ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α (25 µον αδες) ΘΕΜΑ Β (25 µον αδες) η µοναδικ ΘΕΜΑ Γ (25 µον αδες) κοιν

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α (25 µον αδες) ΘΕΜΑ Β (25 µον αδες) η µοναδικ ΘΕΜΑ Γ (25 µον αδες) κοιν"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η Ι 6 Σεπτεµ ρ ιου 2005 Τµ ηµα Π Ιω αννου & Θ Αποστολ ατου Απαντ ηστε και στα 4 Θ εµατα µε σαφ ηνεια και απλ οτητα Οι ολοκληρωµ ενες απαντ ησεις εκτιµ ωνται ιδιαιτ ερως Καλ η σας επιτυχ ια ΘΕΜΑ Α (25 µον αδες) 1 Γρ αψτε το ενεργ ο δυναµικ ο για ενα κεντρικ ο πεδ ιο που δι επεται απ ο δυναµικ ο της µορφ ης 2 Υπολογ ιστε τη συχν οτητα της κυκλικ ης κ ινησης, ακτ ινας, εν ος σωµατιδ ιου σε ενα τ ετοιο δυναµικ ο Υπολογ ιστε ακ οµη τη στροφορµ η του σωµατιδ ιου στην τροχι α αυτ η 3 Αναπτ υσσοντας το ενεργ ο δυναµικ ο γ υρω απ ο την ακτ ινα και κρατ ωντας την ιδια τιµ η της στροφορµ ης του σωµατιδ ιου υπολογ ιστε τη συχν οτητα µικρ ων ακτινικ ων ταλαντ ωσεων του σω- µατιδ ιου 4 Για ποι ες τιµ ες της παραµ ετρου οι δ υο συχν οτητες των ερωτηµ ατων (2) και (3) εχουν ρητ ο λ ογο ; Εξηγ ηστε ποια ε ιναι η συν επεια εν ος τ ετοιου αποτελ εσµατος στο σχ ηµα της τροχι ας ΘΕΜΑ Β (25 µον αδες) υο αστεροειδε ις περιφ ερονται γ υρω απ ο τον Ηλιο σε κλειστ ες τροχι ες που διαγρ αφονται στο ιδιο επ ιπεδο Κ αποια στιγµ η και οι δ υο αστεροειδε ις βρ ισκονται σε ιδια απ οσταση,, απ ο τον Ηλιο και οι αντ ιστοιχες επι ατικ ες ακτ ινες σχηµατ ιζουν µεταξ υ τους γων ια Τη στιγµ η αυτ η οι ταχ υτητες των δ υο αστεροειδ ων ε ιναι και οι δ υο και ε ιναι κ αθετες στις αντ ιστοιχες επι ατικ ες ακτ ινες ( ε ιναι η µ αζα του Ηλιου και κ αποιος πραγµατικ ος θετικ ος αριθµ ος) 1 Τι τροχι α διαγρ αφει ο καθ ενας απ ο τους δ υο αστεροειδε ις ως συν αρτηση της τιµ ης της παρα- µ ετρου ; Εξαρτ αται το σχ ηµα της τροχι ας απ ο τη µ αζα του κ αθε αστεροειδ η ; (Θεωρ ηστε οτι η µοναδικ η δ υναµη που ασκε ιται στους αστεροειδε ις ε ιναι η βαρυτικ η ελξη του Ηλιου εν ω η µεταξ υ τους ελξη καθ ως και η ελξη απ ο τους αλλους πλαν ητες θεωρε ιται αµελητ εα) 2 Σχεδι αστε ποιοτικ α την εξ ελιξη της απ οστασης µεταξ υ των αστεροειδ ων ως συν αρτηση του χρ ονου δε ιχνοντας µε ενα σχ ηµα σε ποιες θ εσεις της τροχι ας τους βρ ισκονται οι αστεροειδε ις στο µ εγιστο και στο ελ αχιστο της µεταξ υ τους απ οστασης 3 Υπολογ ιστε το λ ογο της µ εγιστης προς την ελ αχιστη απ οσταση µεταξ υ των αστεροειδ ων ως συν αρτηση της τιµ ης της παραµ ετρου 4 Εξηγ ηστε γιατ ι οι ακρα ιες τιµ ες της ε ιναι αυτ ες που βρ ηκατε, γιατ ι στις τιµ ες αυτ ες ο λ ογος των αποστ ασεων τε ινει στο απειρο και γιατ ι οταν η ε ιναι µον αδα ο λ ογος πα ιρνει την ελ αχιστη τιµ η του Ποια ε ιναι αυτ η ; ΘΕΜΑ Γ (25 µον αδες) υο γραµµικο ι αρµονικο ι ταλαντωτ ες µπορο υν να κινο υνται επ ι της ιδιας ευθε ιας δ ιχως τρι ες εχοντας κοιν ο κ εντρο ταλ αντωσης Οι δ υο ταλαντωτ ες εχουν µ αζες #" % και σταθερ ες ελατηρ ιων &" αντ ιστοιχα, διαφορετικ ες µεταξ υ τους αλλ α µε κοιν ο λ ογο % Αρχικ α ο αριστερ ος ταλαντωτ ης (ο 2) βρ ισκεται ακ ινητος στη θ εση ισορροπ ιας του, εν ω ο δεξι ος ταλαντωτ ης (ο 1) αφ ηνεται ακ ινητος απ ο τη θ εση ' 1

2 1 Εξηγ ηστε γιατ ι οι ταλαντωτ ες θα συνατιο υνται και θα συγκρο υονται π αντα στο κοιν ο σηµε ιο ισορροπ ιας τους (Η σ υγκρουση θεωρε ιται ελαστικ η) 2 Υπολογ ιστε τα πλ ατη της ταλ αντωσ ης τους µετ α την πρ ωτη ελαστικ η κρο υση 3 Υπολογ ιστε τα πλ ατη της ταλ αντωσ ης τους µετ α και τη δε υτερη κρο υση Εξηγ ηστε απ ο µαθη- µατικ ης αποψης γιατ ι τα πλ ατη αυτ α ε ιναι ιδια µε τα αρχικ α (' και 0 αντ ιστοιχα) [Υποδ Τι ε ιδους σ υστηµα εξισ ωσεων λ υνει κανε ις για να υπολογ ισει τις ταχ υτητες µετ α απ ο κ αθε κρο υση ;] 4 Σχεδι αστε τα διαγρ αµµατα φ ασης των δ υο ταλαντωτ ων 5 Ο αριστερ ος ταλαντωτ ης, και γενικ α το δι αστηµα αριστερ α απ ο το σηµε ιο ισορροπ ιας, ε ιναι κρυµ- µ ενος π ισω απ ο ενα π ετασµα Για ποιο υς λ ογους µαζ ων αυτ ο που βλ επουµε δεν µπορο υµε να το ξεχωρ ισουµε απ ο την κ ινηση εν ος µ ονο απλο υ αρµονικο υ ταλαντωτ η του οπο ιου δεν φα ινεται το αριστερ ο µ ερος ; () θα εξακολουθ ησουµε (στην περ ιπτωση που ισχ υει το ερ ωτηµα (5)) να νοµ ιζουµε πως παρακολουθο υµε το ηµισυ της ταλ αντωσης εν ος απλο υ αποσ υν οµενου ταλαντωτ η ; 6 Αν οι δ υο ταλαντωτ ες εχουν απ οσ εση µε κοιν ο συντελεστ η απ οσ εσης ( m 0 x ΘΕΜΑ (25 µον αδες) *,+- 1 Υπολογ ιστε το δυναµικ ο κατ α µ ηκος του αξονα συµµετρ ιας εν ος ηµισφαιρικο υ φλοιο υ συνολικ ης µ αζας + και ακτ ινας, ως συν αρτηση της απ οστασης απ ο το κ εντρο της σφα ιρας 2 Στη συν εχεια υπολογ ιστε τη δ υναµη που ασκε ιται απ ο το φλοι ο σε µια σηµειακ η µ αζα Ποι α η τιµ η του ορ ιου αυτ ης της δ υναµης οταν η σηµειακ η µ αζα πλησι αζει την επιφ ανεια του φλοιο υ ; 3 Με γεωµετρικ α επιχειρ ηµατα δε ιξτε οτι η βαρυτικ η δ υναµη που ασκε ιται στην, οταν αυτ η βρ ισκεται στο εσωτερικ ο του φλοιο υ, οφε ιλεται µ ονο στην πλησι εστερη µ αζα του ηµισφαιρ ιου (παχι α γραµµ η στο σχ ηµα), που περικλε ιεται στον κ ωνο που αποκ οπτουν οι χορδ ες οι οπο ιες δι ερχονται απ ο την περιφ ερεια του ηµισφαιρ ιου και απ ο τη θ εση της 4 ε ιξτε οτι στο οριο που η προσεγγ ιζει το φλοι ο, αποµ ενει να ασκε ι βαρυτικ η ελξη µ ονο ο απειροστ ος, σχεδ ον επ ιπεδος κυκλικ ος δ ισκος, ο οπο ιος εχει ακτ ινα οση και η σχεδ ον µηδενικ η απ οσταση της απ ο το φλοι ο 5 Υπολογ ιστε το δυναµικ ο απ ο εναν επ ιπεδο κυκλικ ο δ ισκο σταθερ ης επιφανειακ ης πυκν οτητας κατ α µ ηκος του αξονα αυτο υ και σε απ οσταση τ οση οση και η ακτ ινα του κ υκλου και στη συν εχεια υπολογ ιστε την αντ ιστοιχη δ υναµη σε µια µ αζα ε ιξτε οτι στο οριο της µηδενικ ης απ οστασης πα ιρνετε ακρι ως το αποτ ελεσµα του ερωτ ηµατος (3) 2

3 W = s C D c ΘΕΜΑ Α 1 0/&/ <; = 0> 3 0/&/ # BA 2 Απ και C D βρ ισκουµε FE Απαντ ησεις H FN H PO M H LK)M 3 Αναπτ υσσοντας µ εχρι 2η τ αξη αφο υ η πρ ωτη παρ αγωγος ε ιναι 0 πα ιρνουµε S0/&/Q & VUW Αντικαθιστ ωντας την τιµ η της C S0/&/Q & C YX ^U Z H PO M [ H I PO M [ & & και συνεπ ως η συχ- Ο συντελεστ ης σκληρ οτητας του αρµονικο υ ταλαντωτ η ε ιναι λοιπ ον ` ν οτητα ακτινικ ων ταλαντ ωσεων ε ιναι 4 Ο λ ογος των δ υο συχνοτ ητων ε ιναι A " ΘΕΜΑ Β D 3 dn H I " e " κλπ) η τροχι α ε ιναι κλειστ η H I O M ]\ _\ &HO LK)M 3Lb 698 =Ha 1 &HO Οταν αυτ ος ο λ ογος ε ιναι ρητ ος (πχ για I 1 Και οι δ υο διαγρ αφουν ελλλειψη και µ αλιστα ιδιου σχ ηµατος Για να ε ιναι κλειστ η η τροχι α θα ( =ταχ υτητα διαφυγ ης) Η µ αζα του αστεροειδ η δεν πα ιζει καν ενα ρ ολο Οι 2 ιδιες ελλε ιψεις σχηµατ ιζουν γων ια (οι µεγ αλοι τους ηµι αξονες) πρ επει gf e 2 Αφο υ θα κινο υνται επ ι ιδιων ελλειπτικ ων τροχι ων κ αθε στιγµ η θα σχηµατ ιζουν (µε τον Ηλιο) ενα ισοσκελ ες τρ ιγωνο γων ιας και πλευρ ας οση η επι ατικ η ακτ ινα του καθεν ος Αφο υ η,j5 ακολουθε ι µια ταλαντωτικ η κ ινηση µε ελ αχιστο στο περι ηλιο και µ εγιστο στο αφ ηλιο αντ ιστοιχη ταλ αντωση θα εκτελε ι και η απ οσταση των αστεροειδ ων 3 Σ υµφωνα µε τα προηγο υµενα ε ιναι ο λ ογος αφηλ ιου περι ηλιο Για να τον υπολογ ισουµε χρησιµοποιο υµε διατ ηρηση εν εργειας και στροφορµ ης για τις δ υο αυτ ες θ εσεις (επειδ η δεν γνωρ ιζουµε αν η αρχικ η θ εση ε ιναι περι ηλιο η αφ ηλιο -επι ατικ η θ εση κ αθετη στην ακτ ινα- τις δ υο θ εσεις ασχετα τι ε ιναι η καθεµ ια τις ονοµ αζουµε " ) Λ υνοντας βρ ισκουµε opb " ps 9 ο λ ογος ε ιναι µικρ οτερος του 1 ( = περι ηλιο) εν ω αν rf Ετσι αν rq ο λ ογος ε ιναι µεγαλ υτερος 9 του 1 ( = αφ ηλιο) Συνεπ ως ο λ ογος µ εγιστης προς ελ αχιστη απ οσταση αστεροειδ ων ε ιναι και s αν tf K s αν tq 3

4 ' A ' A ' ua 4 Ο παραπ ανω λ ογοι απειρ ιζονται για Στην 1η περ ιπτωση η τροχι α µετατρ επεται σε παρα ολ η οπ οτε δεν κλε ινει και οι αστεροειδε ις συνεχ ως αποµακρ υνονται και στη 2η περ ιπτωση οι αστεροειδε ις π εφτουν ακτινικ α στον Ηλιο οπ οτε πλησι αζουν συνεχ ως µεταξ υ τους µ εχρι να συγκρουστο υν Για v οι τροχι ες ε ιναι κυκλικ ες και οι αστεροειδε ις κρατο υν σταθερ η απ οσταση ο ενας απ ο τον αλλο ΘΕΜΑ Γ 1 Αφο υ οι 2 συχν οτητες ε ιναι ιδιες θα ε ιναι ιδιες και οι περ ιοδοι και οι ηµιπερ ιοδοι Αν συγκρουστο υν λοιπ ον αρχικ α στο σηµε ιο ισορροπ ιας τους οτι ταχ υτητα και αν εχουν µετ α (θετικ η η αρνητικ η) θα ξανακαταλ ηξουν στο ιδιο σηµε ιο µετ α απ ο µια ηµιπερ ιοδο 2 Απ ο διατ ηρηση εν εργειας και ορµ ης βρ ισκουµε Μετ α τη σ υγκρουση θα εχουµε D % % y % % %w %o x" " ' (1) % D % 3 Αφο υ οι ιδιες εξισ ωσεις ισχ υουν και για τις διστονες ταχ υτητες (µετ α τη δε υτερη κρο υση) και το σ υστηµα ε ιναι δευτ ε ρου βαθµο υ θα εχει το πολ υ δ υο σετ λ υσεων, αυτ ες που βρ ηκαµε προηγου- µ ενως και τις αρχικ ες ταχ υτητες εποµ ενως και τα αρχικ α πλ ατη 4 Τα διαγρ αµµατα φ ασης ε ιναι ηµικ υκλια ( η ηµι ελλειψη εξαρτ αται απ ο την κλ ιµακα των αξ ονων) για τον κ αθε ταλαντωτ η για την κ αθε ηµιπερ ιοδο Αν qz% ο πρ ωτος ταλαντωτ ης διαγρ αφει ενα ηµικ υκλιο δεξι α και ενα µικρ οτερο αριστερ α Αν fd% ο πρ ωτος ταλαντωτ ης διαγρ αφει ενα ηµικ υκλιο δεξι α και ενα µικρ οτερο π αλι δεξι α Και στις 2 περιπτ ωσεις ο δε υτερος ταλαντωτ ης διαγρ αφει π αντα ενα αριστερο ηµικ υκλιο ερχεται στο σηµε ιο ισορροπ ιας (κ εντρο) και περιµ ενει εκε ι µ εχρι να τον ξαναχτυπ ησει ο 1 µετ α απ ο µια ηµιπερ ιοδο για να ξαναγρ αψει το ιδιο ηµικ υκλιο 5 Οπως ε ιπαµε για q_% ο 1 ταλαντωτ ης περν α τη µισ η περ ιοδο π ισω απ ο το π ετασµα οπ οτε φα ινεται η δεξι α πλευρ α της ταλ αντωσης η οπο ια δεν διαφ ερει απ ο το µισ ο µιας απλ ης αρµονικ ης ταλ αντωσης 6 Οι συχν οτητες θα αλλ αξουν αλλ α θα ε ιναι π αλι ισες µεταξ υ τους, οπ οτε π αλι για την ιδια σχ εση µαζ ων θα παρακολουθο υµε το µισ ο µιας απλ ης αποσ υν οµενης αρµονικ ης ταλ αντωσης ΘΕΜΑ Γ 1 *,+-{ i)~ Y Y ^k5m7nƒ i J 9 e + + Z k οπου } η επιφανειακ η πυκν οτητα µ αζας, και + η γων ια που σχηµατ ιζει η επι ατικ η ακτ ινα του κ αθε δακτυλ ιου µε τον αρνητικ ο αξονα των Μετ α απ ο πρ αξεις καταλ ηγουµε στο αποτ ελεσµα,+-{ + ˆ + e + wš η οπο ια ε ιναι σωστ η και για + q και για + f 4

5 U + Œ [ Ž U [ 2 Στο οριο + Ž,,+- i i = + K ^ e + e Βλ σηµει ωσεις θεωρ ιας Οι επιφ ανειες του ηµισφαιρ ιου εκτ ος των δ υο κ ωνων που σχηµατ ιζονται ασκο υν µηδενικ ες συνολικ α βαρυτικ ες δυν αµεις Αποµ ενει µ ονο η παχι α επιφ ανεια να ασκε ι ελξη 4 Οταν η σηµειακ η µ αζα πλησι αζει τη σφαιρικ η επιφ ανεια οι χορδ ες τε ινουν να σχηµατ ισουν γων ια QỸ Οπ οτε η ελξη οφε ιλεται σε ενα απιειροστ ο δ ισκο ο οπο ιος βρ ισκεται σε απ οσταση οση η ακτ ινα του + 5 Απ ο δ ισκο ακτ ινας και σε απ οσταση απ ο το κ εντρο του Y i e Y e + Bš+ š œ Ετσι η δ υναµη που ασκε ι ενας τ ετοιος δ ισκος στο οριο που γ ινεται µικροσκοπικ ος και αντιστο ιχως ερχεται απε ιρως κοντ α ε Y e Αν αντικαταστ ησει κανε ις την πυκν οτητα } του (2) ερωτ ηµατος Y e Y της σαφ ιρας καταλ ηγει στο αποτ ελεσµα 5

Θ εµα Α : Θ εµα Β : Θ εµα Γ :

Θ εµα Α : Θ εµα Β : Θ εµα Γ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξετ ασεις επ ι Πτυχ ιω στη Θεωρ ια της Ειδικ ης Σχετικ οτητας 29 Απριλ ιου 2009 Να γραφο υν τα 4 απ ο τα 5 θ εµατα Σε ολα τα θ εµατα εργαστε ιτε σε σ υστηµα µον αδων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξετ ασεις στη Θεωρ ια της Ειδικ ης Σχετικ οτητας Σεπτεµ ρ ιου 200 Να απαντ ησετε στα 4 απ ο τα ακ ολουθα προ λ ηµατα. Θ εµα 1 Το γεγον ος βρ ισκεται εντ ος του µελλοντικο

Διαβάστε περισσότερα

7.2 Κ ινηση φορτισµ ενου σωµατιδ ιου σε οµογεν εσ ηλεκτρικ ο και µαγνητικ ο πεδ ιο

7.2 Κ ινηση φορτισµ ενου σωµατιδ ιου σε οµογεν εσ ηλεκτρικ ο και µαγνητικ ο πεδ ιο Κεφ αλαιο 7 Παραδε ιγµατα Λαγκρανζιαν ων Συναρτ ησεων Σκο υπες σκουπ ακια ρουφηχτ ηρια φτερ α τιναχτ ηρια ξεσκον οπανα κουρελ οπανα κλ οουν θ ορυ οι και τρ οποι ακρο ατες, µαστ ιγιο π εφτουν οι κιν ησεις

Διαβάστε περισσότερα

Κεφ αλαιο 6 6.1 Απειροστ ες στροφ ες διαν υσµατος

Κεφ αλαιο 6 6.1 Απειροστ ες στροφ ες διαν υσµατος Κεφ αλαιο 6 Στροφ ες Ειδικ η Θεωρ ια της Σχετικ οτητας Στο εξ ης ο χ ωρος και ο χρ ονος ως ανεξ αρτητες εννοιες ε ιναι καταδικασµ ενοι να σ ησουν, καταντ ωντας απλ ες σκι ες, και µ ονο ενα ε ιδος συν ενωσ

Διαβάστε περισσότερα

L 96/22 EL ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 696/98 ΤΗΣ ΕΠΙΤΡΟΠΗΣ τη 27η Μαρτ ιου 1998 για την εφαρµογ η του κανονισµο υ (ΕΚ) αριθ. 515/97 του Συµβουλ ιου περ ι τη αµοιβα ια συνδροµ η µεταξ υ των διοικητικ ων αρχ

Διαβάστε περισσότερα

Albert Einstein. Lagrange

Albert Einstein. Lagrange Κεφ αλαιο 3 Συν αρτηση Lagrange Αυτ ο που πραγµατικ α µε ενδιαφ ερει ε ιναι το αν ο Θε ος ε ιχε τη δυνατ οτητα επιλογ ης κατ α τη δηµιουργ ια του κ οσµου Albert Einstein 3.1 Η Λαγκρανζιαν η και το φυσικ

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

Επ ισηµη Εφηµερ ιδα των Ευρωπα ικ ων Κοινοτ ητων L 14/9

Επ ισηµη Εφηµερ ιδα των Ευρωπα ικ ων Κοινοτ ητων L 14/9 20. 1. 98 EL Επ ισηµη Εφηµερ ιδα των Ευρωπα ικ ων Κοινοτ ητων L 14/9 Ο ΗΓΙΑ 97/81/ΕΚ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ τη 15η εκεµβρ ιου 1997 σχετικ α µε τη συµφων ια-πλα ισιο για την εργασ ια µερικ η απασχ οληση που συν

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

11. 3. 1987, σ. 11).»

11. 3. 1987, σ. 11).» L 201/88 EL Ο ΗΓΙΑ 98/50/ΕΚ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ τη 29η Ιουν ιου 1998 για την τροποπο ιηση τη οδηγ ια 77/187/ΕΟΚ περ ι προσεγγ ισεω των νοµοθεσι ων των κρατ ων µελ ων, σχετικ ων µε τη διατ ηρηση των δικαιωµ

Διαβάστε περισσότερα

L 217/18 EL Ο ΗΓΙΑ 98/48/ΕΚ ΤΟΥ ΕΥΡΩΠΑΙ ΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ τη 20 η Ιουλ ιου 1998 για την τροποπο ιηση τη οδηγ ια 98/34/ΕΚ για την καθι ερωση µια διαδικασ ια πληροφ ορηση στον τοµ εα των

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 2013 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 13 ΘΕΜΑΤΑ και ΛΥΣΕΙΣ ΘΕΜΑ B1 Η κίνηση δύο ατόµων ενός µορίου µπορεί να περιγραφεί προσεγγιστικά από ένα a 1 x ax δυναµικό της µορφής V = +, a >, όπου x> η σχετική απόσταση

Διαβάστε περισσότερα

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς.

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4ο Ε Α α ο σίο Α' ίο 4-2015 ρε νη ική ρ ασία Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4η Ο ά α 1ο Τ τ ά η ο Y ο ώτη α: ι ές α ές άσ ησης ια ο ς φήβο ς. Γενικές αρχές άσκησης: Εί η Άσ ησης Ια ι ός

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

Προτ υπου (Minimal Supersymmetric Standard Model, MSSM).

Προτ υπου (Minimal Supersymmetric Standard Model, MSSM). υνατ οτητα αν ιχνευσης σωµατιδ ιων Higgs και Φυσικ ης π εραν του Καθιερωµ ενου Προτ υπου στον LHC και µελ ετες επ ι του ανιχνευτ η ακτινο ολ ιας µετ α ασης του πειρ αµατος ATLAS CERN-THESIS-22-5 11/2/22

Διαβάστε περισσότερα

Κεφ αλαιο 5 Σ υνοψη και τελικ α συµπερ ασµατα

Κεφ αλαιο 5 Σ υνοψη και τελικ α συµπερ ασµατα Κεφ αλαιο 5 Σ υνοψη και τελικ α συµπερ ασµατα Στα πλα ισια της παρο υσας διατρι ης µετρ ηθηκαν οι ενεργ ες διατοµ ες αντιδρ ασεων πρωτονικ ης σ υλληψης στα τρ ια απ οτατ εσσερα σταθερ α ισ οτοπα του Sr

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ

ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ τ. Ε. I. Ν-λ ε λ λ λ ς : ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΑΛΥΣΗ ΤΩΝ ΟΡΓΑΝΩΤΙΚΩΝ ΔΟΜΩΝ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΟΥ ΝΟΜΟΥ ΚΕΦΑΛΛΗΝΙΑΣ ΕΙΣΗΓΗΤΗΣ; MIX. ΠΙΠΙΛΙΑΓΚΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Η ούσια εκ των οτέ ων ιαφά ια.

Η ούσια εκ των οτέ ων ιαφά ια. ΟΠΟ Η ΙΑΒΟ Η Α ιο ό σ ς α ο σ α ι ό ας ια ά ς Ο ίας / / ια ις ια ι ασί ς οσφ ής σ ο ο έα ς σύ α ς οσί σ βάσ Η σ ή σ ί * ί ο ι ή. α ό η α ερω ηθέν ων * Α αφέ α ο ά ος έ ος σας: * Π οσ ιο ίσ ι ιό ά σας:

Διαβάστε περισσότερα

Εθνικ ο Μετσ ο ιο Πολυτεχνε ιο

Εθνικ ο Μετσ ο ιο Πολυτεχνε ιο Εθνικ ο Μετσ ο ιο Πολυτεχνε ιο Σχολ η Εφαρµοσµ ενων Μαθηµατικ ων και Φυσικ ων Επιστηµ ων Μετρ ησεις ενεργ ων διατοµ ων πυρηνικ ων αντιδρ ασεων πρωτονικ ης σ υλληψης των ισοτ οπων του Στροντ ιου µε σηµασ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

---------------------------------------------------------------------------------------- 1.1. --------------

---------------------------------------------------------------------------------------- 1.1. -------------- ΕΚΘΕΣΗ Τ Ο Υ Ι Ο Ι ΚΗΤ Ι ΚΟ Υ ΣΥ Μ Β Ο Υ Λ Ι Ο Υ Π Ρ Ο Σ Τ ΗΝ Τ Α ΚΤ Ι ΚΗ Γ ΕΝ Ι ΚΗ ΣΥ Ν ΕΛ ΕΥ ΣΗ Τ Ω Ν Μ ΕΤ Ο Χ Ω Ν Kύριοι Μ έ τ οχοι, Σ ύµ φ ω ν α µ ε τ ο Ν όµ ο κ α ι τ ο Κα τ α σ τ α τ ικ ό τ ης ε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

Προσοµοίωση Ανάλυση Απ ο τ ε λε σµ άτ ω ν ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Ανάλυση Απ ο τ ε λε σµ άτ ω ν Τα απ ο τ ε λ έ σ µ ατ α απ ό τ η ν π αρ αγ ω γ ή κ αι τ η χ ρ ή σ η τ υ χ αί ω ν δ ε ι γ µ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες.

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. Διαγώνισμα εφ όλης της ύλης Θέμα ο Στα θέματα 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. ) Στο σχήμα φαίνεται το στιγμιότυπο ενός τρέχοντος αρμονικού κύματος

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

ο. 3199/2003 αι ο Π.. 51/2007

ο. 3199/2003 αι ο Π.. 51/2007 ι ής ισ ο ίας), σ α ι ά ο ία αι α ιό ο ς α ά ιο ισ έ ς έ ι σή α οσ ασι ό ας α ές. Α ό άς ύ α σ ς αι α οιώσ σ οι ί ς φ σι ής ο ο ιάς, ο ά ο όβ α ί αι ύ α σ ο ιού αι ο α ασ ι ού ό ο, ώ αισθ ι ά οι οι ο ο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης ΦΟΡΕΑΣ: Υπουργείο / Αποκεντρωµένη ιοίκηση..... ΕΙ ΙΚΟΣ ΦΟΡΕΑΣ: Γενική γραµµατεία... / Περιφέρεια..... Αναφορά για το µήνα: Ετος: 2012 ΣΑ έργου (Π Ε) Υποχρεώσεις πιστοποιηµένων εργασιών χωρίς τιµολόγιο

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΑΠΡΙΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967

ΗΛ. ΣΕΛΙΔΟΠΟΙΗΣΗ - ΕΚΤΥΠΩΣΗ - ΒΙΒΛΙΟΔΕΣΙΑ «ΛΥΧΝΙΑ», Αδραβίδας 7, 13671 Χαμόμυλο Αχαρνών τηλ.: 210 34 10 436, fax: 210 34 25 967 ΙΟΥ ι: ριέχε άθος ε ς π -Λ λίο λογή ίας ι ό β ι τ π β σ Ε λής ις Σω εωρ αρόν Το π ερωτήσε Πολλαπ ης της Θ ύ ο ξ ις 49 ερωτήσε Ανάπτυ σης Κεν ω ις 73 ερωτήσε Συµπλήρ ήµατα λ 23 ρωτήσεις ς & προβ ι ε κήσε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να ράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το ράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει

Διαβάστε περισσότερα

11:30-12:00 ιά ι α 12:00-14:00 ία: Α αιο ο ία αι α ς Α έ ος. ο ισ ς: ά ο ιο. οβο ή βί α ι έ ο ή ο Αθ αίω, Α φιθέα ο «Α ώ ς ί σ ς» Α α ίας

11:30-12:00 ιά ι α 12:00-14:00 ία: Α αιο ο ία αι α ς Α έ ος. ο ισ ς: ά ο ιο. οβο ή βί α ι έ ο ή ο Αθ αίω, Α φιθέα ο «Α ώ ς ί σ ς» Α α ίας Α ΧΑ Α 9- α ο α ίο ι «Α αιο ο ι οί ιά ο οι» ί αι έ ας έος θ σ ός, έ ας ια ής ι ι ός αι α ασ ο ασ ι ός ιά ο ος ια ις α αιό ς αι α αιο ο ία σ σ ι ή οι ία. βασι ή ο ο φή ί αι έ α ήσιο, α οι ό σ έ ιο / ή σ

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Κανονισμός Διοικητικού Συμ ου ίου

Κανονισμός Διοικητικού Συμ ου ίου Κανονισμός Διοικητικού Συμ ου ίου Περιφερειακής Ένωσης Δήμων (Π.Ε.Δ.) Ιονίων Νήσων Περιφερειακή Έν ση Δήμ ν (Π.Ε.Δ.) Ιονί ν Νήσ ν -3mm-3mm ΠΕΔ ΙΝ Ιανουάριος 2012 2 Περιε όμενα 1 Αντικείμενο του κανονισμού

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

α : 210-6465727 E-mail : support@gcsl.gr

α : 210-6465727 E-mail : support@gcsl.gr Α Α Α Α Α: 65Χ Η-Λ Φ Η Η Η Α Α Α Α : 5PROC002922680 Η Α Α Α Η Αθή α, 6-7-205 Η Η Α ιθ..: 30/002/000/4368 Η Α Έ ισ α ά ς: 30/002/000/4034/26-6-205 Η Α, Η Η Α Η (A Α : Η- ) & Η Η Α Η Α A α. / σ : Α. σό α

Διαβάστε περισσότερα

Λ υσεις του ιαγων ισµατος της Μηχανικ ης Ι Φε ρου αριος 2002

Λ υσεις του ιαγων ισµατος της Μηχανικ ης Ι Φε ρου αριος 2002 Λυσεις του ιαγωνισµατος της Μηχανικης Ι Φερουαριος 2002 ΘΕΜΑ 1: (α) Προκειµενου να κινειται ακτινικα ο πλανητης θα πρεπει να κινειται αρχικα ακτινικακαιηδυναµη που ασκειται πανω του να ειναι ακτινικη.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικό διαγώνισµα Φυσικής Κατεύθυνσης Γ λυκείου 009 ΘΕΜΑ 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σώµα

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

ΗΛΙΑΣ Γ. ΚΑΡΚΑΝΙΑΣ - ΕΦΗ Ι. ΣΟΥΛΙΩΤΟΥ ΤΕΤΡΑΔΙΟ ΠΡΩΤΗΣ ΓΡΑΦΗΣ. τ... μαθητ... ΤΑΞΗ Α ΣΧΟΛΙΚΟ ΕΤΟΣ... Β Τεύχος

ΗΛΙΑΣ Γ. ΚΑΡΚΑΝΙΑΣ - ΕΦΗ Ι. ΣΟΥΛΙΩΤΟΥ ΤΕΤΡΑΔΙΟ ΠΡΩΤΗΣ ΓΡΑΦΗΣ. τ... μαθητ... ΤΑΞΗ Α ΣΧΟΛΙΚΟ ΕΤΟΣ... Β Τεύχος ΗΛΙΑΣ Γ. ΚΑΡΚΑΝΙΑΣ - ΕΦΗ Ι. ΣΟΥΛΙΩΤΟΥ ΤΕΤΡΑΔΙΟ ΠΡΩΤΗΣ ΓΡΑΦΗΣ τ... μαθητ...... ΤΑΞΗ Α ΣΧΟΛΙΚΟ ΕΤΟΣ... Β Τεύχος Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Γραφής Α Δημοτικού Β ΤΕΥΧΟΣ Απαγορεύεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΑΔΑ: ΩΟΩΞ465ΦΘ3-ΝΔΞ. α ούσι, 09 /06/2015 90911 / email. t08dea1@minedu.gov.gr 210-3442190, 2194,2577, 210-3442929,2928.

ΑΔΑ: ΩΟΩΞ465ΦΘ3-ΝΔΞ. α ούσι, 09 /06/2015 90911 / email. t08dea1@minedu.gov.gr 210-3442190, 2194,2577, 210-3442929,2928. INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.06.09 15:43:51 EEST Reason: Location: Athens ΑΔΑ: ΩΟΩΞ465ΦΘ3-ΝΔΞ Η Η Η Ο Α Α Ο Ο Ο Ο, Α Α Α Η Α Ω Η Η Ο Ω..

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο

Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο

Διαβάστε περισσότερα

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού.

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ = Ο. Μαγνητικό πεδίο ευθύγραµµου ρευµατοφόρου αγωγού. Μαγνητικό πεδίο κυκλικού ρευµατοφόρου αγωγού. ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ Μαγνητικό πεδίο είναι ο χώρος που έχει την ιδιότητα να ασκεί αγνητικές δυνάεις σε κατάλληλο υπόθεα (αγνήτες, ρευατοφόροι αγωγοί ) Το αγνητικό πεδίο το ανιχνεύουε ε την βοήθεια ιας αγνητικής

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

Μι ο α ι ές ια ά ις ό α 3: ί ς αι ια ά ις φ ι ώ αύ ος Κο ο ί ς Πο ι ή Η ο ό Μ α ι ώ αι ο ο ιάς ο ο ισ ώ ο οί ό ας ιό ς φ ι ώ αι ά σ ο ς σ α ασ ή ήσι ι ο α ι ώ ι ύ 2 Π ι ό α ό ας Μα ι ά ι ά ιό ς φ ι ώ ια

Διαβάστε περισσότερα

Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια

Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ & ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ Θέµα ο Στις παρακάτω ερωτήσεις να ράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το ράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ ΤΕΧΝ Οη ΟΓ ΙΚ Ο Ε Κ ΠΟ ΙΔ ΕΥ ΤΙ ΚΟ ΙΔΡΥΜΟ ΚΟΒΟΠΑΕ ΕΧΟΠΗ ΔΙϋΙ ΚΗ ΕΗ Σ ΚΑΙ Ο Ι ΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ηο ΓΙ ΣΤ ΙΚ ΗΣ ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - Καθηγητή ΚΑΡΑ ΣΑ ΒΒ

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΙΙ ΘΕΜΑ 1 ο (βαθµοί 2) Σώµα µε µάζα m=5,00 kg είναι προσαρµοσµένο στο ελεύθερο άκρο ενός κατακόρυφου ελατηρίου και ταλαντώνεται εκτελώντας πέντε (5) πλήρης ταλαντώσεις σε χρονικό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεών σας τον αριθµό

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του ΑΡΧΗ ης ΣΕΛΙΔΑΣ Προτεινόμενο Τελικό Διαγώνισμα Στη Φυσική Θετικής και Τεχνολογικής Κατεύθυσης Γ Λυκείου Διάρκεια: 3ώρες ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης

Διαβάστε περισσότερα

κ ηϋλ μ α λκπκλδευμ www.karmatravel.gr Travel.Karma@yahoo.gr ΙΝΔΙΑΝ ΧΡΤΟΝ ΣΡΙΓΩΝΟ 06, 27/10/15 639 899 03/11/15 769 1029 600 5* ΦόλκδΝ Α φαζέ Κα ηγέ

κ ηϋλ μ α λκπκλδευμ www.karmatravel.gr Travel.Karma@yahoo.gr ΙΝΔΙΑΝ ΧΡΤΟΝ ΣΡΙΓΩΝΟ 06, 27/10/15 639 899 03/11/15 769 1029 600 5* ΦόλκδΝ Α φαζέ Κα ηγέ www.karmatravel.gr Travel.Karma@yahoo.gr ΙΝ Ι ΧΡ Ο ΡΙ ΩΝΟ κ ηϋλ μ α λκπκλδευμ Β ί Ο Ά α (2) Ο Φα π υ ί Ο μπ α Ο α π (2) Ο Φ Άμπ Ο Β ί (2) Πλκκλδ ηόμ ΙΝΔΙΑΝ ΧΡΤΟΝ ΣΡΙΓΩΝΟ ΜΫλ μ Αθαχωλά δμ Δέεζδθκ Μκθόεζδθκ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΛΥΕΙ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΕΩΝ 004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΘΕΜΑ ο Για τις ερωτήσεις -4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

- 60 Δελτία Τύπου - 6.300 περίπου παρουσιάσεις στα M.M.E.

- 60 Δελτία Τύπου - 6.300 περίπου παρουσιάσεις στα M.M.E. - 60 Δελτία Τύπου - 6.300 περίπου παρουσιάσεις στα M.M.E. ΕΙΔΟΣ ΜΜΕ 2007* 2008* 2007-2008* ΕΦΗΜΕΡΙΔΕΣ-ΠΕΡΙΟΔΙΚΑΙΣΤΟΣΕΛΙΔΕΣ 1.500 2.000 3.500 ΡΑΔΙΟΦΩΝΟ 800 900 1.700 ΤΗΛΕΟΡΑΣΗ 1300 1.500 2.800 ΣΥΝΟΛΟ ΕΤΟΥΣ/ΔΙΕΤΙΑΣ

Διαβάστε περισσότερα