Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα"

Transcript

1 Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Εισαγωγή Μελέτη συστήµατος αιώρησης µαγνητικού τρένου. Τις προηγούµενες δύο δεκαετίες, κατασκευάστηκαν πρωτότυπα µαγνητικά (aglev) τρένα που ταξιδεύουν µε ταχύτητες µέχρι και 600 χιλιόµετρα ανά ώρα. Τα πλεονεκτήµατα αυτών είναι οι υψηλές ταχύτητες, τα µηδενικά κινητά τµήµατα άρα και οι απώλειες από αυτά, η σχετικά µικρή κατανάλωση ενέργειας και τέλος η ελάχιστη ηχορύπανση. Εντούτοις σοβαρά µειονεκτήµατα εµποδίζουν την ανάπτυξη αυτής της µορφής τρένων, τα πλέον σηµαντικά είναι η υψηλή δαπάνη συντήρησης των εγκαταστάσεων, η ηλεκτρονική πολυπλοκότητα, οι περίπλοκες διατάξεις ανατροφοδότησης προκειµένου να αποτρέψουν την αστάθεια του όλου συστήµατος (την οποία και θα µελετήσουµε σε αυτή την άσκηση). Ακόµη η χρήση υπεραγωγών (ανάγκη κρυογονικών εγκαταστάσεων) καθιστά το κόστος λειτουργίας πολύ υψηλό. Κλείνοντας αυτή την µικρή αναφορά στα µαγνητικά τρένα, που σίγουρα αποτελούν το µέλλον στις συγκοινωνίες, αναφέρουµε µια καινούργια ιδέα που φαίνεται να κερδίζει έδαφος όπου µε την χρήση µονίµων µαγνητών και κλειστών σπειρών, µπορεί το όχηµα από µια ταχύτητα και πάνω να πλέει χωρίς την χρήση των σύνθετων συστηµάτων που να ορίζουν το ρεύµα των ηλεκτροµαγνητών προκειµένου αυτό να αιωρείται. Στην εικόνα φαίνονται τα πηνία αιώρησης τόσο στο κινούµενο τµήµα όσο και στο υπόβαθρο της γραµµής. Στο πλάι είναι τα πηνία κίνησης. 6-

2 Η αρχή λειτουργίας προκειµένου το τρένο να αιωρείται φαίνεται στο δίπλα σχήµα. Ουσιαστικά τα πηνία αιώρησης δηµιουργούν ζευγάρια αντιθέτων µαγνητικών πόλων µε αυτά που είναι τοποθετηµένα στο υπόβαθρο, µε αποτέλεσµα την δηµιουργία απωστικών δυνάµεων και τελικά την ανύψωση του τρένου. Η συνάρτηση µεταφοράς του συγκροτήµατος µάζα οχήµατος και πηνίων αιώρησης είναι µε καλή προσέγγιση Y ( ) G ( ) X ( ) Το διάγραµµα βαθµίδων του ανοικτού συστήµατος φαίνεται στο επόµενο σχήµα παρατηρούµε ότι το σύστηµα είναι ασταθές µε αποτέλεσµα την ανατροπή του τρένου. Η συνάρτηση µεταφοράς του κλειστού συστήµατος µε µοναδιαία αρνητική ανατροφοδότηση είναι: G() F() + G() H() Η συνάρτηση αυτή είναι της µορφής [ω/)( +ω )] της οποίας ο αντίστροφος µετασχηµατισµός Lalace είναι η συνάρτηση του ηµιτόνου. Εποµένως το κλειστό σύστηµα είναι ασταθές. 6-

3 Το εξοµοιωµένο σύστηµα της άσκησης είναι εχόµενοι ότι I εποµένως και η σταθερά ολοκλήρωσης Τ I είναι: Οι τιµές των εξαρτηµάτων θα είναι: T I I ec R R C 7kΩ ΜΩ µf Το σύστηµα στον απ ευθείας δρόµο έχει συνάρτηση ενός διπλού ολοκληρωτή εποµένως είναι ασταθές. Η χρονική απόκριση αυτού φαίνεται στην επόµενη εικόνα. Η κυκλική συχνότητα χωρίς απόσβεση είναι ω ο ra/ec οπότε η περίοδος της ταλάντωσης είναι Τα6,8 ec. 6-3

4 Η συνάρτηση του ανοικτού βρόχου του συστήµατος είναι: G() H() Το διάγραµµα Boe του συστήµατος απεικονίζεται στο επόµενο γράφηµα. Το σύστηµα είναι ασταθές και στην συχνότητα ra/ec ισχύουν τα κριτήρια του BODE. 6-

5 Προκειµένου να βελτιώσουµε το σύστηµα θα χρησιµοποιήσουµε έναν ελεγκτή PID. Το διάγραµµα βαθµίδων αυτού του συστήµατος µε την χρήση του ελεγκτή είναι. Παρατηρούµε ότι ήδη στον απ ευθείας δρόµο υπάρχουν δύο ολοκληρώσεις εποµένως είναι πλεονασµός να χρησιµοποιήσουµε και άλλον ολοκληρωτή έτσι το διάγραµµα βαθµίδων γίνεται Η συνάρτηση µεταφοράς του συστήµατος είναι G() F() + G() H() (k + + ( (k + k ) k )) k + + k k + k 6-5

6 Παρατηρούµε ότι η συνάρτηση είναι της γενικής µορφής ζω + ω F( ) o o + ζω + ω o o απ όπου φαίνεται ότι πρόκειται για σύστηµα ης Τάξεως : µε κυκλική ιδιοσυχνότητα του συστήµατος ω o και συντελεστής απόσβεσης του συστήµατος k ζω Επιθυµώντας το σύστηµα να έχει συντελεστή απόσβεση ζ 0,707 (ελάχιστος χρόνος αποκατάστασης) και κυκλική ιδιοσυχνότητα περίπου ra/ec. o Οπότε: ω Ο k o ζ ω 0,707, αντικαθιστώντας στην συνάρτηση µεταφοράς θα έχουµε k + k. + F( ) + k + k

7 Με την βοήθεια του προγράµµατος MatLab καταγράφουµε την χρονική απόκριση του συστήµατος. Στο Coan Winow ορίζουµε την συνάρτηση µεταφοράς >> aglevtf([. ],[. ]) και µε την εντολή >> te(aglev) Παρατηρούµε ότι το σύστηµα έχει υπερύψωση % και χρόνο αποκατάστασης,89ec είναι δε σύµφωνο µε τις προδιαγραφές που θέσαµε (βλέπε σελ. 6-6). 6-7

8 Η συνάρτηση του ανοικτού βρόχου είναι. G( ) H ( ) (( k + k. + ) ) Στο Coan Winow ορίζουµε την συνάρτηση µεταφοράς >> aglev OLtf([. ],[ 0 0]) και µε την εντολή >> boe(aglev OL) Τα διαγράµµατα Boe είναι Παρατηρώντας το διάγραµµα φάσεως διαπιστώνουµε ότι για µικρές συχνότητες η φάση ασυµπτωτικά παίρνει τιµή µεγαλύτερες -80º, οπότε το σύστηµα είναι ευσταθές. 6-8

9 Στο Coan Winow ορίζουµε την συνάρτηση µεταφοράς >> aglev OLtf([. ],[ 0 0]) και µε την εντολή >> rlocu(aglev OL) Το δε διάγραµµα τόπου ριζών µε την χρήση του MatLab είναι. Επιβεβαιώνουµε από το διάγραµµα τόπου ριζών ότι τα κλειστό σύστηµα µε Κ (Gain) έχει δύο συζυγείς πόλους στα σηµεία -0,707±j0,707. Ο συντελεστής απόσβεσης είναι ζ0,7 και η ιδιοσυχνότητα του συστήµατος χωρίς απόσβεσης είναι ω ra/ec. Από το διάγραµµα του τόπου ριζών µπορούµε να τροποποιήσουµε την συµπεριφορά του συστήµατος (χρονική απόκριση κλπ.) σύµφωνα µε επιθυµητά δεδοµένα, απλά αλλάζοντας την θέση των πόλων αυτού. 6-9

10 Το ανάλογο σύστηµα είναι αυτό του σχήµατος Επιλέγουµε τις ακόλουθες τιµές: R R R R 3 R P P C C 7kΩ ΜΩ ΜΩ 0 kω 00 kω 0kΩ 0kΩ µf,7µf Εξηγήστε αναλυτικά γιατί επιλέγουµε τις προηγούµενες τιµές. Προετοιµασία. Αν η συνάστηση µεταφοράς του συγκροτήµατος µάζα οχήµατος και πηνίων αιώρησης είναι G()0/. Υπολογίστε τον ελεγκτή ώστε το βελτιωµένο σύστηµα να έχει ζ0,8 και και κυκλική ιδιοσυχνότητα περίπου 0 ra/ec.. Με την βοήθεια του Matlab καταγράψτε την χρονική απόκριση του συστήµατος και επιβεβαιώστε την ορθότητα των προδιαγραφών. 3. Με την βοήθεια του Matlab xαράξτε τα διαγράµµατα BODE του υπο µελέτη συστήµατος.. Με την βοήθεια του Siulink καταγράψτε τις χρονικές αποκρίσεις του συστήµατος χωρίς και µε τον ελεγκτή. Τι παρατηρείται; 5. Υπολογίστε την συχνότητα µε την οποία πρέπει να τροφοδοτήσετε τα τροποποιηµένα συστήµατα (σελίδες 6- & 6-6) από την γεννήτρια ώστε να πάρετε πλήρεις και αξιοποιήσιµες καταγραφές στην οθόνη του παλµογράφου.(βήµατα και 9 του πειραµατικού µέρους). 6-0

11 Πειραµατικό µέρος Σηµείωση: Όπως γνωρίζουµε προκειµένου να χαράξουµε ένα αξιόπιστο διάγραµµα πλάτους και φάσης του ανοικτού βρόχου ενός συστήµατος (διαγράµµατα Boe) θα πρέπει να η ανεξάρτητη µεταβλητή ω (ra/ec) να πάρει τιµές που να καλύπτει τουλάχιστον µία δεκάδα πάνω από την µεγαλύτερη συχνότητα θλάσεως και µία δεκάδα κάτω από την µικρότερη συχνότητα θλάσεως. Από τα διαγράµµατα Boe του συστήµατος σελίδα 6-8, συµπεραίνοµε ότι η περιοχή συχνοτήτων της ανεξάρτητης µεταβλητής (πεδίο ορισµού) θα πρέπει να είναι από 0, ra/ec ως 0 ra/ec. (0,06Hz ως,59hz) Το φασίµετρο που διαθέτουµε στο εργαστήριο έχει περιοχή λειτουργίας από Hz ως 00Hz, συµπεραίνοµε ότι δεν µπορεί να χρησιµοποιήσουµε για µελέτη του συστήµατος Ερώτηµα: Αν χρησιµοποιούσαµε έναν κλασικό παλµογράφο προκειµένου να µετρήσουµε µε χρήση των σχηµάτων Liajou τι πρόβληµα θα αντιµετωπίζαµε; Προκειµένου να ξεπεράσουµε το προηγούµενο πρόβληµα θα µελετήσουµε ένα ισοδύναµο σύστηµα όπου θα πραγµατοποιήσουµε κλιµάκωση χρόνου. (µελετήστε την κλιµάκωση χρόνου από το βιβλίο Σήµατα, Συστήµατα και Κυκλώµατα του Ηρακλή ηµόπουλου.) Jule Antoine Liajou (March, 8 - June, 880) 6-

12 Σχεδιάζουµε το ισοδύναµο σύστηµα το οποίο θα είναι κατά εκατό φορές ταχύτερο από το πραγµατικό. Η συνάρτηση µεταφοράς του αρχικού συστήµατος. (βλέπε σχήµα β- σελίδα 6-) θέτοντας /00 θα πάρει την µορφή F () G() G() o 00 A + H() o ω ( 00) + ω Το εξοµοιωµένο σύστηµα στο ανάπτυγµα της άσκησης είναι εχόµενοι ότι I 00 εποµένως και η σταθερά ολοκλήρωσης Τ I 0,0 είναι: Οι τιµές των εξαρτηµάτων θα είναι: T I I 0 0,0ec R R C 7kΩ 00Ω 00nF 6-

13 Ακολουθώντας την µεθοδολογία της σελίδας 6-5 υπολογίζουµε την συνάρτηση του βελτιωµένου συστήµατος: 0 (k + G() F () + G() H() 0 + ( (k + 0 k + 0 k F () + 0 k + 0 k k k ) )) 0 k + 0 k + 0 k + 0 k Επιθυµώντας το σύστηµα να έχει συντελεστή απόσβεση ζ 0,7 (ελάχιστος χρόνος αποκατάστασης) και κυκλική ιδιοσυχνότητα περίπου 00 ra/ec Προκύπτουν οι σταθερές του PD ελεγκτή. 0 ω o 00 ω Ο 0 0 ζ ωo 0, ζ ωo 0 k k 0 0 k 0,0 αντικαθιστώντας στην συνάρτηση µεταφοράς θα έχουµε G() F () + G() H() F () k + 0 k + 0 k + 0 k 0 0, ,

14 Με την βοήθεια του προγράµµατος MatLab καταγράφουµε την χρονική απόκριση του συστήµατος. Στο Coan Winow ορίζουµε την συνάρτηση µεταφοράς >> aglevtf([ 0000],[ 0000]) και µε την εντολή >> te(aglev) Η συνάρτηση του ανοικτού βρόχου είναι. G( ) H ( ) (( k + k ) ) Στο Coan Winow ορίζουµε την συνάρτηση µεταφοράς >>aglevoltf([ 0000],[ 0 0]) και µε την εντολή >>boe(aglevol) Τα διαγράµµατα Boe είναι 6-

15 Στο επόµενο σχήµα φαίνεται το πειραµατικό µοντέλο του τροποποιηµένου συστήµατος το οποίο και θα µελετήσουµε πειραµατικά. Οι τιµές των σταθερών είναι οι ακόλουθες Σταθερά ολοκλήρωσης T I / I /000,0ec Σταθερά αναλογικού ελεγκτή. Σταθερά διαφορικού ελεγκτή. 0,0ec Επιλέγουµε τις ακόλουθες τιµές: R R R R 3 R P P C C 7kΩ 00Ω 00Ω 0 kω 00 kω 0kΩ 0kΩ 00nF 330nF Με βάση τις τιµές που των εξαρτηµάτων που επιλέχθηκαν Συµπληρώστε τον επόµενο πίνακα Θέση ποτενσιόµετρου Αναλογικού ελεγκτή Σταθερά Αναλογικού ελεγκτή Θέση ποτενσιόµετρου ιαφορικού ελεγκτή 0% 0% 0% 0% 50% 50% 90% 90% 00% 00% Σταθερά ιαφορικού ελεγκτή(ec) 6-5

16 . Συνδεσµολογήστε το ανάλογο κύκλωµα του συστήµατος.(χωρίς ελεγκτής) σχήµα σελίδα (6- ).. Συνδέστε την γεννήτρια ακουστικών συχνοτήτων, τα ηλεκτρονικά βολτόµετρα και το φασίµετρο και τον ψηφιακό παλµογράφο στο σύστηµα όπως φαίνεται στο επόµενο σχήµα. 3. Με την βοήθεια του παλµογράφου και ΧΩΡΙΣ ΝΑ ΕΙΝΑΙ ΣΥΝ Ε ΕΜΕΝΗ Η ΓΕΝΝΗΤΡΙΑ Χ.Σ., καταγράψτε την κυµατοµορφή εξόδου. Μετρήστε όλα τα χαρακτηριστικά αυτής.. Αποσυνδέστε το καλώδιο ανασύζευξης. 5. Συνδέστε την γεννήτρια ακουστικών συχνοτήτων 6. Ρυθµίστε την γεννήτρια για να πάρετε ηµιτονικό σήµα και παρατηρήστε τις κυµατοµορφές εισόδου εξόδου του ανοικτού συστήµατος. Τι παρατηρείτε; 7. Ρυθµίστε την γεννήτρια για να πάρετε τετραγωνικό σήµα και καταγράψτε τις κυµατοµορφές εισόδου εξόδου του ανοικτού συστήµατος. Τι παρατηρείτε; 6-6

17 8. Συµπληρώστε µε τις κατάλληλες µετρήσεις τον επόµενο πίνακα ώστε να µπορείτε να σχεδιάσετε τα διαγράµµατα Boe. f(hz) ω(ra/ec) Vin(volt) Vout(volt) A(b) φ( ) 9. Επαναλάβατε τα βήµατα -6 για το βελτιωµένο σύστηµα (σελίδα 6-5). f(hz) ω(ra/ec) Vin(volt) Vout(volt) A(b) φ( ) 0. Χαράξτε σε ηµιλογαριθµικό χαρτί τα διαγράµµατα BODE των δύο συστηµάτων. Μπορείτε να χρησιµοποιήσετε το excel.. Συγκρίνατε τα αποτελέσµατα της προετοιµασία µε αυτά του πειραµατικού µέρους, δώστε τα συµπεράσµατά σας 6-7

18 Σηµειώσεις 6-8

19 Σηµειώσεις 6-9

2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος Thevenin

2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος Thevenin Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 2η Εργαστηριακή Άσκηση: ιαγράµµατα Bode και εφαρµογή θεωρήµατος hevenin Απόκριση στο πεδίο της συχνότητας

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ

ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΤΕΙ ΚΑΛΑΜΑΤΑΣ - ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ:.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ:.. Α. ΜΕΤΡΗΣΗ ΣΥΝΕΧΟΥΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΙΙΙ

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ

4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΤΟΧΟΙ 4. ΕΝΙΣΧΥΤΗΣ ΜΕ ΑΜΕΣΗ ΣΥΖΕΥΞΗ Ημερομηνία:.... /.... /...... Τμήμα:.... Ομάδα: η κατανόηση της αρχής λειτουργίας ενός ενισχυτή δύο βαθμίδων με άμεση σύζευξη η εύρεση της περιοχής

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΑΣΚΗΣΗ 2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΔΙΕΥΘΥΝΤΗΣ ΚΑΘΗΓΗΤΗΣ Γ.Π. ΠΑΠΑΒΑΣΙΛΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 2 ΑΣΚΗΣΗ 1 η Μετρήσεις τάσεων και ρευμάτων με χρήση ψηφιακού πολύμετρου. Προετοιμασία: Για να πραγματοποιήσετε την άσκηση, θα πρέπει να έχετε μελετήσει τα κεφάλαια 1 και 2 του θεωρητικού

Διαβάστε περισσότερα

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής.

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. Α) Σκοπός: Σκοπός της παρούσας άσκησης είναι να επιδειχθεί ο έλεγχος των στροφών

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία

Διαβάστε περισσότερα

Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών

Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Σχεδίαση Σ.Α.Ε: Σχεδίαση µε το Γεωµετρικό Τόπο Ριζών ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Εφαρµογές, Κεφάλαιο 9: Ενότητες 9.-9.4

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 8 Κυκλώματα RLC και Σταθερή Ημιτονοειδής Κατάσταση Λευκωσία, 2010 Εργαστήριο 8

Διαβάστε περισσότερα

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V

ΘΕΜΑ 2 1. Υπολογίστε την σχέση των δύο αντιστάσεων, ώστε η συνάρτηση V Θέµατα εξετάσεων Θ. Κυκλωµάτων & Σηµάτων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί στις εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο Εισαγωγή στις Μετρήσεις Σηµάτων και Επίδραση Οργάνου στις Μετρήσεις Λευκωσία, 04

Διαβάστε περισσότερα

ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ

ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 20.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 20.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΤΟΧΟΙ η κατανόηση

Διαβάστε περισσότερα

Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203

Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203 ιάλεξη 5 (Επανάληψη) 02/10/13 1 Λύσεις 1ης Ενδιάµεσης Εξέτασης Αναφέρετε τις ρυθµίσεις που θα κάνετε στον παλµογράφο (σε σχέση µε τα κουµπιά VOLTS/DIV και TIME/DIV),

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΣΩ ΤΟΥ ΙΑ ΙΚΤΥΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΣΩ ΤΟΥ ΙΑ ΙΚΤΥΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΣΩ ΤΟΥ ΙΑ ΙΚΤΥΟΥ ΕΛΕΓΧΟΣ ΓΩΝΙΑΚΗΣ ΘΕΣΗΣ ΚΙΝΗΤΗΡΑ DC ΕΡΓΑΣΤΗΡΙΟ ΣΑΕ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΤΗΣ SIENNA 1. ΠΕΡΙΓΡΑΦΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΙΑΤΑΞΗΣ Η εργαστηριακή διάταξη για το πείραµα ελέγχου γωνιακής

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 8 Κυκλώµατα RLC, Σταθερή Ηµιτονοειδής Κατάσταση και ιόρθωση Συντελεστή Ισχύος (Power

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09 ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ. ΣΚΟΠΟΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ. ΣΚΟΠΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ. ΣΚΟΠΟΣ Ένα ενεργό σύστηµα είναι ένα ηλεκτρικό κύκλωµα που αποτελείται από παθητικά στοιχεία και ελεγχόµενες πηγές. Ενεργή σύνθεση είναι η

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

Τυπική µορφή συστήµατος 2 ας τάξης

Τυπική µορφή συστήµατος 2 ας τάξης Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωµάτων και Μετρήσεων ΗΜΥ 203

Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωµάτων και Μετρήσεων ΗΜΥ 203 Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνική Σχολή - Πανεπιστήµιο Κύπρου Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωµάτων και Μετρήσεων ΗΜΥ 203 ρ. Γεώργιος Ζάγγουλος Σεπτέµβριος 2014

Διαβάστε περισσότερα

Παρουσιάσεις στο ΗΜΥ203, 2015

Παρουσιάσεις στο ΗΜΥ203, 2015 Παρουσιάσεις στο ΗΜΥ203, 2015 Πρόγραμμα Παρουσιάσεων Τετάρτης 18/11/2015 Παρουσίαση Ομάδας 1 Περιγράψτε αναλυτικά την πειραματική διαδικασία ελέγχου της γραμμικότητας στο πιο κάτω κύκλωμα. Έπειτα, υπολογίστε

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Εργαστήριο: Εισαγωγή στο Βασικό Εξοπλισµό Μετρήσεως Σηµάτων Σκοποί: 1. Η εξοικείωση µε τη βασική

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα

Ο ΠΑΛΜΟΓΡΑΦΟΣ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

Ο ΠΑΛΜΟΓΡΑΦΟΣ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Εργαστηριακό Κέντρο Φυσικών Επιστηµών Αγίων Αναργύρων 17/1/07 Υπεύθυνος Εργ. Κέντρου: Καλλίνικος Χαρακόπουλος Επιµέλεια - παρουσίαση : ΘΕΟΧΑΡΟΠΟΥΛΟΣ Ι., ΜΑΚΕ ΩΝ Γ., ΝΙΚΑΣ Θ. Ο ΠΑΛΜΟΓΡΑΦΟΣ ΣΤΟ ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 6: Δειγματοληψία - Πειραματική Μελέτη Δρ. Ηρακλής Σίμος Τμήμα:

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση. Σχηµατικό διάγραµµα τροφοδοτικού

5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση. Σχηµατικό διάγραµµα τροφοδοτικού 5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 5. ΤΡΟΦΟ ΟΤΙΚΑ 220 V, 50 Hz. 0 V Μετασχηµατιστής Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση 0 V 0 V Ανορθωτής Σχηµατικό διάγραµµα τροφοδοτικού Φίλτρο

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών 6 Nicolas Tsapatsoulis ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Κεφάλαιο

Διαβάστε περισσότερα

Άσκηση 4 ίοδος Zener

Άσκηση 4 ίοδος Zener Άσκηση 4 ίοδος Zener Εισαγωγή Σκοπός Πειράµατος Στην εργαστηριακή άσκηση 2 µελετήθηκε η δίοδος ανόρθωσης η οποία είδαµε ότι λειτουργεί µονάχα εάν πολωθεί ορθά. Το ίδιο ισχύει και στην περίπτωση της φωτοεκπέµπουσας

Διαβάστε περισσότερα

Συνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής:

Συνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής: ΦΕΒΡΟΥΑΡΙΟΣ Άσκηση : Δίνεται το LTI σύστηµα y[ n ] T{ x[ n ] } που ορίζεται από την αναδροµική σχέση: y[n ]y[n - ] +x[n ]- x[ n -] +x[ n - ] ( ). Να βρεθεί η συνάρτηση µεταφοράς του συστήµατος H(z ). 𝑦

Διαβάστε περισσότερα

Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών

Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών Βασικά Στοιχεία Αναλογικών Ηλεκτρονικών Ηλεκτρονική ΗΥ231 Εισαγωγή στην Ηλεκτρονική Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Σήµατα Ένα αυθαίρετο σήµα τάσης v s (t) 2 Φάσµα συχνοτήτων των σηµάτων

Διαβάστε περισσότερα

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων. 2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των

Διαβάστε περισσότερα

Άσκηση 12 Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ua741 ΕΦΑΡΜΟΓΕΣ

Άσκηση 12 Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ua741 ΕΦΑΡΜΟΓΕΣ Άσκηση 12 Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ ua741 ΕΦΑΡΜΟΓΕΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο:

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 5 Γραµµικότητα (Linearity), Αναλογικότητα (Proportionality), και Επαλληλία (Superposition)

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Β Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 8 Κυκλώµατα RLC και Σταθερή Ηµιτονοειδής Κατάσταση Λευκωσία, 2015 Εργαστήριο 8

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

N 1 :N 2. i i 1 v 1 L 1 - L 2 -

N 1 :N 2. i i 1 v 1 L 1 - L 2 - ΕΝΟΤΗΤΑ V ΙΣΧΥΣ - ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ 34 Μετασχηµατιστής Ο µετασχηµατιστής είναι µια διάταξη που αποτελείται από δύο πηνία τυλιγµένα σε έναν κοινό πυρήνα από σιδηροµαγνητικό υλικό. Το πηνίο εισόδου λέγεται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-3: ΣΧΗΜΑΤΑ LISSAJOUS

ΑΣΚΗΣΗ-3: ΣΧΗΜΑΤΑ LISSAJOUS ΑΣΚΗΣΗ-3: ΣΧΗΜΑΤΑ LISSAJOUS ΣΤΟΧΟΙ ΕΚΜΑΘΗΣΗΣ Δημιουργία σχημάτων Lissajous με ψηφιακό παλμογράφο για την μέτρηση της διαφοράς φάσης μεταξύ των κυματομορφών της ημιτονοειδούς τάσης εισόδου και τάσης εξόδου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής ver. 0.2 10/2012 Εισαγωγή στο Simulink Το SIMULINK είναι ένα λογισµικό πακέτο που επιτρέπει τη µοντελοποίηση, προσοµοίωση οίωση

Διαβάστε περισσότερα

ΕΛΕΓΚΤΕΣ PID. Ελεγκτής τριών όρων Η συνάρτηση μεταφοράς του PID ελεγκτή είναι η ακόλουθη:

ΕΛΕΓΚΤΕΣ PID. Ελεγκτής τριών όρων Η συνάρτηση μεταφοράς του PID ελεγκτή είναι η ακόλουθη: ΕΛΕΓΚΤΕΣ PID Εισαγωγή Αυτό το βοήθημα θα σας δείξει τα χαρακτηριστικά καθενός από τους τρεις ελέγχους ενός PID ελεγκτή, του αναλογικού (P), του ολοκληρωτικού (I) και του διαφορικού (D) ελέγχου, καθώς και

Διαβάστε περισσότερα

Τμήμα Ηλεκτρονικής. Θεωρία Ευφυών Συστημάτων Ελέγχου. Περίγραμμα μαθήματος

Τμήμα Ηλεκτρονικής. Θεωρία Ευφυών Συστημάτων Ελέγχου. Περίγραμμα μαθήματος Τμήμα Ηλεκτρονικής Θεωρία Ευφυών Συστημάτων Ελέγχου. Περίγραμμα μαθήματος Κλειστά συστήματα διακριτού χρόνου περιγραφή και ευστάθεια στο πεδίο z. Mεταβλητές κατάστασης, ελεγξιμότητα και παρατηρησιμότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)

ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)

Διαβάστε περισσότερα

Αναφορά Εργαστηριακής Άσκησης PLL Μάθημα: Εργαστήριο Αναλογικών VLSI Ομάδα: Αδαμαντίδη Αικατερίνη 1146 Κωνσταντίνος Μουρτζιάπης 867

Αναφορά Εργαστηριακής Άσκησης PLL Μάθημα: Εργαστήριο Αναλογικών VLSI Ομάδα: Αδαμαντίδη Αικατερίνη 1146 Κωνσταντίνος Μουρτζιάπης 867 Αναφορά Εργαστηριακής Άσκησης PLL Μάθημα: Εργαστήριο Αναλογικών VLSI Ομάδα: Αδαμαντίδη Αικατερίνη 1146 Κωνσταντίνος Μουρτζιάπης 867 Εισαγωγή: Ο βρόγχος κλειδωμένης φάσης, ή PLL, είναι ένα απο τα πιο χρήσιμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής

ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής ΚΕΦΑΛΑΙΟ 7 Τελεστικός ενισχυτής Ο τελεστικός ενισχυτής, TE (operational ampliier, op-amp) είναι ένα από τα πιο χρήσιμα αναλογικά κυκλώματα. Κατασκευάζεται ως ολοκληρωμένο κύκλωμα (integrated circuit) και

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Συντονισµός Εξαναγκασµένη Ταλάντωση

Συντονισµός Εξαναγκασµένη Ταλάντωση Συντονισµός Εξαναγκασµένη Ταλάντωση Κατά την εξαναγκασµένη ταλάντωση οι γραφικές παραστάσεις του πλάτους της Μηχανικής ταλάντωσης, καθώς και του πλάτους του φορτίου κατά την ηλεκτρική ταλάντωση φαίνονται

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ

Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ A A N A B P Y T A 1 0 Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ ΟΜΑΔΑ: 1.... Ο σκοπός.... 3... 4... Η αντίσταση ενός αντιστάτη ορίζεται ως: V I, όπου V είναι

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση

Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ανατροφοδότησης Στοιχεία ιεργασίας και Όργανα Μέτρησης ιατάξεις ιαγραµµάτων Βαθµίδας Μέτρα Απόδοσης Ρύθµισης Επιλογή Μεταβλητών Ρύθµισης 1 Ο βρόχος ανατροφοδότησης!

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Στόχοι 1. Η εξοικείωση στη συναρµολόγηση ηλεκτρικών κυκλωµάτων 2. Η εξοικείωση µε τη χρήση των πολυµέτρων στις ηλεκτρικές µετρήσεις 3. Η αντιµετώπιση πρακτικών προβληµάτων 4. Η σύγκριση

Διαβάστε περισσότερα

Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203

Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203 Περίληψη Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203 Παρατηρήσεις / Απορίες στα Εργ. 0 και 1 Εισαγωγή στο Εργαστήριο 2 Εισαγωγή στο PSpice ιάλεξη και Φροντιστήριο 2 11/09/13 1 2 Εργαστήριο 0 Βρείτε τις

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Εργαστήριο Τεχνολογίας Υλικού & Αρχιτεκτονικής Υπολογιστών ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ 4.1 MOS Τρανζίστορ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΙV ΤΟ MOS ΤΡΑΝΖΙΣΤΟΡ 4.1.1 Εισαγωγή: Αντικείµενο της εργαστηριακής

Διαβάστε περισσότερα

ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΠΑΛΜΟΓΡΑΦΟ

ΓΝΩΡΙΜΙΑ ΜΕ ΤΟΝ ΠΑΛΜΟΓΡΑΦΟ Εργαστηριακό Κέντρο Φυσικών Επιστηµών Αγίων Αναργύρων 17/1/07 Υπεύθυνος Εργ. Κέντρου: Καλλίνικος Χαρακόπουλος Επιµέλεια - παρουσίαση : ΘΕΟΧΑΡΟΠΟΥΛΟΣ Ι., ΜΑΚΕ ΩΝ Γ., ΝΙΚΑΣ Θ. Α- ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΓΝΩΡΙΜΙΑ

Διαβάστε περισσότερα

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 26 Συνεχή Ρεύµατα Περιεχόµενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναµη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόµοι του Kirchhoff Σειριακά και Παράλληλα EMF-Φόρτιση Μπαταρίας Κυκλώµατα RC Μέτρηση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΝΟΤΗΤΑ ΙΙ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 0 Ηλεκτρικά κυκλώµατα Ηλεκτρικό κύκλωµα ονοµάζουµε ένα σύνολο στοιχείων που συνδέονται κατάλληλα έτσι ώστε να επιτελέσουν ένα συγκεκριµένο σκοπό. Για παράδειγµα το παρακάτω

Διαβάστε περισσότερα

Φωτοηλεκτρικό Φαινόµενο Εργαστηριακή άσκηση

Φωτοηλεκτρικό Φαινόµενο Εργαστηριακή άσκηση ttp ://k k.sr sr.sc sc.gr Μιχαήλ Μιχαήλ, Φυσικός 1 Φωτοηλεκτρικό Φαινόµενο Εργαστηριακή άσκηση ΣΤΟΧΟΙ Οι στόχοι αυτής της εργαστηριακής άσκησης είναι: - Η πειραµατική επιβεβαίωση ότι η µορφή της φωτοηλεκτρικής

Διαβάστε περισσότερα

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Θεωρία ελαχίστων τετραγώνων (β ) Μη-γραμμικός αντιστάτης Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Προσδιορισμός της νομοτέλειας Πείραμα για τη μελέτη ενός

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j

ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ R-C ΚΥΚΛΩΜΑΤΩΝ. Η θεωρία της άσκησης καλύπτεται από το βιβλίο του Εργαστηρίου. ( j ΑΣΚΗΣΗ 07 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ - ΚΥΚΛΩΜΑΤΩΝ Αντικείμενο της άσκησης είναι η μελέτη της συνάρτησης μεταφοράς ενός εν σειρά - κυκλώματος συναρτήσει της συχνότητας του σήματος εισόδου. Η θεωρία της άσκησης

Διαβάστε περισσότερα

Σύστημα Ελέγχου Θερμοκρασίας

Σύστημα Ελέγχου Θερμοκρασίας 1 Σύστημα Ελέγχου Θερμοκρασίας 1.1 Εισαγωγή Ο έλεγχος θερμοκρασίας αποτελεί μια από τις πλέον διαδεδομένες εφαρμογές του Αυτομάτου Ελέγχου. Τα παραδείγματα συστημάτων αυτού του τύπου είναι αναρίθμητα τόσο

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός

Διαβάστε περισσότερα

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:

Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

Σελίδα 1 από 8. Απαντήσεις στο φυλλάδιο 52

Σελίδα 1 από 8. Απαντήσεις στο φυλλάδιο 52 Σελίδα 1 από 8 Απαντήσεις στο φυλλάδιο 52 Ερώτηση 1 η : Πολυδονητές ονοµάζονται τα ηλεκτρονικά κυκλώµατα που παράγουν τετραγωνικούς παλµούς. 2 η : Ανάλογα µε τον τρόπο λειτουργίας τους διακρίνονται σε:

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3) ΑΣΚΗΣΗ 8 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ Αντικείμενο της άσκησης είναι να πραγματοποιήσετε μετρήσεις σε ένα L κύκλωμα σειράς έτσι ώστε α) να σχεδιάσετε την καμπύλη συντονισμού β) να προσδιορίσετε τις χαρακτηριστικές

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ

ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ Εργαστήριο Τεχνολογίας Υλικού & Αρχιτεκτονικής Υπολογιστών ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι Ο ΤΕΛΕΣΤΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1.1 Τελεστικοί ενισχυτές 1.1.1 Εισαγωγή: Αντικείµενο της εργαστηριακής

Διαβάστε περισσότερα

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΣΤΟΙΧΕΙΩΔΕΣ ΤΗΛΕΦΩΝΙΚΟ ΣΥΣΤΗΜΑ Εισαγωγή. Η διεξαγωγή της παρούσας εργαστηριακής άσκησης προϋποθέτει την μελέτη τουλάχιστον των πρώτων παραγράφων του

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

ΑΝΤΙΣΤΑΘΜΙΣΗ ΑΕΡΓΟΥ ΙΣΧΥΟΣ

ΑΝΤΙΣΤΑΘΜΙΣΗ ΑΕΡΓΟΥ ΙΣΧΥΟΣ ΕΙΚΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΑΝΤΙΣΤΑΘΜΙΣΗ ΑΕΡΓΟΥ ΙΣΧΥΟΣ Εισαγωγή Στα πειράµατα της εικονικής άσκησης 1 δόθηκε η ευκαιρία να παρατηρήσουµε τα προβλήµατα που δηµιουργεί η ροή αέργου ισχύος στο δίκτυο,

Διαβάστε περισσότερα

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts

Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts Εργασία στο μάθημα «Εργαστήριο Αναλογικών VLSI» Ανάλυση και υλοποίηση ταλαντωτή τύπου Colpitts Ομάδα Γεωργιάδης Κωνσταντίνος konsgeorg@inf.uth.gr Σκετόπουλος Νικόλαος sketopou@inf.uth.gr ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ

Διαβάστε περισσότερα

γ. υ = χ 0 ωσυνωt δ. υ = -χ 0 ωσυνωt. Μονάδες 5

γ. υ = χ 0 ωσυνωt δ. υ = -χ 0 ωσυνωt. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 29 ΜΑΪΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014 Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.

Διαβάστε περισσότερα

«Εργαστήριο σε Θέματα Ηλεκτρικών Μετρήσεων»

«Εργαστήριο σε Θέματα Ηλεκτρικών Μετρήσεων» Η ΠΡΑΞΗ ΥΛΟΠΟΙΕΙΤΑΙ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «Εκπαίδευση και Δια Βίου Μάθηση» ΚΑΙ ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ ΑΠΟ ΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΕΚΤ) ΚΑΙ ΑΠΟ ΕΘΝΙΚΟΥΣ ΠΟΡΟΥΣ

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ100 Εισαγωγή στην Τεχνολογία Εργαστήριο: Εισαγωγή στην Μέτρηση Βασικών Σηµάτων Συνοπτική Περιγραφή Εξοπλισµού και Στοιχείων

Διαβάστε περισσότερα

Σ.Ν.. Ε ΡΑ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΠΕΙΡΑΜΑ ΚΙΝΗΤΗΡΑΣ SCHRAGE Ν. ΟΚΙΜΟΣ :... Μέλη Οµάδας :... :... :... :...

Σ.Ν.. Ε ΡΑ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΠΕΙΡΑΜΑ ΚΙΝΗΤΗΡΑΣ SCHRAGE Ν. ΟΚΙΜΟΣ :... Μέλη Οµάδας :... :... :... :... Σ.Ν.. Ε ΡΑ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΠΕΙΡΑΜΑ ΚΙΝΗΤΗΡΑΣ SCHRAGE Ν. ΟΚΙΜΟΣ :... Μέλη Οµάδας :... :... :... :... ΕΤΟΣ/ΤΜΗΜΑ :.... Τετράµηνο /Εκπ. Έτος :... Ηµεροµηνία πειράµατος :... Θέση εργασίας :...

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 17/06/2011 ΣΕΙΡΑ Β: 16:00 18:30 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 17/06/2011 ΣΕΙΡΑ Β: 16:00 18:30 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 7/0/0 ΣΕΙΡΑ Β: :00 8:0 ΘΕΜΑ ο (4 μονάδες) Ο ενισχυτής του διπλανού σχήματος περιλαμβάνει ένα τρανζίστορ τύπου npn (Q ) και ένα τρανζίστορ τύπου pnp (Q ), για τα οποία δίνονται:

Διαβάστε περισσότερα