Λύσεις Σειράς Ασκήσεων 3
|
|
- Κόρη Κωνσταντόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4-23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας να δώσετε τη γενικότερη ενοποιήτρια που προκύπτει σε περίπτωση που υπάρχει μια τέτοια ενοποιήτρια, διαφορετικά, να εξηγήσετε γιατί δεν υπάρχει. (α) K (x, h(z), f(x,x)) K (f(y,y), y, f(z, z)) Πιο κάτω φαίνεται η εκτέλεση του αλγορίθμου, όπου υπογραμμισμένοι παρουσιάζονται οι όροι μέχρι το σημείο που σταματά η επεξεργασία σε κάθε επανάληψη. Επανάληψη 1 Αρχική κατάσταση: K (x, h(z), f(x,x)) Αντικατάσταση: σ={f(y,y)/x} Νέα κατάσταση: K (f(y,y), h(z), f(f(y,y), f(y,y))) Επανάληψη 2 Αρχική κατάσταση: K (f(y,y), h(z), f(f(y,y), f(y,y))) Αντικατάσταση: σ={h(z)/y, f(y,y)/x} K (f(y,y), y, f(z, z)) Νέα κατάσταση: K (f(h(z), h(z)), h(z), f(f(h(z), h(z)), f(h(z), h(z)))) Επανάληψη 3 K (f(h(z), h(z)), h(z), f(z, z)) Αρχική κατάσταση: K (f(h(z), h(z)), h(z), f(f(h(z), h(z)), f(h(z), h(z)))) K (f(h(z), h(z)), h(z), f(z, z)) K (f(y,y), y, f(z, z)) K (f(y,y), y, f(z, z)) O όρος z δεν είναι ενοποιήσιμος με τον όρο h(z). Επομένως ο αλγόριθμος τερματίζει με την απάντηση ότι οι δύο όροι δεν είναι ενοποιήσιμοι. (β) K (h(x), x, f(x,y)) K (y, h(z), f(x, h(h(z)))) Επανάληψη 1 Αρχική κατάσταση: K(h(x), x, f(x,y)) Αντικατάσταση: σ={h(x)/y} Νέα κατάσταση: K (h(x), x, f(x,h(x))) K (y, h(z), f(x, h(h(z)))) K (h(x), h(z), f(x, h(h(z)))) Επανάληψη 2 Αρχική κατάσταση: K (h(x), x, f(x,h(x))) Αντικατάσταση: σ={h(z)/x, h(x)/y } Νέα κατάσταση: K (h(h(z)), h(z), f(h(z),h(h(z)))) K (h(x), h(z), f(x, h(h(z)))) K (h(h(z)), h(z), f(h(z), h(h(z)))) Επανάληψη 3 Αρχική κατάσταση: K (h(h(z)), h(z), f(h(z),h(h(z)))) K (h(h(z)), h(z), f(h(z), h(h(z)))) Οι όροι έχουν ενοποιηθεί. Γενικότερη ενοποιήτρια αντικατάσταση: σ={h(z)/x, h(x)/y } Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 1
2 (γ) K (x, f(h(z),x),a) K (h(y), f(x, h(a)), z) Επανάληψη 1 Αρχική κατάσταση: K (x, f(h(z),x),a) K (h(y), f(x, h(a)), z) Αντικατάσταση: σ={h(y)/x} Νέα κατάσταση: K (h(y), f(h(z),h(y)),a) K (h(y), f(h(y), h(a)), z) Επανάληψη 2 Αρχική κατάσταση: K (h(y), f(h(z),h(y)),a) K (h(y), f(h(y), h(a)), z) Αντικατάσταση: σ={y/z,h(y)/x} Νέα κατάσταση: K (h(y), f(h(y),h(y)),a) K (h(y), f(h(y), h(a)), y) Επανάληψη 3 Αρχική κατάσταση: K (h(y), f(h(y),h(y)),a) K (h(y), f(h(y), h(a)), y) Αντικατάσταση: σ={a/y,y/z,h(y)/x} Νέα κατάσταση: K (h(a), f(h(a),h(a)),a) K (h(a), f(h(a), h(a)), a) Επανάληψη 4 Αρχική κατάσταση: K (h(a), f(h(a),h(a)),a) K (h(a), f(h(a), h(a)), a) Οι όροι έχουν ενοποιηθεί. Γενικότερη ενοποιήτρια αντικατάσταση: σ={a/y,y/z,h(y)/x} (δ) K (f(g(a,b),z), x, a) K (f(x,a), g(y,y),z) Επανάληψη 1 Αρχική κατάσταση: K (f(g(a,b),z), x, a) Αντικατάσταση: σ={g(a,b)/x} Νέα κατάσταση: K (f(g(a,b),z), g(a,b), a) Επανάληψη 2 Αρχική κατάσταση: K (f(g(a,b),z), g(a,b), a) Αντικατάσταση: σ={a/z, g(a,b)/x} Νέα κατάσταση: K (f(g(a,b),a), g(a,b), a) Επανάληψη 3 Αρχική κατάσταση: K (f(g(a,b),a), g(a,b), a) Αντικατάσταση: σ={a/y, a/z, g(a,b)/x} Νέα κατάσταση: K (f(g(a,b),a), g(a,b), a) K (f(x,a), g(y,y),z) K (f(g(a,b),a), g(y,y),z) K (f(g(a,b),a), g(y,y),z) K (f(g(a,b),a), g(y,y),a) K (f(g(a,b),a), g(y,y),a) K (f(g(a,b),a), g(a,a),a) Επανάληψη 4 Αρχική κατάσταση: K (f(g(a,b),a), g(a,b), a) K (f(g(a,b),a), g(a,a),a) O όρος a δεν είναι ενοποιήσιμος με τον όρο b. Επομένως ο αλγόριθμος τερματίζει με την απάντηση ότι οι δύο όροι δεν είναι ενοποιήσιμοι. Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 2
3 Άσκηση 2 Να αποδείξετε τα πιο κάτω επακόλουθα χρησιμοποιώντας τη Μέθοδο της Επίλυσης. (α) x (P(x) y Q(y)) ( x)ρ(x) ( y) Q(y) To επακόλουθο που θέλουμε να αποδείξουμε είναι το: x (P(x) y Q(y)) (( x)ρ(x) ( y) Q(y)) Ξεκινούμε θεωρώντας την άρνηση του επακόλουθου την οποία μετατρέπουμε σε κανονική μορφή Prenex: [ x (P(x) y Q(y)) (( x)ρ(x) ( y) Q(y))] [ x (P(x) y Q(y)) (( x)ρ(x) ( y) Q(y))] x (P(x) y Q(y)) (( x)ρ(x) ( y) Q(y)) x (P(x) y Q(y)) (( x)ρ(x) ( y) Q(y)) x ( P(x) y Q(y)) ( ( x)ρ(x) ( y) Q(y)) x ( P(x) y Q(y)) ( ( x)ρ(x) ( y) Q(y)) x ( P(x) y Q(y)) ( x Ρ(x) y Q(y)) x ( P(x) y Q(y)) ( z Ρ(z) w Q(w)) z w x y ( P(x) Q(y)) Ρ(z) Q(w) Στη συνέχεια εφαρμόζουμε απαλοιφή των ποσοδεικτών: ( P(x) Q(y)) Ρ(a) Q(b) Σε προτασιακή μορφή ο πιο πάνω τύπος έχει ως ακολούθως: {{ P(x), Q(y)}, {Ρ(a)}, { Q(b}} Η Μέθοδος της Επίλυσης επιφέρει διάψευση στο προτασιακό σύνολο όπως φαίνεται στο δέντρο που ακολουθεί: Ρ(a) P(x), Q(y) Q(b) Q(y) Συνεπώς, ο συλλογισμός είναι έγκυρος. (β) x [K(x,a) L(x,b)], x [K(x,a) ( F(x) L(x,b))] K(b,a) F(b) To επακόλουθο που θέλουμε να αποδείξουμε είναι το: x [K(x,a) L(x,b)] x [K(x,a) ( F(x) L(x,b))] (K(b,a) F(b)) Ξεκινούμε θεωρώντας την άρνηση του επακόλουθου την οποία μετατρέπουμε σε κανονική μορφή Prenex: Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 3
4 [ x [K(x,a) L(x,b)] x [K(x,a) ( F(x) L(x,b))] (K(b,a) F(b))] [ ( x [K(x,a) L(x,b)] x [K(x,a) ( F(x) L(x,b))] ) (K(b,a) F(b))] ( x [K(x,a) L(x,b)] x [K(x,a) ( F(x) L(x,b))] ) (K(b,a) F(b)) x [K(x,a) L(x,b)] x [K(x,a) ( F(x) L(x,b))] (K(b,a) F(b)) x [K(x,a) L(x,b)] x [ K(x,a) ( F(x) L(x,b))] ( K(b,a) F(b)) x [K(x,a) L(x,b)] x [ K(x,a) (F(x) L(x,b))] ( K(b,a) F(b)) x [ K(x,a) L(x,b)] x [ K(x,a) (F(x) L(x,b))] (K(b,a) F(b)) x [ K(x,a) L(x,b)] y [ K(y,a) F(y) L(y,b)] K(b,a) F(b) x y [( K(x,a) L(x,b)) ( K(y,a) F(y) L(y,b)) K(b,a) F(b)] Στη συνέχεια εφαρμόζουμε απαλοιφή των ποσοδεικτών: ( K(x,a) L(x,b)) ( K(y,a) F(y) L(y,b)) K(b,a) F(b) Σε προτασιακή μορφή ο πιο πάνω τύπος έχει ως ακολούθως: {{ K(x,a) L(x,b)},{ K(y,a) F(y) L(y,b)}, {K(b,a)}, { F(b)}} Η Μέθοδος της Επίλυσης επιφέρει διάψευση στο προτασιακό σύνολο όπως φαίνεται στο δέντρο που ακολουθεί: K(x,a), L(x,b) K(y,a), F(y),L(y,b) F(b) K(y,a), F(y) K(b,a) K(b,a) Άσκηση 3 Κατ αρχή, μεταφράζουμε τις προτάσεις στον Κατηγορηματικό Λογισμό: Αν η αρετή είναι διδακτή τότε είτε υπάρχουν δάσκαλοι της αρετής που είναι επαγγελματίες είτε υπάρχουν δάσκαλοι της αρετής που είναι ερασιτέχνες. Α (ΕΠ ΕΡ) Αν υπάρχουν επαγγελματίες δάσκαλοι της αρετής τότε όλοι οι μαθητές κάθε σοφιστή είναι ενάρετοι. ΕΠ ( x y (Σ(x) M(x,y)) E(y)) Αν υπάρχουν ερασιτέχνες δάσκαλοι της αρετής τότε όλα τα παιδιά κάθε έξοχου Αθηναίου πολιτικού είναι ενάρετα. ΕP ( x y (EΠ(x) Π(x,y)) E(y)) Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 4
5 Ο Πρωταγόρας είναι σοφιστής αλλά έχει (τουλάχιστον) ένα μαθητή που δεν είναι ενάρετος. Σ(Πρωταγόρας) x (M(Πρωταγόρας, x) Ε(x)) Ο Περικλής είναι ένας έξοχος Αθηναίος πολιτικός αλλά ο γιος του, Ξάνθιππος, δεν είναι ενάρετος. ΕΠ(Περικλής) Π(Περικλής, Ξάνθιππος) Ε(Ξάνθιππος) Η αρετή δεν είναι διδακτή. Α Θέλουμε να αποδείξουμε ότι η σύζευξη των τεσσάρων πρώτων προτάσεων έχουν ως συνέπεια την πέμπτη πρόταση. Για να το πετύχουμε με τη Μέθοδο της Επίλυσης, υποθέτουμε ότι ο συλλογισμός δεν ισχύει με στόχο να φθάσουμε σε αντίφαση: Α (ΕΠ ΕΡ) ΕΠ ( x y (Σ(x) M(x,y)) E(y)) ΕP ( x y (EΠ(x) Π(x,y)) E(y)) Σ(Πρωταγόρας) x (M(Πρωταγόρας,x) Ε(x)) Μετατρέπουμε την πρόταση σε ΚΜΡ: Α (ΕΠ ΕΡ) ΕΠ ( x y ( (Σ(x) M(x,y))) E(y)) ΕP ( x y ( (EΠ(x) Π(x,y))) E(y)) Σ(Πρωταγόρας) x (M(Πρωταγόρας,x) Ε(x)) Α (ΕΠ ΕΡ) ΕΠ ( x y ( Σ(x) M(x,y))) E(y)) ΕP ( x y ( EΠ(x) Π(x,y))) E(y)) Σ(Πρωταγόρας) x (M(Πρωταγόρας,x) Ε(x)) ( Α ΕΠ ΕΡ) [ ΕΠ x 1 y 1 ( Σ(x 1 ) M(x 1,y 1 ) E(y 1 )) ΕP x 2 y 2 ( EΠ(x 2 ) Π(x 2,y 2 ) E(y 2 )) Σ(Πρωταγόρας) z (M(Πρωταγόρας,z) Ε(z)) z x 1 y 1 x 2 y 2 ( Α ΕΠ ΕΡ) Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 5
6 [ ΕΠ Σ(x 1 ) M(x 1,y 1 ) E(y 1 )] [ ΕP EΠ(x 2 ) Π(x 2,y 2 ) E(y 2 )] Σ(Πρωταγόρας) (M(z,Πρωταγόρας) Ε(z) Στη συνέχεια εφαρμόζουμε απαλοιφή των ποσοδεικτών: ( Α ΕΠ ΕΡ) [ ΕΠ Σ(x 1 ) M(x 1,y 1 ) E(y 1 )] [ ΕP EΠ(x 2 ) Π(x 2,y 2 ) E(y 2 )] Σ(Πρωταγόρας) (M(c,Πρωταγόρας) Ε(c) Σε προτασιακή μορφή ο πιο πάνω τύπος έχει ως ακολούθως: {{ Α, ΕΠ, ΕΡ}, { ΕΠ, Σ(x 1 ), M(x 1,y 1 ), E(y 1 )}, { ΕP, EΠ(x 2 ), Π(x 2,y 2 ), E(y 2 )}, {Σ(Πρωταγόρας)}, {M(Πρωταγόρας,c)}, { Ε(c)}, {ΕΠ(Περικλής)}, {Π(Περικλής, Ξάνθιππος)}, { Ε(Ξάνθιππος)}, {Α}} Εφαρμογή της Μεθόδου της Επίλυσης στο πιο πάνω σύνολο επιφέρει τη ζητούμενη διάψευση όπως φαίνεται στο πιο κάτω δένδρο, γεγονός που μας οδηγεί στο συμπέρασμα ότι ο αρχικός συλλογισμός είναι ορθός. Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 6
7 Α Α, ΕΠ, ΕΡ ΕΠ, Σ(x 1 ), M(x 1,y 1 ),E(y 1 ) ΕΠ,ΕΡ Σ(Πρωταγόρας) ΕΡ, Σ(x 1 ), M(x 1,y 1 ),E(y 1 ) Μ(Πρωτ.,c) ΕΡ, M(Πρωτ.,y 1 ),E(y 1 ) E(c) EP, E(c) ΕΡ, ΕΠ(x 2 ), M(x 2,y 2 ),E(y 2 ) EP EΠ(Περικλής) ΕΠ(x 2 ), M(x 2,y 2 ),E(y 2 ) Π(Περικλής,y 2 ),E(y 2 ) Π(Περ.,Ξαν.) E(Ξαν.) E(Ξαν.) Άσκηση 4 1. remove([],x,[]) 2. remove(y:xs,x,y:zs) remove(xs,x,zs) 3. remove(x:xs,x,zs) remove(xs,x,zs) 4. remove([a,b,a,b,a,c],b,z) 5. remove([b,a,b,a,c],b,z) Από γραμμές 2 και 4 και αντικατάσταση σ={a/y,[b,a,b,a,c]/xs,b/x,y:zs/z} 6. remove([a,b,a,c],b,zs) Από γραμμές 3 και 5 και αντικατάσταση σ={b/x 1,[a,b,a,c]/xs 1,zs/zs 1 } 7. remove([b,a,c],b,zs 2 ) Από γραμμές 2 και 6 και αντικατάσταση σ={a/y 2,[b,a,c]/xs 2,b/x 2,y 2 :zs 2 /zs} 8. remove([a,c],b,zs 2 ) Από γραμμές 3 και 7 και αντικατάσταση σ={b/x 3,[a,c]/xs 3, zs 2 /zs 3 } Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 7
8 9. remove([c],b,zs 4 ) Από γραμμές 2 και 8 και αντικατάσταση σ={a/y 4,[c]/xs 4,b/x 4,y 4 :zs 4 /zs 2 } 10. remove([],b,zs 5 ) Από γραμμές 2 και 9 και αντικατάσταση σ={c/y 5,[]/xs 5,b/x 5,y 5 :zs 5 /zs 4 } 11. Από γραμμές 1 και 10 και αντικατάσταση σ={b/x 6, []/zs 5 } Αντικατάσταση ορθής απάντησης: Ζ y:zs = a:zs a: y 2 :zs 2 = a:a:zs 2 a:a:y 4 :zs 4 = a:a:a:zs 4 a:a:a:y 5 : zs 5 = a:a:a:c:zs 5 a:a:a:c:[] = [a,a,a,c] Λύσεις Σειράς Προβλημάτων 3 Χειμερινό Εξάμηνο 2013 Σελίδα 8
Λύσεις Σειράς Ασκήσεων 3
Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να υπολογίσετε την προτασιακή μορφή των πιο κάτω προτάσεων. (α) xyz [(P(x,y) Q(y,z)) Q(x,y)] x P(x,f(x)) Βήμα 1: Μετατροπή σε Κανονική Μορφή Prenex: xyz [(P(x,y) Q(y,z))
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Δευτέρα 2 Νοεμβρίου 2015 Διάρκεια : 10:30 12:00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: Αριθμός
Λύσεις Σειράς Ασκήσεων 2
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,
Σειρά Προβλημάτων 2 Λύσεις
Σειρά Προβλημάτων 2 Λύσεις Άσκηση 1 Χρησιμοποιώντας τα πιο κάτω κατηγορήματα και σταθερές και υποθέτωντας ως σύμπαν το σύνολο όλων των ανθρώπων, να διατυπώσετε τις προτάσεις που ακολουθούν στον Κατηγορηματικό
Λύσεις Σειράς Ασκήσεων 3
Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να εφαρμόσετε τη διαδικασία της επίλυσης στα πιο κάτω προτασιακά σύνολα. (α) { P(a,f(f(x))) }, { P(y,z), P(y, f(f(z))) }, {P(x,b), Q(x)}, {P(x,b),Q(x)} Η Μέθοδος της Επίλυσης
Λύσεις Σειράς Ασκήσεων 3
Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4 23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας
ΕΠΛ 412 Λογική στην Πληροφορική 4-1
Επίλυση Resolution Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: H Μέθοδος της Επίλυσης στον Προτασιακό Λογισμό στον Κατηγορηματικό Λογισμό ΕΠΛ 412 Λογική στην Πληροφορική 4-1 Το όνειρο του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Φροντιστήριο 7 Λύσεις Ασκήσεων
Φροντιστήριο 7 Λύσεις Ασκήσεων Άσκηση 1 (α) Αριθμούμε τις γραμμές του προγράμματος. 1. French(Jean) 2. French(Jacques) 3. British(Peter) 4. likewine(x, Y ) French(X), wine(y ) 5. likewine(x, Bordeaux)
Λύσεις Σειράς Ασκήσεων 3Β
ΕΠΛ 412 Λογική στην Πληροφορική Χειμερινό Εξάμηνο 2012 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3Β i. Ανά πάσα στιγμή ο εκτυπωτής χρησιμοποιείται από το πολύ ένα χρήστη. G ( Αλίκη.χρήση Βαγγέλης.χρήση) ii. iii.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Σκελετοί Λύσεων Ημερομηνία : Σάββατο, 27 Οκτωβρίου 2012 Διάρκεια : 11:00 13:00 Διδάσκουσα : Άννα Φιλίππου Άσκηση
Κατ οίκον Εργασία 2 Λύσεις
Κατ οίκον Εργασία 2 Λύσεις Άσκηση 1 Ακολουθεί η διατύπωση των προτάσεων στον προτασιακό λογισμό. (α) Κάθε ενεργός χρήστης είναι είτε διαχειριστής είτε κανονικός χρήστης του συστήματος. x [Ενεργός (x) Διαχειριστής(x)
Ασκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε
Ασκήσεις Επανάληψης Λύσεις
Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη 24 Οκτωβρίου, 2018 Διάρκεια : 12:00 13:30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: ΠΡΟΧΕΙΡΕΣ
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes
Φυλλάδια 2&3: Κατηγορηµατική Λογική
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδια 2&3: Κατηγορηµατική Λογική ΕΚΕΜΒΡΙΟΣ 2007 ΣΗΜΕΙΩΣΗ: ΟΙ ΛΥΣΕΙΣ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ ΕΧΟΥΝ ΟΘΕΙ ΑΠΟ ΣΥΝΑ ΕΛΦΟΥΣ ΣΑΣ ΤΩΝ ΟΠΟΙΩΝ ΤΑ ΟΝΟΜΑΤΑ ΑΝΑΓΡΑΦΟΝΤΑΙ. A.
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)
Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην
Επανάληψη. ΗΥ-180 Spring 2019
Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5
HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18
Λύσεις Σειράς Ασκήσεων 2
Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 N φιλόσοφοι κάθονται γύρω από ένα τραπέζι με N καρέκλες, N πιάτα και N πιρούνια. Όταν κάποιος φιλόσοφος πεινάσει παίρνει τα δύο πιρούνια που βρίσκονται δίπλα από το πιάτο
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18
Mαθηματική Λογική και Λογικός Προγραμματισμός
ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΤΗΜΑΤΩΝ ΦΕΒΡΟΥΑΡΙΟΥ 2004 Θέμα 1 ο : Αποδείξτε με τον κανόνα της επίλυσης τα ακόλουθα Α. Η πρόταση (Α (Β C)) & (A B) & (A C) είναι μη επαληθεύσιμη Β. Η Β είναι αποδείξιμη από το Δ={ (Β
HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017
f(f 1 (B)) f(f 1 (B)) B. X \ (f 1 (C)) = X \ f 1 (C) = f 1 (Y \ C) X \ (f 1 (C)) f 1 (Y \ C). f 1 (Y \ C) = f 1 (Y \ C ) = X \ f 1 (C ).
Κεφάλαιο 4 Συναρτήσεις μεταξύ μετρικών χώρων 4.1 Συνεχείς συναρτήσεις Εστω (X, ρ) και (Y, σ) δύο μετρικοί χώροι. Στην 2.2 δώσαμε τον ορισμό της συνέχειας μιας συνάρτησης f : X Y σε κάποιο σημείο x 0 X:
ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013
ΗΥ118 - Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2013 2 η Σειρά Ασκήσεων Λύσεις Άσκηση 2.1 [2 μονάδες] Έστω μεταβλητές και σταθερές στο σύνολο των ανθρώπων και η προτασιακή μορφή Ρ(x, y) με το νόημα "o x αγαπά
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης
Λύσεις Σειράς Ασκήσεων 4
Άσκηση 0 (25 μονάδες) Λύσεις Σειράς Ασκήσεων 4 (α) Θεωρήστε το πιο κάτω πρόγραμμα λογικού προγραμματισμού και χρησιμοποιήστε τη μέθοδο της SLD επίλυσης για να φθάσετε σε διάψευση του στόχου. concat([],
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 02/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/2/2017
! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης.
Αποδείξεις (1/2)! Χρησιµοποιούµε τις συνεπαγωγές της βάσης γνώσης για να βγάλουµε νέα συµπεράσµατα. Για παράδειγµα:! Από τις προτάσεις:! Ακαι Α Β! µπορούµε να βγάλουµε το συµπέρασµα (τεχνική modus ponens
Λύσεις Σειράς Ασκήσεων 1
Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 p q r p (q r) (p q) p q r ( r p q) T T T T F T T T T F F F F T T F T T T T T T F F T T T T F T T T F T T F T F T F T T F F T T F T F F F F T F T T Ο πιο πάνω πίνακας παρουσιάζει
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Ενοποίηση όρων μίας πρότασης μέσω αντικατάστασης Η έννοια της επιλύουσας προτάσεων Διαδικασία απόδειξης και εξαγωγής συμπερασμάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel
Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα
Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή
Κανονικές μορφές - Ορισμοί
HY-180 Περιεχόμενα Κανονικές μορφές (Normal Forms) Αλγόριθμος μετατροπής σε CNF-DNF Άρνηση (Negation) Βασικές Ισοδυναμίες με άρνηση Νόμος De Morgan Πίνακες Αληθείας Κανονικές μορφές - Ορισμοί Ορισμός:
Σειρά Προβλημάτων 1 Λύσεις
Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα
HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε
Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18
i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a
Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Εισαγωγή στην προτασιακή μορφή της γνώσης Μετατροπή γνώσης σε προτασιακή μορφή Κανόνες μετατροπής Παραδείγματα μετατροπής σε προτασιακή
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Ικανοποιητική βαθμολογική εικόνα
Σειρά Προβλημάτων 3 Λύσεις
Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyw 1w 2 x, y {a, b}, w 1 = a n, w 2 = b 2n, όπου, αν x=y=a, τότε n = 2k, διαφορετικά
ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy
ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +
j=1 x n (i) x s (i) < ε.
Κεφάλαιο 5 Πληρότητα 5.1 Πλήρεις μετρικοί χώροι Ορισμός 5.1.1 (πλήρης μετρικός χώρος). Ενας μετρικός χώρος (X, ρ) λέγεται πλήρης (complete) αν κάθε ρ βασική ακολουθία (x n ) στον X είναι ρ συγκλίνουσα.
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/24/2017
Ασκήσεις μελέτης της 8 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017
Προτασιακός Λογισμός (HR Κεφάλαιο 1)
Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),
Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο
A B. (f; B) = f(x 1 ) = a 11 x 1 + a k1 x k + 0.x k x n f(x 2 ) = a 12 x 1 + a k2 x k + 0.x k x n
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ III ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN 1 Εστω f : V V γραμμική απεικόνιση Εστω A = ker(f i ) και B = ker(f i+1 ) Δείξτε ότι (i) A B και (ii) f(b) A Αποδ: (i) Εστω x ker(f i ) Τότε f i (x)
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Υποθετικές προτάσεις και λογική αλήθεια
Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)
ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το
Λύσεις 2 ης Σειράς Ασκήσεων
Λύσεις 2 ης Σειράς Ασκήσεων Άσκηση 1 Στην άσκηση αυτή σας ζητείται να διατυπώσετε στον Κατηγορηματικό Λογισμό ένα σύνολο από απαιτήσεις/προτάσεις που σχετίζονται με ένα κοινωνικό δίκτυο χρησιμοποιώντας
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
B = {x A : f(x) = 1}.
Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε
+ 1 n 5 (η) {( 1) n + 1 m
Κεφάλαιο Τοπολογία του. Στοιχεία Θεωρίας Ορισµός Αν α και ɛ > ονοµάζουµε ɛ-περιοχή του α ή περιοχή κέντρου α και ακτίνας ɛ και συµβολίζουµε N α (ɛ) το σύνολο όλων των αριθµών που έχουν απόσταση από το
HY Λογική Διδάσκων: Δ. Πλεξουσάκης
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
B = F i. (X \ F i ) = i I
Κεφάλαιο 3 Τοπολογία μετρικών χώρων Ομάδα Α 3.1. Εστω (X, ρ) μετρικός χώρος και F, G υποσύνολα του X. Αν το F είναι κλειστό και το G είναι ανοικτό, δείξτε ότι το F \ G είναι κλειστό και το G \ F είναι
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδιο 1: Προτασιακή Λογική ΟΚΤΩΒΡΙΟΣ 2006 1. Ικανοποιησιμότητα Αποφασίστε αν οι παρακάτω προτάσεις είναι ταυτολογίες, ικανοποιήσιμες ή μη-ικανοποιήσιμες
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά
ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF
Συνέπεια, Εγκυρότητα, Συνεπαγωγή, Ισοδυναμία, Κανονικές μορφές, Αλγόριθμοι μετατροπής σε CNF-DNF 1 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Πέμπτη 15/02/2018 Κρεατσούλας Κωνσταντίνος Ασυνεπές σύνολο
9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)
Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε
h(x, y) = card ({ 1 i n : x i y i
Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,
1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Λύσεις 1 ης Σειράς Ασκήσεων
Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 Έστω οι ατομικές προτάσεις A 1 = H Αντιγόνη κέρδισε τον αγώνα, A 3 = H Αντιγόνη πήρε την τρίτη θέση, Β 2 = Ο Βίκτορας πήρε την δεύτερη θέση, Γ 3 = Ο Γιάννης πήρε την
Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των
Σειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,
Πληρότητα της μεθόδου επίλυσης
Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου
ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.