Ρυθµιστές PID. Βρόχος Ανατροφοδότησης Αναλογικός Ρυθµιστής (Ρ) Ολοκληρωτικός Ρυθµιστής (Ι) ιαφορικός Ρυθµιστής (D) Ρύθµιση PID
|
|
- Ἐπίκτητος Μαλαξός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Ρυθµιστές PID Βρόχος Ανατροφοδότησης Αναλογικός Ρυθµιστής (Ρ) Ολοκληρωτικός Ρυθµιστής (Ι) ιαφορικός Ρυθµιστής (D) Ρύθµιση PID 1
2 Βρόχος Ανατροφοδότησης! Θεωρούµε το βρόχο ανατροφοδότησης SP ιεργασία D G m G d + _ E C MV G c G f G p + + CV G m 2
3 Βρόχος Ανατροφοδότησης! Μοντέλο Simulink του προηγούµενου βρόχου ανατροφοδότησης SP ιεργασία D G m G d + _ E C MV G c G f G p + + CV G m 3
4 Βρόχος Ανατροφοδότησης! Σηµειώστε το διάγραµµα ροής και χρησιµοποιείστε το για επαλήθευση του ό,τι ακολουθεί στην παράδοση 4
5 Βρόχος Ανατροφοδότησης! Από τις σχέσεις των διαγραµµάτων βαθµίδων έχουµε για το βρόχο αυτό CV D CV SP = Gregulator = 1+ Gd GGGG p f c m GG c fgg p m = Gservo = 1+ GGGG p f c m 5
6 Βρόχος Ανατροφοδότησης! Ο τύπος του ρυθµιστή ανατροφοδότησης καθορίζει τη φύση του σήµατος C, το οποίο εξαρτάται από το σήµα σφάλµατος και τη συνάρτηση µεταφοράς του ρυθµιστή. C = G E c! Θα θεωρήσουµε 3 τύπους ρυθµιστών ανατροφοδότησης: αναλογικούς, ολοκληρωτικούς, διαφορικούς ρυθµιστές. 6
7 Αναλογικός Ρυθµιστής! Στο πεδίο χρόνου το σήµα του αναλογικού ρυθµιστή δίνεται από ( ) ( ) Ct = K Et + I C δηλ. το σήµα είναι ανάλογο του σφάλµατος.! I P είναι η σταθερά µηδενισµού (το bias) του σήµατος. P 7
8 Αναλογικός Ρυθµιστής! Στο πεδίο Laplace, έχουµε για τις µεταβλητές απόκλισης ( ) K E( s) C s = C άρα η συνάρτηση µεταφοράς για τον αναλογικό ρυθµιστή είναι G C ( ) () C s = = Es K C 8
9 Αναλογικός Ρυθµιστής! Ο συντελεστής ενίσχυσης του ρυθµιστή (controller gain), K C, αποτελεί προσαρµοζόµενη παράµετρο που µπορεί να ρυθµίζει ο µηχανικός για να ελέγχει την απόκριση του συστήµατος. 9
10 Αναλογικός Ρυθµιστής! Απόκριση του βρόχου ρύθµισης για βηµατική µεταβολή στην τιµή αναφοράς (set point) για διεργασίες 1ης τάξης.! Με τις ακόλουθες παραδοχές G G G f P C = G = 1 = = 10 m K P τ Ps + 1 K C
11 Αναλογικός Ρυθµιστής! Για το πρόβληµα servo G servo GG c fgg p m = = 1 + GGGG p f c m KP KC τps + 1 KP 1+ KC τ s + 1 P = KK C P KK C P + 1 τp s + 1 KK + 1 C P = KP τ s + 1 P η χαρακτηριστική εξίσωση: τ s + 1 P 11
12 Αναλογικός Ρυθµιστής! Σηµειώνουµε ότι: το σύστηµα παραµένει συνολικά 1ης τάξης όταν χρησιµοποιείται αναλογικός ρυθµιστής ο πραγµατικός συντελεστής ενίσχυσης µόνιµης κατάστασης (process gain) K P µειώνεται (λιγότερη µόνιµη απόκλιση ή offset) η πραγµατική χρονική σταθερά µειώνεται (ταχύτερη απόκριση). 12
13 Αναλογικός Ρυθµιστής! Αν θεωρήσουµε βηµατική µεταβολή µεγέθους M στην τιµή αναφοράς () () CV s = G SP s = servo KP τ s + 1 M s! Η τελική τιµή µόνιµης κατάστασης δίνεται από P K CV ( s G SP() s ) P = lim s t servo = lim s s τ s P 1 M s = KM P 13
14 Αναλογικός Ρυθµιστής! Η µόνιµη απόκλιση (οffset( ffset) δίνεται από! Σηµειώστε ότι: ( 1 ) Offset = SP CV = M K M = M K t t P P το offset δεν εξαφανίζεται τελείως µε αναλογική ρύθµιση, το offset µειώνεται µε την αύξηση του συντελεστή ενίσχυσης του ρυθµιστή (K P προσεγγίζει την 1 καθώς K C προσεγγίζει το άπειρο), θα δούµε ότι πολύ µεγάλα K C µπορούν να χαλάσουν την ευστάθεια. 14
15 Αναλογικός Ρυθµιστής! Για συστήµατα 2ης τάξης G servo = KP KC 2 2 τ s + 2τξs+ 1 = KP KC τ s + τξs τ K K 2 KCKP KCKP τξ s K K + 1 C P C P s
16 Αναλογικός Ρυθµιστής! Σηµειώστε ότι: το σύστηµα παραµένει 2ης τάξης, ο συνολικός συντελεστής ενίσχυσης µόνιµης κατάστασης µειώνεται µε αύξηση του K C, η περίοδος µειώνεται µε αύξηση του K C : τ = τ K C K P + 1 ο συντελεστής απόσβεσης µειώνεται µε αύξηση του K C : ξ = K C K P ξ
17 Αναλογικός Ρυθµιστής! Το σύστηµα µπορεί εποµένως να γίνει υποαποσβεννύµενο (ή ασταθές) µε αύξηση του K C.! Παράδειγµα µε το MATLAB... Αφήνεται σαν άσκηση για τους σπουδαστές να καθορίσουν το offset ενός συστήµατος 2ης τάξης. Επαναλάβετε την ανάλυση για το πρόβληµα του ρυθµιστή (regulator), θεωρώντας συναρτήσεις µεταφοράς G d 1ης και 2ης τάξης. 17
18 Ολοκληρωτικός Ρυθµιστής! Στην περίπτωση αυτή το σήµα του ρυθµιστή δίνεται από () C () Ct K = Etdt+ τ 0 I I I! τ Ι αναφέρεται ως χρόνος επαναφοράς (reset time) ή χρόνος ολοκλήρωσης (integral time). 18
19 Ολοκληρωτικός Ρυθµιστής Σήµα ολοκληρωτικής εξόδου κατά τη διάρκεια διατήρησης σφάλµατος C I -I I K c Κλίση = τ I Χρόνος 19
20 Ολοκληρωτικός Ρυθµιστής! Στο πεδίο Laplace, έχουµε () C () C s = άρα η συνάρτηση µεταφοράς για τον ολοκληρωτικό ρυθµιστή είναι G C K τ I ( ) () s Es C s KC = = Es τ I s 20
21 Ολοκληρωτικός Ρυθµιστής! Η ολοκληρωτική ρύθµιση υπόκειται σε κλείσιµο επαναφοράς (reset wind-up) το ολοκληρωτικό σήµα αυξάνει όσο υπάρχει σφάλµα το στοιχείο τελικής ρύθµισης µπορεί να κορεστεί (π.χ. τελείως ανοιχτή ή τελείως κλειστή βαλβίδα) όµως, το σήµα του ρυθµιστή θα συνεχίσει να αυξάνει ρυθµιστές του εµπορίου εφοδιασµένοι µε µηχανισµό anti-reset wind-up κλείνουν τη ρυθµιστική τους δράση όταν το στοιχείο υφίσταται κορεσµό (υπάρχουν διάφοροι αλγόριθµοι γι αυτό). 21
22 Ολοκληρωτικός Ρυθµιστής! Για το πρόβληµα του ρυθµιστή (regulator) για το οποίο η συνάρτηση µεταφοράς G d είναι 1ης τάξης, έχουµε G regulator Κ d Gd = = τs GGGG K K C P f m C P 1+ τ s τs + 1 I = ττs I 2 Kdτ Is KCKP τ I + K K s + 1 C P 22
23 Ολοκληρωτικός Ρυθµιστής! Με άλλα λόγια... Η συνολική τάξη του συστήµατος έχει αυξηθεί και γίνει 2ης τάξης, η πραγµατική περίοδος του συστήµατος είναι τ = ττ I K K P ο συντελεστής απόσβεσης του συστήµατος είναι 1 τ I ξ = 2 τkk P C 23 C
24 Ολοκληρωτικός Ρυθµιστής! Ισχύουν παρόµοια σχόλια και για το πρόβληµα servo.! Θεωρούµε τη µόνιµη απόκλιση (offset) για βηµατική µεταβολή στη διαταραχή... 24
25 Ολοκληρωτικός Ρυθµιστής! Για βηµατική µεταβολή έχουµε () () CV s = G SP s = regulator Ks d 2 2 τ s + 2ξτ s+ 1! Στο όριο καθώς το t προσεγγίζει το άπειρο M s lim t () CV t = lim s 0 s Ks d 2 2 τ s + 2ξ + τ s 1 M s = 0 25
26 Ολοκληρωτικός Ρυθµιστής! Η µόνιµη απόκλιση (offset) είναι Offset = SP CV = 0 0= 0 t t! Η ολοκληρωτική ρύθµιση έχει τη δυνατότητα να εξαλείψει το offset στην περίπτωση µιας συνεχούς διαταραχής (παρόµοια συµπεριφορά παρατηρείται για το πρόβληµα servo - δοκιµάστε το σαν άσκηση).! Παράδειγµα µε το MATLAB... 26
27 ιαφορικός Ρυθµιστής! Στην περίπτωση αυτή το σήµα του ρυθµιστή δίνεται από C() t de = K τ + dt I C D D όπου τ D είναι η προσαρµοζόµενη παράµετρος του διαφορικού ρυθµιστή,, η διαφορική χρονική σταθερά. 27
28 ιαφορικός Ρυθµιστής! Στο πεδίο Laplace, έχουµε για τις µεταβλητές απόκλισης ( ) τ ( ) C s = K se s C Η συνάρτηση µεταφοράς του διαφορικού ρυθµιστή δίνεται από D ( ) () C s Es = G = K τ s C C D 28
29 ιαφορικός Ρυθµιστής! Ορισµένες παρατηρήσεις: Μιλώντας αυστηρά µαθηµατικά, δεν µπορεί να κατασκευαστεί ρυθµιστής µε ακριβώς διαφορική δράση (η συνάρτηση µεταφοράς έχει αριθµητή µεγαλύτερης τάξης στο s απ ό,τι ο παρονοµαστής). Ο διαφορικός ρυθµιστής αποκρίνεται µόνο στο ρυθµό µεταβολής του σφάλµατος - σταθερό και διατηρηµένο σφάλµα δεν θα οδηγούσε σε απόκριση από το διαφορικό ρυθµιστή (εποµένως η διαφορική ρύθµιση δεν εφαρµόζεται ποτέ από µόνη της). 29
30 ιαφορικός Ρυθµιστής Οι πραγµατικοί ρυθµιστές στην πράξη χρησιµοποιούν ένα τύπο εµπρόσθιας καθυστέρησης (lead-lag) lag) διαφορικής ρύθµισης (θα επανέλθουµε σ αυτό όταν µιλήσουµε για τους ρυθµιστές PID). Αν η τιµή αναφοράς ξαφνικά αλλάξει, τότε ο ρυθµός µεταβολής του σφάλµατος απειρίζεται - αναφέρεται σαν διαφορικό κλώτσηµα (derivative kick). Για την αποφυγή του, οι ρυθµιστές συχνά εκφράζουν τη διαφορική τους συνιστώσα µε το µετρηµένο σήµα (Y) αντί για το σφάλµα (E): Ct () dym = KCτ D + dt 30 I D
31 ιαφορικός Ρυθµιστής! Αφήνεται σαν άσκηση να δειχθούν τα εξής: Για προβλήµατα servo σε διεργασία 1ης τάξης, η διαφορική ρύθµιση δεν αλλάζει την τάξη της απόκρισης αλλά αυξάνει τη σταθερά χρόνου. Σε συστήµατα 2ης τάξης,, η φυσική περίοδος δεν µεταβάλλεται αλλά ο συντελεστής απόσβεσης αυξάνει (περισσότερη απόσβεση και άρα σύστηµα λιγότερα ευµετάβλητο). 31
32 Ρυθµιστής PID! Οι δράσεις των στοιχείων του αναλογικού (P), ολοκληρωτικού (I), και διαφορικού (D) ρυθµιστή µπορούν να συνδυαστούν για την κατασκευή ενός ρυθµιστή PID... 32
33 Ρυθµιστής PID! Στο πεδίο χρόνου: Πρότυπο ISA ( ISA (International Systems Automation) 1 Ct () = K Et () Etdt () C τ I ( ) de t χρησιµοποιείται επίσης και το παρακάτω 1 Ct () = K Et () Etdt () C + τ 0 τ I τ D D dt ( ) dy t m dt + + I I 33
34 Ρυθµιστής PID! Στο πεδίο Laplace: 1 C s = C + + τ s () K 1 τ s E() s ή, γραµµένο σα συνάρτηση µεταφοράς I D ( ) () C s Es 1 = KC 1+ + τ s I τ D s 34
35 Ρυθµιστής PID! Οι ρυθµιστές στην πράξη χρησιµοποιούν έναν τύπο εµπρόσθιας καθυστέρησης (lead-lag) lag) για να προσεγγίσουν τον ιδανικό διαφορικό ρυθµιστή, εποµένως ο ρυθµιστής PID γίνεται ( ) () C s Es = K C 1+ τ I s 1+ τ τ s 1+ ατ s s! Η σταθερά α είναι συνήθως κάποιος µικρός αριθµός (0.05 µε 0.2). I 35 D D
36 Ρυθµιστής PID! Παρατηρούµε ότι το σύστηµα είναι αυστηρά µαθηµατικά σωστό, αφού η τάξη µεγέθους του παρονοµαστή είναι µεγαλύτερη από αυτή του αριθµητή. 36
37 Ρυθµιστής PID! Οι τρείς τύποι ρύθµισης λειτουργώντας σε συνεργία παράγουν, ποιοτικά, την ίδια απόκριση όπως τα επιµέρους συστατικά: Ο ολοκληρωτικός ρυθµιστής επιβραδύνει την ολική απόκριση, αυξάνει την τάξη µεγέθους, και λειτουργεί για την απαλοιφή του offset. Αύξηση του χρόνου επαναφοράς µειώνει το συντελεστή απόσβεσης. Αύξηση του K C µειώνει το χρόνο απόκρισης (µπορεί να οδηγήσει σε αστάθεια). Ο διαφορικός ρυθµιστής έχει σταθεροποιητική επίδραση. 37
Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση
Ο Βρόχος Ρύθµισης µε Ανατροφοδότηση Ο Βρόχος Ανατροφοδότησης Στοιχεία ιεργασίας και Όργανα Μέτρησης ιατάξεις ιαγραµµάτων Βαθµίδας Μέτρα Απόδοσης Ρύθµισης Επιλογή Μεταβλητών Ρύθµισης 1 Ο βρόχος ανατροφοδότησης!
Ανάλυση υναµικής ιεργασιών
Ανάλυση υναµικής ιεργασιών Αντιπροσώπευση µε το Μοντέλο Κατάστασης- Χώρου (State-Space Space Models) υναµική Γραµµικών Συστηµάτων 1ης και 2ης Τάξης Συστήµατα SISO και MIMO Ο Μετασχηµατισµός Laplace για
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Ελεγκτές - Controller Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ο ελεγκτής PID χοντρικά...
Ο ελεγκτής PID χοντρικά... Έχετε ένα αμάξι που με τέρμα γκάζι πηγαίνει 200χλμ.. Σας λέει κάποιος λοιπόν ότι θέλει να πάτε με 100 ακριβώς. Λέει κάποιος άλλος..θα πατήσω το γκάζι μέχρι την μέση και άρα θα
Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο
ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται
Είδη Διορθωτών: Υπάρχουν πολλών ειδών διορθωτές. Μία βασική ταξινόμησή τους είναι οι «Ειδικοί Διορθωτές» και οι «Κλασσικοί Διορθωτές».
ΔΙΟΡΘΩΣΗ ΣΑΕ Είδη Διορθωτών: Οι Διορθωτές έχουν την δική τους (Σ.Μ). Ενσωματώνονται στον βρόχο του ΣΑΕ και δρουν πάνω στην αρχική Σ.Μ κατά τρόπο ώστε να της προσδώσουν την επιθυμητή συμπεριφορά, την οποία
MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
MATLAB Εισαγωγή στο SIMULINK Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Εισαγωγή στο Simulink - Βιβλιοθήκες - Παραδείγματα Εκκίνηση BLOCKS click ή Βιβλιοθήκες Νέο αρχείο click ή Προσθήκη block σε αρχείο
Τυπική µορφή συστήµατος 2 ας τάξης
Τυπική µορφή συστήµατος 2 ας τάξης Έστω το γενικό σύστηµα 2 ας τάξεως µε σταθερό αριθµητή (1) Είθισται αυτό να γράφεται σε συγκεκριµένη µορφή, την εξής: θέτουµε ±, επιλέγοντας το πρόσηµο ούτως ώστε το
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 7 η : ΕΛΕΓΚΤΕΣ PID Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ
Ύλη µαθήµατος. Lead-Lag ελεγκτές 2. PID ελεγκτές (95%) (εκτός διαγράµµατα Nyquist-Nichols) ιακριτός & Ψηφιακός Αυτόµατος Έλεγχος ΨΗΦΙΑΚΟΣ ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Εργαστήριο Matlab LABview : συλλογή και αποστολή
5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5o Εργαστήριο Σ.Α.Ε Ενότητα : Ελεγκτές PID Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 9o Εργαστήριο Σ.Α.Ε. Ενότητα : Έλεγχος Υδραυλικού Συστήματος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 9o Εργαστήριο Σ.Α.Ε Ενότητα : Έλεγχος Υδραυλικού Συστήματος Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Controllers - Eλεγκτές
Controller - Eλεγκτές Στις επόμενες ενότητες θα εξετασθούν οι βιομηχανικοί ελεγκτές ή ελεγκτές τριών όρων PID, (με τους διάφορους συνδυασμούς τους όπως: P, PI ή PID). Η προτίμηση των ελεγκτών PID οφείλεται
ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ 0: ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΥΠΟΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Δρ Γιώργος
Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.
ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής
Άσκηση 3. Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις
Άσκηση 3 Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις 1) Αυτόματος έλεγχος δύο και τριών όρων 2) Εμπειρικαί μέθοδοι εκλογής των
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t
Αυτόματος Έλεγχος. Ενότητα 8 η : Βελτίωση απόδοσης βρόχου ανάδρασης Α. Έλεγχος διαδοχικών βρόχων. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8 η : Βελτίωση απόδοσης βρόχου ανάδρασης Α. Έλεγχος διαδοχικών βρόχων Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #11: Ελεγκτές PID & Συντονισμός Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
Μ. Σφακιωτάκης Χειµερινό εξάµηνο Μ. Σφακιωτάκης ΣΑΕ ΙΙ [7] - PID Έλεγχος Μ. Σφακιωτάκης ΣΑΕ ΙΙ [7] - PID Έλεγχος
7. ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ PID ΕΛΕΓΧΟΣ Μ. Σφακιωτάκης mfa@aff.ecree.gr Βασικές Αρχιτεκτονικές στη "Κλασσική" Σχεδίαση Ελεγκτών Έλεγχος on-off Ελεγκτές
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #12: Παραδείγματα Αναλογικών Συστημάτων Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Ολοκληρωτικός ελεγκτής (Ι) Οελεγκτής Ι αθροίζει το σφάλµα e σε συνάρτηση µε το χρόνο. Ένα θεωρήσουµε ένα σταθερό σφάλµα e τότε το σήµα εξόδου U R του
Ολοκληρωτικός ελεγκτής (Ι) Ολοκληρωτική ενέργεια ελέγχου είναι η ενέργεια ενός ελεγκτή του οποίου ο ρυθµός αλλαγής της εξόδου είναι ανάλογος µε την απόκλιση. Κύριος σκοπός του ολοκληρωτικού ελέγχου είναι
Εισαγωγή στον Αυτόματο Έλεγχο
Εισαγωγή στον Αυτόματο Έλεγχο ΣΑΕ 2016-2017 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Εθνικό
Βαθμονόμηση PID Ρυθμιστών
Βαθμονόμηση PID Ρυθμιστών Η βαθμονόμηση του ρυθμιστή επηρεάζει σε μεγάλο βαθμό την ευστάθεια του συστήματος κλειστού βρόχου. Για τα περισσότερα προβλήματα ρύθμισης, το σύστημα κλειστού βρόχου είναι ευσταθές
Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #13: Ψηφιακός Έλεγχος Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου Ι. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09
ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Συστήµατα Αυτοµάτου Ελέγχου Ι Ασκήσεις Πράξης. Καλλιγερόπουλος Σ. Βασιλειάδου Χειµερινό εξάµηνο 008/09 Ασκήσεις Λειτουργικά διαγράµµατα βαθµίδων Βρείτε τις επιµέρους βαθµίδες
ΣΦΑΛΜΑΤΑ ΜΟΝΙΜΗΣ ΚΑΤΑΣΤΑΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Χρονική Απόκριση Συστηµάτων Τα περισσότερα συστήµατα είναι από την φύση τους δυναµικά και παρουσιάζουν κάποιας µορφής αδράνεια
y 1 Output Input y 2 Σχήµα 1.1 Βασική δοµή ενός συστήµατος ελέγχου κλειστού βρόγχου
Τ.Ε.Ι. ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜHΜΑ ΗΛΕΚΤΡΟΛΟΓIΑΣ Σηµειώσεις για το εργαστήριο του µαθήµατος ΣΥΣΤΗΜΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ I ΓΑΥΡΟΣ ΚΩΝ/ΝΟΣ ΚΟΖΑΝΗ 2008 Κεφάλαιο 1 ο Ορισµός Συστηµάτων
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ:
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης
Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία
Εισαγωγή στις Ρυθµίσεις και τον Αυτόµατο Έλεγχο
Εισαγωγή στις Ρυθµίσεις και τον Αυτόµατο Έλεγχο! Τι σηµαίνει ρύθµιση και αυτόµατος έλεγχος των διεργασιών;! Κίνητρα για τη ρύθµιση! Υπολογίζοντας τα οφέλη των ρυθµίσεων και του αυτόµατου έλεγχου 1 ! Θεωρούµε
Ισοδυναµία τοπολογιών βρόχων.
Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #2: Ποιοτικά Χαρακτηριστικά Συστημάτων Κλειστού Βρόχου - Μόνιμα Σφάλματα Δημήτριος Δημογιαννόπουλος
ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΚΑΙ ΣΥΜΠΕΡΑΣΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ
ΚΕΦΑΛΑΙΟ 4 ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΚΑΙ ΣΥΜΠΕΡΑΣΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΠΡΟΣΑΡΜΟΣΜΕΝΟΣ ΕΛΕΓΧΟΣ Προσαρμοζόμενο (adaptive) ονομάζεται ένα σύστημα ελέγχου, που μπορεί να προσαρμόσει τις παραμέτρους του αυτόματα, κατά τέτοιο
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Χαρακτηριστικά των Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
ΑΣΚΗΣΗ Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ)
ΑΣΚΗΣΗ 7-2-27 Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ) Ακαδηµαϊκό Έτος: 27-28 ιδάσκων:γ. Π. Παπαβασιλόπουλος Επιµέλεια
x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας
ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος
Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ
ΕΙΣΑΓΩΓΗ Ο έλεγχος διεργασιών και ειδικότερα ο έλεγχος διεργασίας υγρών (χημικά), αναφέρεται στον έλεγχο μονάδων που παρασκευάζουν ομογενή υλικά όπως χημικά, χαρτί, μέταλλα, τσιμέντα, ενέργεια κ.λ.π. Ο
1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι
1) Τι είναι ένα Σύστημα Αυτομάτου Ελέγχου 2) Παραδείγματα εφαρμογών Συστημάτων Ελέγχου 3) Τι είναι ανατροφοδότηση (Feedback) και ποιες είναι οι επιπτώσεις της 4) Μαθηματικό υπόβαθρο για την μελέτη των
Ολοκληρωτικός ελεγκτής (Ι) Ελεγκτής Ισυνδεσµολογίας
Ολοκληρωτικός ελεγκτής (Ι) Ολοκληρωτικήενέργεια ελέγχου είναι η ενέργεια ενός ελεγκτή του οποίου ο ρυθµός αλλαγής της εξόδου είναι ανάλογος µε την απόκλιση. Κύριος σκοπός του ολοκληρωτικού ελέγχου είναι
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #9: Αναλογικά Συστήματα Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
2014 Παρίσης Κ., Καθηγητής
Είναι μια προέκταση του Matlab με την δυνατότητα μοντελοποίησης, προσομοίωσης και ανάλυσης συστημάτων μέσω ενός γραφικού περιβάλλοντος χρήστη (GUI). Η κατασκευή ενός μοντέλου είναι πολύ απλή και γρήγορη
( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητς: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμ: Σ. ΒΑΣΙΛΕΙΑΔΟΥ
Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής.
ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. Α) Σκοπός: Σκοπός της παρούσας άσκησης είναι να επιδειχθεί ο έλεγχος των στροφών
Περιεχόμενα 8 Μέθοδοι Βελτιστοποίησης
Περιεχόμενα 8 Μέθοδοι Βελτιστοποίησης 1 8.1 Βέλτιστη σχεδίαση συστημάτων αυτόματης ρύθμισης.......... 1 8.2 Ολοκληρωτικά κριτήρια........................... 5 8.2.1 Το γραμμικό βέλτιστο........................
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο
Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο
4.5. ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Τα συστήματα αυτομάτου ελέγχου όπου η ελεγχόμενη μεταβλητή είναι θερμοκρασία, πίεση, ροή, στάθμη υγρού ή ph είναι ένα σύστημα ελέγχου διεργασίας (process control).
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014
Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 204 ΘΕΜΑ Ο (2,0 μονάδες) Η διαδικασία διεύθυνσης ενός αυτοκινήτου κατά την οδήγησή του μπορεί να περιγραφεί με ένα σύστημα αυτομάτου ελέγχου κλειστού βρόχου.
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ ΧΕΙΜ17-18 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΕΛΕΓΧΟΣ ΤΑΧΥΤΗΤΑΣ
Εισαγωγή στον Αυτόματο Έλεγχο ( ) Σημειώσεις Μαθήματος Μέρος 3ο: Κλασσικός Έλεγχος. Γεώργιος Παπαλάμπρου
Εισαγωγή στον Αυτόματο Έλεγχο (8.3.01.5) Σημειώσεις Μαθήματος 2015-2016 Μέρος 3ο: Κλασσικός Έλεγχος Γεώργιος Παπαλάμπρου 2 Δρ. Γεώργιος Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων
Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων Control Systems Laboratory Περιγραφή Δυναµικών Συστηµάτων Εξίσωση µεταβολής όγκου Η µεταβολή όγκου ισούται µε τη παροχή υγρού Q που σχετίζεται
ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications)
ΚΕΦΑΛΑΙΟ 5 ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Idetificatios) Στο κεφάλαιο αυτό γίνεται παρουσίαση μεθοδολογίας για την ανεύρεση ενός αξιόπιστου μοντέλου πριν ή κατά την λειτουργία της
Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΚΟΠΟΣ: Ο βασικός σκοπός της άσκησης αυτής είναι η μελέτη
ΕΛΕΓΚΤΕΣ PID. Ελεγκτής τριών όρων Η συνάρτηση μεταφοράς του PID ελεγκτή είναι η ακόλουθη:
ΕΛΕΓΚΤΕΣ PID Εισαγωγή Αυτό το βοήθημα θα σας δείξει τα χαρακτηριστικά καθενός από τους τρεις ελέγχους ενός PID ελεγκτή, του αναλογικού (P), του ολοκληρωτικού (I) και του διαφορικού (D) ελέγχου, καθώς και
Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ
ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ Ενότητα 3: Συστήματα Αυτόματου Ελέγχου Διδάσκων: Γεώργιος Στεφανίδης Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Σκοποί ενότητας Στην ενότητα αυτή θα ασχοληθούμε με τα Συστήματα
x(t) 2 = e 2 t = e 2t, t > 0
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br
ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
ΕΞΟΜΟΙΩΣΗ Σ.Α.Ε ΜΕ ΤΟ SIMULINK (MATLAB)
ΕΞΟΜΟΙΩΣΗ Σ.Α.Ε ΜΕ ΤΟ SIMULINK (MATLAB) ΤΕΙ Α.Μ.Θ. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΘΗΓΗΤΗΣ ΤΣΙΡΙΓΩΤΗΣ ΓΕΩΡΓΙΟΣ ΚΑΒΑΛΑ 013 ΕΞΟΜΟΙΩΣΗ Σ.Α.Ε ΜΕ ΤΟ SIMULINK (MATLAB) 1.1 ΕΞΟΜΟΙΩΣΗ ΑΝΑΛΟΓΙΚΩΝ Σ.Α.Ε 1. Εισαγωγή
Μαθηµατικές Μέθοδοι (Μοντελοποίηση)
Μαθηµατικές Μέθοδοι (Μοντελοποίηση) Μεθοδολογία Μοντελοποίησης Αρχές ιατήρησης Βαθµοί Ελευθερίας και Ρύθµιση Μη Γραµµικά / Γραµµικά Συστήµατα Τεχνικές Γραµµικοποίησης 1 Μεθοδολογία Μοντελοποίησης! Ορισµός
Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Αυτόματος Έλεγχος. Ενότητα 7 η : Αναλογικός Ολοκληρωτικός Διαφορικός (PID) ελεγκτής Α. Στοιχεία ελεγκτή. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7 η : Αναλογικός Ολοκληρωτικός Διαφορικός (PID) ελεγκτής Α. Στοιχεία ελεγκτή Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών
Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και
CAD / CAM. Ενότητα # 3: Έλεγχος & Αριστοποίηση Συστημάτων. Δημήτριος Τσελές Τμήμα Μηχανικών Αυτοματισμού T.E.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM Ενότητα # 3: Έλεγχος & Αριστοποίηση Συστημάτων Δημήτριος Τσελές Τμήμα Μηχανικών Αυτοματισμού T.E. Άδειες Χρήσης Το παρόν
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 13 Πάτρα 28 Προσαρμοστικός έλεγχος με μοντέλο αναφοράς
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0
Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα
Μέθοδοι µελέτης και βελτίωσης της ευστάθειας συστηµάτων. Συχνοτικά διαγράµµατα Εισαγωγή Μελέτη συστήµατος αιώρησης µαγνητικού τρένου. Τις προηγούµενες δύο δεκαετίες, κατασκευάστηκαν πρωτότυπα µαγνητικά
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1
ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ
ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 4 Αναλυτική σύνθεση συστηµάτων αυτοµάτου ελέγχου Με συνθήκη µόνιµου σφάλµατος Με συνθήκη επιθυµητών πόλων Με επιθυµητό πρότυπο Καλλιγερόπουλος 4 1 Αναλυτική Σύνθεση συστηµάτων
ΚΕΦΑΛΑΙΟ 3 ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ. (α) Ο Διαδοχικός Έλεγχος (β) Ο Προσωτροφοδοτικός έλεγχος (γ) Τα Πολυμεταβλητά Συστήματα
ΚΕΦΑΛΑΙΟ 3 ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ (α) Ο Διαδοχικός Έλεγχος (β) Ο Προσωτροφοδοτικός έλεγχος (γ) Τα Πολυμεταβλητά Συστήματα Διαδοχικός Έλεγχος Οι περιπτώσεις ελέγχου όπου η έξοδος ενός ελεγκτή προσαρμόζει
x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/0.0 Θέµα ο - Περιοδικά
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #6: Σχεδιασμός ελεγκτών με χρήση αναλυτικής μεθόδου υπολογισμού παραμέτρων 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 1 η : Εισαγωγή
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 1 η : Εισαγωγή Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
NETCOM S.A. ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΠΑΛΜΟΜΕΤΑΤΡΟΠΕΩΝ DIGITAL CONTROL OF SWITCHING POWER CONVERTERS
NETCOM S.A. ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΠΑΛΜΟΜΕΤΑΤΡΟΠΕΩΝ DIGITAL CONTROL OF SWITCHING POWER CONVERTERS Αρχή λειτουργίας των Αναλογικών και ψηφιακών Παλμομετατροπεων Ο παλμός οδήγησης ενός παλμομετατροπέα, με αναλογική
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Προσαρμοστικός και Συμπερασματικός Έλεγχος Αλαφοδήμος Κωνσταντίνος Τμήμα Μηχανικών Αυτοματισμού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΑΛΥΣΗΣ, ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΡΥΘΜΙΣΗΣ ΤΩΝ ΧΗΜΙΚΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΑΛΥΣΗΣ, ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΡΥΘΜΙΣΗΣ ΤΩΝ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΕΩΝ: ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Σημειώσεις
. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και
ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα 5 Εξισώσεις εσωτερικής κατάστασης Ελεγξιµότητα και Παρατηρησιµότητα Καλλιγερόπουλος 5 Εξισώσεις εσωτερικής κατάστασης Η εξωτερική συµπεριφορά ενός συστήµατος ορίζεται
ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΧΕΙΜ5-6 ΗΜΕΡΟΜΗΝΙΑ: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ - ΕΡΓΑΣΤΗΡΙΟ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΕΛΕΓΧΟΣ
Εισαγωγή στον Αυτόματο Έλεγχο ( ) Σημειώσεις Μαθήματος Μέρος 3ο: Κλασσικός Έλεγχος. Γεώργιος Παπαλάμπρου
Εισαγωγή στον Αυτόματο Έλεγχο (8.3.01.5) Σημειώσεις Μαθήματος 2012-2013 Μέρος 3ο: Κλασσικός Έλεγχος Γεώργιος Παπαλάμπρου 2 Δρ. Γεώργιος Παπαλάμπρου Λέκτορας ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας Σχολή Ναυπηγών
Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0
Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας
Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο
Σεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Αυτοµάτου Ελέγχου Μάθηµα Ολική συνάρτηση µεταφοράς ιάγραµµα ροής Τύπος του Maso Καλλιγερόπουλος ιάγραµµα ροής Σύνθετα διαγράµµατα βαθµίδων πολλαπλών συστηµάτων οδήγησαν στην ανάγκη να βρεθεί
Ρύθμιση Πολυμεταβλητών Συστημάτων
Ρύθμιση Πολυμεταβλητών Συστημάτων Τα προβλήματα ρύθμισης που περιλαμβάνουν μόνο μια ρυθμιζόμενη μεταβλητή και μια μεταβλητή εκ χειρισμού αναφέρονται ως προβλήματα μιας εισόδου-μιας εξόδου (single input-single