛΑΚΤΙΚΗΣ ΡΟΜΟΛΟΓΗΣΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ελευθερία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Άσκηση Προσομοίωσης Στατιστικές Εξόδου Ουράς Μ/Μ/1 - Θεώρημα Burke Ανοικτά Δίκτυα Ουρών Μ/Μ/1 - Θεώρημα Jackson Βασίλης Μάγκλαρης maglaris@netmode.ntua.gr 26/4/2017 ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 10: Προσέγγιση μειωμένου φορτίου

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 10: Προσέγγιση μειωμένου φορτίου Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 0: Προσέγγιση μειωμένου φορτίου Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών

Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Δίκτυα Κινητών και Προσωπικών Επικοινωνιών Κυψελωτά Συστήματα και Παρεμβολές Άγγελος Ρούσκας Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Περιβάλλον με θόρυβο και παρεμβολές Περιβάλλον δύο πομποδεκτών

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 12: Βέλτιστος σχεδιασμός εναλλακτικής δρομολόγησης

Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 12: Βέλτιστος σχεδιασμός εναλλακτικής δρομολόγησης Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 2: Βέλτιστος σχεδιασμός εναλλακτικής δρομολόγησης Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο:

Διαβάστε περισσότερα

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Χρονοπρογραμματισμός Εργαστηριακές Ασκήσεις

ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ. Χρονοπρογραμματισμός Εργαστηριακές Ασκήσεις ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Χρονοπρογραμματισμός Εργαστηριακές Ασκήσεις Υλικό από: Κ Διαμαντάρας, Λειτουργικά Συστήματα, Τμήμα Πληροφορικής ΤΕΙΘ Σύνθεση Κ.Γ. Μαργαρίτης, Τμήμα Εφαρμοσμένης Πληροφορικής, Πανεπιστήμιο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8

ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8 ΦΡΟΝΤΙΣΤΗΡΙΑ 7 ΚΑΙ 8 Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με Beroull ( p ), p, Να εξάγετε α) τη συνάρτηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα