που δεν περιγρ αφεται οµως οπως προηγουµ ενως ως ενα απλ ο ηµ ιτονο, αλλ α ως ενα αθροισµα ηµιτονοειδ ων ορων. Παρ αδειγµα: Εστω:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "που δεν περιγρ αφεται οµως οπως προηγουµ ενως ως ενα απλ ο ηµ ιτονο, αλλ α ως ενα αθροισµα ηµιτονοειδ ων ορων. Παρ αδειγµα: Εστω:"

Transcript

1 Αθροισµα ηµιτονοειδ ων ορων Η σχ εση "! # &%"' δηλ ωνει οτι οταν προσθ ετουµε ηµιτονοειδ η σ ηµατα που σχετ ιζονται αρµονικ α, δηλ. που περι εχουν συχν οτητες οι οπο ιες ε ιναι ακ εραια πολλαπλ ασια µιας θεµελι ωδους (βασικ ης) συχν οτητας ( *) προκ υπτει ενα σ ηµα περιοδικ ο µε περ ιοδο:,. ( που δεν περιγρ αφεται οµως οπως προηγουµ ενως ως ενα απλ ο ηµ ιτονο, αλλ α ως ενα αθροισµα ηµιτονοειδ ων ορων. Παρ αδειγµα: Εστω: τ οτε το σ ηµα / :9 =<>=*= :9 =<A@**= C >D θα ε ιναι περιοδικ ο µε περ ιοδο =* / 21 (Σχ. 1). Πρ αγµατι τα σ ηµατα και εχουν συχν οτητες J@:KGFLH αντ ιστοιχα, που ε ιναι αρµονικ α συσχετισµ ενες, δηλ. ε ιναι ακ εραια ( E=*GFIH και ( πολλαπλ ασια µιας βασικ ης συχν οτητας: ( ( *) ( M ( K) οπου ( NO=KCFIHQP Αν στα παραπ ανω 7 6 (a) 4 3 (b) 2 1 (c) Time in sec. RTSVUKWYX"Z K[]\ ^`_ abdc\feg_ hq\jik_ h*bylm\fen_ hq\jo_bpc\feg_yqrbylm\fen_ σ ηµατα προσθ εσουµε το σ ηµα ps*3 Gts 68:9 =<>u=kk τ οτε το σ ηµα 3 C ŸI ds& θα ε ιναι περιοδικ ο µε περ ιοδο K / `1 (Σχ. 2) επειδ η η συχν οτητα ( KGFLH ε ιναι τ ωρα η µ εγιστη συχν οτητα που διαιρε ι ακ εραια ολες τις συχν οτητες των σηµ ατων που προσθ εσαµε. Σηµει ωστε οτι η συχν οτητα ( KGFIH ε ιναι ο Μ εγιστος Κοιν ος ιαιρ ετης (ΜΚ ) ολων των συχνοτ ητων που προσθ εσαµε. ( 2v ( vxwxwmwxv ( πλ εον ενα περιοδικ ο σ ηµα. Οταν οι συχν οτητες των σηµ ατων που προσθ ετουµε δεν σχετ ιζονται αρµονικ α, τ οτε το αθροισµ α τους δεν ε ιναι Ας δο υµε το φασµατικ ο περιεχ οµενο των σηµ ατων που µ ολις αναφ εραµε Gy 76x8*9 z{<>=*= } 6x8*9 z{<a@:k= Ä},s 68*9 {<>ukkk

2 7 (a) 6 4 (b) (c) 1 RSVUKWQX Z οπου αυθα ιρετα διαλ εγουµε[ Χρησιµοποι ωντας την αντ ιστροφη σχ εση G Time in sec. []\ ^2_bk~`\fen_\jik_T Kc\feg_ bpc\feg_yqrbylm\fen_ hp\jo_t 2lm\feg_ *c\fen_yqibk~m\feg_ ƒ ƒ skp WY VZxX ) το σ ηµα!= " % K!K " % "!{ˆ " % * "!{ˆ % > και το φ ασµα πλ ατους φα ινεται στο σχ ηµα 3 P Σηµει ωστε οτι το φ ασµα φ ασης ε ιναι για κ αθε συχν οτητα µηδενικ ο. γρ αφεται ως[ s "!= % * "!= % Αν χρησιµοποι ησουµε µη µηδενικ ες A3/2 A3/2 A1/2 A1/2 A2/2 A2/ f(hz) RTSŠU*WYX ZŒ [ Φ ασµα πλ ατους του l \feg_ a φ ασεις π.χ. Ž * u=< v Ž t < και Ž s K V < αντ ιστοιχα για τα σ ηµατα v και s 3 ) τ οτε το ν εο σ ηµα ) s 3 ) που θα προκ υψει απ ο την πρ οσθεσ η τους θα ε ιναι επ ισης περιοδικ ο µε περ ιοδο 2& KC/ 21 αλλ α θα διαφ ερει πολ υ στο χρ ονο απ ο το σ ηµα 3 P Πρ αγµατι, στο σχ ηµα 4 3 * εχουµε σχεδι ασει το σ ηµα οπου τα σ ηµατα )7 ) και s εχουν µηδενικ ες φ ασεις, και στο σχ ηµα 4 d εχουµε σχεδι ασει το σ ηµα s οπου τα σ ηµατα )p ) και s εχουν ΜΗ µηδενικ ες φ ασεις. Παρατηρε ιστε π οσο διαφορετικ α ε ιναι στο χρ ονο, αν και εχουν το ιδιο φ ασµα πλ ατους. Εποµ ενως, η φ αση εν ος σ ηµατος ειναι αρρηκτα δεµ ενη µε τη χρονικ η δοµ η εν ος σ ηµατος.

3 ½ ½ ½ 8 (a) (b) Time in sec [\ ^2_ 2l`\feg_ Αθροισµα σηµ ατων µηδενικ ης φ ασης \jik_ `~`\feg_ Αθροισµα των ιδιων σηµ ατων οπως στο \ ^2_ αλλ α µε φ ασεις µη µηδενικ εςa ιαµ ορφωση συχν οτητας š œ] Ÿž œ «ªNž ` Œ ±kỹ³² Μ εχρι τ ωρα βλ επαµε σ ηµατα που οι συχν οτητ ες τους ηταν χρονικ α αµετ αβλητες. Σε αυτ η τη παρ αγραφο θα δο υµε σ ηµατα των οπο ιων η συχν οτητα µεταβ αλλεται γραµµικ α ως προς το χρ ονο. Τα σ ηµατα αυτ α λ εγονται σ ηµατα σειρ ηνας 6µ SVX 9 SVUK 9 και ε ιναι µια ειδικ η κατηγορ ια σηµ ατων διαµορφωµ ενων κατ α συχν οτητα. Υπενθυµ ιζουµε τους ορους φ αση και φ αση µετατ οπισης. Σε ενα σ ηµα 3 Cy 68*9 {< ( x Ž το ορισµα του συνηµιτ ονου 3 ¹{< ( Ž ) ονοµ αζεται φ αση του σ ηµατος ) εν ω Ž ) ονοµ αζεται η φ αση µετατ οπισης. Ονοµ αζουµε στιγµια ια συχν οτητα: ({º G {<¼ Εποµ ενως το σ ηµα T ) εχει σταθερ η στιγµια ια συχν οτητα: ({º C {<«Για γραµµικ α ως πρ ος το χρ ονο µεταβαλλ οµενη συχν οτητα το πολυ ωνυµο της φ ασης θα πρ επει να ε ιναι δευτ ερου βαθµο υ: οπου ¾ ονοµ αζεται σταθερ α διαµ ορφωσης. Οπ οτε ( Cy{<A¾ {< ( A> {< ( Σε κ αθε χρονικ η στιγµ η )Y º ) η στιγµια ια συχν οτητα θα µεταβ αλλεται γραµµικ α: ( º G {< Gy=¾ A ( Παρ αδειγµα: Θ ελουµε να δηµιουργ ησουµε ενα σ ηµα σειρ ηνας, του οπο ιου η στιγµια ια συχν οτητα να µεταβ αλλεται απ ο ( ykkgflh σε ( y KGFIH σε χρ ονο / 21 P

4 ½ Â % Ã Η στιγµια ια συχν οτητα ε ιναι: ( º 4 ( ( > ( À{*=A}KK Η φ αση του σ ηµατος θα δ ινεται απ ο το ολοκλ ηρωµα: οπου το Ž ε ιναι τυχα ια σταθερ α. 3 Á {< ( º 3Ã7 =< u=g {<ÄKK=7 Ž Οταν το φασµατικ ο περιεχ οµενο (πλ ατη, φ ασεις, συχν οτητες) των σηµ ατων που αναλ υουµε δεν µεταβ αλλεται µε το χρ ονο το φ ασµα πλ ατους και φ ασης αρκε ι για να περιγρ αψει τα σ ηµατα. Μια τ ετοια παρ ασταση δεν αρκε ι για τα σ ηµατα που εξετ αζουµε εδ ω. που λ εγεται: Χρ ονου Συχν οτητας 3Å SVÆZÇnRYX"ZmÈ:WYZx 6É Για τ ετοιου ε ιδους σ ηµατα χρησιµοποιο υµε µια παρ ασταση οπου µπορε ι ε υκολα να παρουσιασθε ι η αλλαγ η της συχν οτητας ως προς το χρ ονο. Σε αυτ ην την παρ ασταση ο χρ ονος ε ιναι ο οριζ οντιος αξονας και η συχν οτητα ο κατακ ορυφος αξονας. Η κατανοµ η της εν εργειας ( η της ισχ υος) του σ ηµατος αναπαριστ αται σε εναν τρ ιτο αξονα κ αθετο προς αυτο υς του χρ ονου και της συχν οτητας. Συν ηθως οµως χρησιµοποιο υµε χρ ωµατα για την αναπαρ ασταση της εν εργειας εχοντας αντιστοιχ ησει το µα υρο χρ ωµα σε χαµηλ η εν εργεια εν ω το κ οκκινο σε υψηλ η εν εργεια. Ενα παρ αδειγµα αναπαρ αστασης Χρ ονου Συχν οτητας δ ιδεται στο σχ ηµα. Αναπαριστ α το σ ηµα σειρ ηνας που µ ολις δηµιουργ ησαµε. Στο σχ ηµα 6 εχουµε σχεδι ασει τα πρ ωτα δε ιγµατα του σ ηµατος αυτο υ στο χρ ονο. Παρατηρ ηστε πως αλλ αζει η συχν οτητα του σ ηµατος µε την π αροδο του χρ ονου. Για 3 2 Frequency Time RTSVUKWYX"Z u [ Αναπαρ ασταση Χρ ονου Συχν οτητας για ενα σ ηµα σειρ ηνας µε αρχικ η συχν οτητα ÊxË`Ë>Ì«Í τελικ η ÊmÎ`ËmËÌ«Í a ι αρκεια: Î`ÏÐÑxÒ σ υγκριση, δ ινουµε στο σχ ηµα 7 ενα ηµιτονοειδ ες σ ηµα δι αρκειας 9 Z 6 µε σταθερ η συχν οτητα

5 Time in sec. RTSVUKWYX"ZŒÓ [ Ενα σ ηµα σειρ ηνας στο χρ ονο. 6 4 Frequency RTSŠU*WYX Z À Time in sec. [ Αναπαρ ασταση Χρ ονου Συχν οτητας για ενα σ ηµα σταθερ ης συχν οτητας Î`ËmË`Ë`Ì«Í a u

6 Ô ( ( ( Σ ηµατα και Ν οτες Ενα σ ηµα το οπο ιο µας ε ιναι πολ υ οικε ιο και οπου οι συχν οτητες του σ ηµατος αλλ αζουν ως συν αρτηση του χρ ονου ε ιναι η µουσικ η. Οι ν οτες δεν ε ιναι παρ α ηµ ιτονα κ αποιας συχν οτητας. Για παρ αδειγµα η ν οτα ΛΑ της τ εταρτης οκτ αβας ε ιναι ενα ηµ ιτονο µε συχν εν ω το ΝΤΟ της ιδιας οκτ αβας εχει συχν οτητα Ó FIHdP Μια οκτ αβα περι εχει 12 ν οτες: Ντο Ντο# Ρε Ρε# Μι Φα Φα# Σολ Σολ# Λα Λα# Σι, οπου # σηµα ινει δ ιεση. Ο λ ογος της συχν οτητας µιας ν οτας προς τη συχν οτητα της αµ εσως προηγο υµενης ε ιναι σταθερ ος και ισος µε Ô P Για παρ αδειγµα: %3Õ Ö %3Õ (= º ({ØQÙ Ö Επ ισης η πρ ωτη ν οτα µιας οκτ αβας, µε την πρ ωτη ν οτα της εποµ ενης οκτ αβας εχουν λ ογο ισο µε 2. ηλαδ η ε ιναι αρµονικ ες. Ας παραστ ησουµε τις ν οτες µιας οκτ αβας µε: Ú v Ú vmwxwmwxv Ú επ οµενης οκτ αβας µε Ú s*p Τ οτε µε οσα ε ιπαµε: Ú Ú Ô v Ú s Ú Ô v>wxwxw Ú s Ú ÔÜÛ Ú s Ú Ô Οµως απ ο τα παραπ ανω ξ ερουµε οτι: Ú s y Ú P Εποµ ενως: Ý ÛÞÔ Ý ßµ ÛÞÔÄà K *uká*u Ô και την πρ ωτη ν οτα της Γνωρ ιζοντας την τιµ η του Ô µπορο υµε να βρο υµε τη συχν οτητα σε â,ã που αντιστοιχε ι σε κ αθε ν οτα αν εχουµε µ ια ν οτα ως αναφορ α. Στη µουσικ η αυτ η η ν οτα ε ιναι η Λα οκτ αβας που αντιστοιχε ι στη συχν Το πι ανο εχει συνολικ α 88 πλ ηκτρα και η ν οτα αναφορ ας, Λα, ε ιναι το 49 πλ ηκτρο, εν ω η ν οτα Ντο της ιδιας οκτ αβας ε ιναι το πλ ηκτρο 4. Γνωρ ιζοντας τη συχν οτητα αναφορ ας, η ν οτα Ντο οκτ αβας θα εχει συχν οτητα: (2èYé &ê ˆ ˆ"ë"ì ß à Ó =FLH ]æpç Στο σχ ηµα 8 φα ινονται τα πλ ηκτρα απ ο το Ντο της äå Ó οκτ αβας (πλ ηκτρο 28) µ εχρι το Σολ της äå οκτ αβας (πλ ηκτρο 71). Εποµ ενως, για να βρο υµε τη συχν οτητα µιας ν οτας µε αριθµ ο πλ ηκτρου í δεν εχουµε παρ α να εφαρµ οσουµε τη σχ εση: οπου ( ({î ( èyé &ê î ˆ"ë"ì ß Στο σχ ηµα 8 εµφαν ιζονται επ ισης οι αξ ιες µιας ν οτας. Αυτ ες καθορ ιζουν τη δι αρκεια του ηχου. Ó παρ αδειγµα, αν εµε ις θελ ησουµε κ αθε τ εταρτο ν οτας (1/4) να ε ιναι δι αρκειας Kïr/ `1 ) τ οτε η ολ οκληρη ν οτα θα ε Ó KŒÝ{@**ïr/ 21 Ó και κ αθε ογδοο (1/8) θα ε ιναι: * KGï / 21 Το σχ ηµα 9 δε ιχνει την αναπαρ ασταση Χρ ονου Συχν οτητας για τις ν οτες: Ντο, Ρε, Μι, Φα, Σολ, Λα, Σι, äå Ó οκτ αβας, κ αθε ν οτα εχει αξ ια 1/4 και δι αρκεια KKï / 21 zk Για Ó

7 4 ΟΚΤΑΒΑ Ντο# Ρε # Φα# Σολ# Λα# Αξια 1 Ντο Ρε Μι Φα Σολ Λα Σι 1/2 1/4 1/8 1/16 RTSŠU*WYX"Z Q[ Κ αποια πλ ηκτρα πι ανου, πεντ αγραµµο και αξ ιες Frequency (Hz) RTSŠU*WYX Z á Time in sec. [ Αναπαρ ασταση Χρ ονου Συχν οτητας για τις ν οτες: Ντο, Ρε, Μι, Φα, Σολ, Λα, Σι, της ñ2ò"ó οκτ αβαςa À

8 [ [ æ Εχουµε δει οτι: γρ αφεται ως[ χρησιµοποι ωντας τη σχ εση του Το 3 T C WY ŠZmX ε ιναι περιοδικ ο µε περ ιοδο εξ ισωση 4 γρ αφεται ως: T C Σειρ ες Œž š œš, ( 3 Cú,u 68:9 {< u :õö! % = ô< 1x /* C "ø "ø u * :õö * "! % 3@: / 21 Αν θ εσουµε και ùu *õö ) τ οτε η :ûzõ ü % Üý kûõ ü % οπου ý ε ιναι ο συζυγ ης του P Σκοπ ος µας ε ιναι να βρο υµε µια σχ εση που συνδ εει τα µιγαδικ α πλ ατη και µε το σ ηµα P Πολλαπλασι αζουµε και τα δ υο µ ελη της εξ ισωσης () µε kûõ ü % ) και ολοκληρ ωνουµε και τα δ υο µ ελη σε δι αστηµα µιας περι οδου, Οπ οτε: Yûõ ü % Á T :ûzõ ü % &ûzõ ü % &ûõ ü % æ 3 kûõ ü % Στην εξ ισωση (6) κ αναµε χρ ηση της σχ εσης ορθογωνι οτητας: ûzõ ü ê ì % αν αν Üý :ûzõ ü % &ûzõ ü % À= zuk Ó Για τον υπολογισµ ο του απλ α ολοκληρ ωνουµε το σ ηµα σε δι αστηµα µιας περι οδου[ Á T ûzõ ü % þ ÿ ý ü ûzõ % á* Εποµ ενως: δηλαδ η το ε ιναι ισο µε τη µ εση τιµ η του σ ηµατος στη δι αρκεια µιας περι οδου, Αν γρ αψουµε το αρχικ ο σ ηµα (εξ ισωση (3)) σε µια πιο γενικ η µορφ η T Á T Á } 68*9 {< ( x> Ž x ûzõ ü % ü ûzõ % =P * *

9 s τ οτε: οπου v Ýu v Ž < P T ü ûzõ % T και Ας δο υµε τ ωρα τι θα υπολογ ιζαµε ως πλ ατος σε µια συχν οτητα που δεν υπ αρχει στο σ ηµα T P παρ αδειγµα, στη συχν οτητα: ( Ý ( Ý [ Yûzõ ü % T ü ûzõ % ûzõ ü % x ü ûõ % ü ûõ % > ý ü ûzõ % ü ûzõ % x ü ûzõ % ý ü ûzõ % K Για Συµπ ερασµα: Αν µια συχν οτητα ( υπ αρχει στο σ ηµα 3 ) τ οτε η σχ εση: xx 3 "! # % δ ινει το πλ ατος και τη φ αση Ž του σ ηµατος στη συχν οτητα ( P Αν, αντ ιθετα, η συχν οτητα ( δεν υπ αρχει στο σ ηµα ) τ οτε: x Τ ωρα µπορο υµε να γενικε υσουµε τα παραπ ανω: Ενα περιοδικ ο σ ηµα 3 µε περ ιοδο ε ιναι απερι οριστα µεγ αλο (π.χ. )): 3 C T! # % G µπορε ι να αναπτυχθε ι σε αθροισµα ορων ( οπου 68:9 {< uk µπορε ι να Ž Ó οπου: = 3 3 =< À= Η σχ εση (16) ονοµ αζεται αν απτυγµα σε σειρ α Ú Ã Ô Ôr η Σ υνθεσηú Ã Ô Ô, εν ω οι σχ εσεις (17) ονοµ αζονται Αν αλυση Ú Ã Ô Ô. á

10 % % % æ ƒ ƒ æ % % % % οπου Παρ αδειγµα: Θ ελουµε να αναπτ υξουµε σε σειρ α Ú Ã Ô Ô το περιοδικ ο σ ηµα! } "} ε ιναι η περ ιοδος του σ ηµατος. Γραφικ α το σ ηµα T φα ινεται στο σχ ηµα 1. ` 1 To/2 To t 1 RTSŠU*WYX Z Ÿ #*< #*< # µß {< [ Το περιοδικ ο σ ηµα της Εξ ισωσης (18)a T {< =< C &%! #*<! ß Ct "ß g =< ß # {< {< '%! οµως: Εποµ ενως:!, * )( v ( v ( u vmwxwmw (δηλ. περιττο υς) t v ( v (@ vmwxwmw (δηλ. αρτιους) #*< για )( για t αρτια v ( v ( u vxwmwxw η[ *. < < για /( για αρτια v ( v ( u vxwxwmw Απ ο το παραπ ανω αποτ ελεσµα προκ υπτει οτι: για περιττ α < 21 και περιττ α < ]D<Lú< ƒ και περιττ α

11 3 Αν για παρ αδειγµα E K@/ `1 τ οτε ( KuFIH. ηλαδ η το φ ασµα συχνοτ ητων θα περι εχει µη µηδενικο υς ορους στις συχν οτητες: ( KuKFIH v ( v ÀKu=FIH v ( Ku{FIH v κ.λ.π. Το φ ασµα πλ ατους και φ ασης δ ινονται στα σχ ηµατα 11 και 12 P Εποµ ενως το 3 µπορε ι να γραφτε ι ως: o o o o o o f(hz) RSVUKWQX Z K*[ Φ ασµα πλ ατουςa π/2 o o o o o o f(hz) π/2 RSVUKWQX Z < 36 < οπου σηµα ινει πραγµατικ ο µ ερος, 9 < 68:9 :9 9 SŠ 9 m [ Φ ασµα φ ασηςa < x 87 %"' 9 SV 9 x >M 9 SV 9 >Mu 9 SŠ zu 9 m wmwxw και > v v v vmwxwxw Στο σχ ηµα 13 εµφαν ιζουµε στο π ανω µ ερος την προσ εγγιση του σ ηµατος χρησιµοποι ωντας ορους απ ο το παραπ ανω αθροισµα. Στο κ ατω µ ερος του ιδιου σχ ηµατος σχεδι ασαµε το προσεγγιστικ ο σ ηµα χρησιµοποι ωντας ορους. Ε ιναι φανερ ο οτι οσο µεγαλ ωνουµε τον αριθµ ο των ορων που χρησιµοποιο υµε στη σειρ α Ú Ã Ô Ô τ οσο πιο µικρ ο θα ε ιναι το λ αθος προσ εγγισης. Επ ισης παρατηρο υµε οτι το προσεγγιστικ ο σ ηµα ταλαντ ωνεται γ υρω απ ο τις τιµ ες v. Αν και το πλ ατος αυτ ων των ταλαντ ωσεων µικρα ινουν καθ ως ο αριθµ ος των ορων στη σειρ α Ú Ã Ô Ô µεγαλ ωνει, ποτ ε δεν θα εξαφανιστο υν. Αυτ ο το φαιν οµενο το µελ ετησε ο <=>> / το 1899, και για το λ ογο αυτ ο το φαιν οµενο ονοµ αζεται φαιν οµενο <=>> /. < µ ονο K

12 (a) N = (b) N = 1 RTSVUKWYX"Z [ Π ανω: αθροισµα 3 ορων της σειρ E. Κ ατω: αθροισµα 1 ορων της σειρ E. Παρατηρε ιστε το φαιν οµενο H'FJIKIÏ a Αρτιο και περιττ ο µ ερος σ ηµατος Ενα σ ηµα ονοµ αζεται αρτιο, οταν: εν ω ονοµ αζεται περιττ ο οταν Tg MLp T C!L7 Εστω T Cy N36 6x8*9 9 m Ž το αν απτυγµα σε Ú Ã Ô Ô του σ ηµατος 3 το οπο ιο γρ αφεται ισοδ υναµα ως: 3 C, 3 K2x 87:"% ' á* Αν στην παραπ ανω εξ ισωση το αντικατασταθε ι µε εχουµε: Tg Cy 36 {x{ 87: %"' K* Προσθ ετωντας τις εξισ ωσεις (19) και (2) και χρησιµοποι ωντας την εξ ισωση του O ÃP Ô, πα ιρνουµε: 3 >D g yk K36 {x 6x8*9 9 ` ' Αν 3 ε ιναι αρτια συν αρτηση, δηλ. 3 Ct g, τ οτε η εξ ισωση (21) γρ αφεται: = 3 Á K KQ 36 { 68:9 :9 x ' T, 36 68:9 Ž 68*9 9 x *K

13 ! S Παρατηρο υµε οτι αν T, δηλαδ η αν το σ ηµα ηταν περιττ ο, τ οτε το αθροισµα στην εξ ισωση (21) θα ηταν µηδ εν. Απ ο τα παραπ ανω συµπερα ινουµε οτι οταν το σ ηµα 3 ε ιναι αρτιο, τ οτε περι εχει µ ονο συνηµιτονοειδ ης ορους (Εξ ισωση (21)). Αντ ιθετα, ενα περιττ ο σ ηµα δεν περι εχει συνηµιτονοειδ ης ορους. Αν αντ ι να προσθ εσουµε τις Εξισ ωσεις (19) και (2) τις αφαιρ εσουµε, θα προκ υψει: T G Tg 4 3 3,R36 {x x 87 % 87 % ' { G# 9 SŠ 9 m ' T9 SV Ž 9 SV :9 Αν 3 ε ιναι περιττ ο σ ηµα, τ οτε: C¹ T και η Εξ ισωση (23) γρ αφεται ως: { T Á,R36 9 SŠ Ž 9 SV :9 x SV Ž 9 SV 9 x =@: Συµπ ερασµα: Ενα αρτιο σ ηµα περι εχει µ ονο συνηµιτονοειδ η ορους (Εξ ισωση (22)), εν ω ενα περιττ ο σ ηµα εχει µ ονο ηµιτονοειδ η ορους (Εξ ισωση (24)). Κ αθε πραγµατικ ο σ ηµα T µπορε ι να γραφτε ι ως: = 4 3 >D g ô T Ü Û T 3 >D g 3 Ü g ST ê % ì õ ê % ì οπου U>3 δηλ ωνει το αρτιο µ ερος εν ος σ ηµατος και! 3 δηλ ωνει το περιττ ο µ ερος εν ος σ ηµατος. Εποµ ενως κ αθε πραγµατικ ο σ ηµα T µπορε ι να γραφτε ι ως αθροισµα εν ος αρτιου και εν ος περιττο υ µ ερους: T Ct U >D Απ ο τα παραπ ανω και απ ο τις Εξισ ωσεις (22) και (24) προκ υπτει οτι κ αθε πραγµατικ ο σ ηµα µπορε ι να γραφτε ι ως: T Á T Á N36 6x8*9 Ž 68:9 :9 x N36 N36 αρτιο µ ερος 3 V36 9 SV Ž 9 SV 9 x περιττ ο µ ερος 68:9 Ž 68*9 9 x 9 SV Ž 9 SV 9 x " Û 6x8*9 9 Ž η οπο ια ε ιναι η σχ εση που µ εχρι τ ωρα χρησιµοποι ησαµε ως αν απτυγµα εν ος πραγµατικο υ περιοδικο υ σ ηµατος σε σειρ α Ú Ã Ô Ô. Στο σχ ηµα 14 δε ιχνουµε το αρτιο και περιττ ο µ ερος εν ος σ ηµατος *uk

14 @ A x(t) t x(t) A/2 Αρτιο t x(t) A/2 Περιττο RTSVUKWYX"Z [ Αρτιο, b:w7\fen_, και περιττ ο µ ερος, b:xq\fen_, εν ος πραγµατικο υ σ ηµατος b7\fen_ a

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α ΘΕΜΑ Β

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α ΘΕΜΑ Β ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η ΙI 27 Ιουν ιου 2008 Π Ιω αννου & Θ Αποστολ ατου Απαντ ηστε στα 3 Θ εµατα µε σαφ ηνεια απλ οτητα Οι ολοκληρωµ ενες απαντ ησεις εκτιµ ωνται ιδιαιτ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξετ ασεις στη Θεωρ ια της Ειδικ ης Σχετικ οτητας Σεπτεµ ρ ιου 200 Να απαντ ησετε στα 4 απ ο τα ακ ολουθα προ λ ηµατα. Θ εµα 1 Το γεγον ος βρ ισκεται εντ ος του µελλοντικο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α (25 µον αδες) ΘΕΜΑ Β (25 µον αδες) η µοναδικ ΘΕΜΑ Γ (25 µον αδες) κοιν

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΘΕΜΑ Α (25 µον αδες) ΘΕΜΑ Β (25 µον αδες) η µοναδικ ΘΕΜΑ Γ (25 µον αδες) κοιν ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η Ι 6 Σεπτεµ ρ ιου 2005 Τµ ηµα Π Ιω αννου & Θ Αποστολ ατου Απαντ ηστε και στα 4 Θ εµατα µε σαφ ηνεια και απλ οτητα Οι ολοκληρωµ ενες απαντ ησεις

Διαβάστε περισσότερα

Θ εµα Α : Θ εµα Β : Θ εµα Γ :

Θ εµα Α : Θ εµα Β : Θ εµα Γ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξετ ασεις επ ι Πτυχ ιω στη Θεωρ ια της Ειδικ ης Σχετικ οτητας 29 Απριλ ιου 2009 Να γραφο υν τα 4 απ ο τα 5 θ εµατα Σε ολα τα θ εµατα εργαστε ιτε σε σ υστηµα µον αδων

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

[ S Θ εµα Γ: Ενα σ υστηµα F σωµατιδ ιων, το καθ ενα µε µ αζα HG (I KJ!!LLLM! F ), κινο υνται π ανω σε µια κυκλικ η στεφ ανη ακτ ινας N. Η γωνιακ η θ ε

[ S Θ εµα Γ: Ενα σ υστηµα F σωµατιδ ιων, το καθ ενα µε µ αζα HG (I KJ!!LLLM! F ), κινο υνται π ανω σε µια κυκλικ η στεφ ανη ακτ ινας N. Η γωνιακ η θ ε 3 ' ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η ΙI Περι οδου Σεπτεµ ρ ιου 6 Σεπτεµ ρ ιου 008 Απαντ ηστε στα προ λ ηµατα που ακολουθο υν µε σαφ ηνεια, ακρ ι εια και απλ οτητα. Ολα τα προ

Διαβάστε περισσότερα

& N. Εστω µια ακολουθ ια απ ο οµ οκεντρους πολ υ λεπτο υς σφαιρικο υς φλοιο υς µε αντ ιστοιχες ακτ ινες "M " 6 "ONP Q Q Q RS"MTU και µ αζες " Q Q Q RV

& N. Εστω µια ακολουθ ια απ ο οµ οκεντρους πολ υ λεπτο υς σφαιρικο υς φλοιο υς µε αντ ιστοιχες ακτ ινες M  6 ONP Q Q Q RSMTU και µ αζες  Q Q Q RV ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η Ι 2 Σεπτεµ ρρ ιου 200 Τµ ηµα Π. Ιω αννου & Θ. Αποστολ ατου Απαντ ηστε και στα 10 ισοδ υναµα ερωτ ηµατα. Οι ολοκληρωµ ενες απαντ ησεις εκτιµ ωνται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εφαρμοσμένα Μαθηματικά για Μηχανικούς

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Ενότητα: Ανάπτυγμα σε Σειρά Fourir Ιωάννης Στυλιανού Τμήμα Επιστήμης Υπολογιστών B B B B Αθροισµα ηµιτονοειδ ων ορων Η σχ εση

Διαβάστε περισσότερα

Προσεγγιστικ οσ προσδιορισµ οσ τησ θεµελει ωδουσ ταλ αντωσησ µι ασ αλυσ ιδασ

Προσεγγιστικ οσ προσδιορισµ οσ τησ θεµελει ωδουσ ταλ αντωσησ µι ασ αλυσ ιδασ Το πηλ ικο Rayleigh O Rayleigh το 187 τη εποχ η που ερευνο υσε τις ιδι οτητες των ηχητικ ων κυµ ατων ανεκ αλυψε µ ια ιδι οτητα των χαρακτηριστικ ων συχνοτ ητων και ταλαντ ωσεων που εχει ιδια ιτερη σηµασ

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

υσεισ Θ εµα Α : Θ εµα Β :

υσεισ Θ εµα Α : Θ εµα Β : 1 ΑΝΕΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η Ι 12 Φε ρουαρ ιου 28 Τµ ηµα Ιω αννου & Θ Αποστολ ατου Απαντ ηστε στα ερωτ ηµατα που ακολουθο υν µε σαφ ηνεια, ακρ ι εια απλ οτητα Ολα τα ερωτ

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΦΟΡΙΚΗΣ ΙΑΤΟΜΗΣ ΣΚΕ ΑΣΗΣ Η εννοια της διαφορικ ης διατοµ ης σκ εδασης Εστω οτι µ ια παρ αλληλη δ εσµη σωµατιδ ιων βοµ αρ

Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΦΟΡΙΚΗΣ ΙΑΤΟΜΗΣ ΣΚΕ ΑΣΗΣ Η εννοια της διαφορικ ης διατοµ ης σκ εδασης Εστω οτι µ ια παρ αλληλη δ εσµη σωµατιδ ιων βοµ αρ 1.1. Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΦΟΡΙΚΗΣ ΙΑΤΟΜΗΣ ΣΚΕ ΑΣΗΣ 1 1.1 Η εννοια της διαφορικ ης διατοµ ης σκ εδασης Εστω οτι µ ια παρ αλληλη δ εσµη σωµατιδ ιων βοµ αρδ ιζει κ αποιο στ οχο. Τα σωµατ ιδια αυτ α στο πε ιραµα

Διαβάστε περισσότερα

V eff. (r) r = L z. Veff( )=λ 2 /2

V eff. (r) r = L z. Veff( )=λ 2 /2 j H ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµ ηµα Φυσικ ης Εξ εταση στη Μηχανικ η Ι Φε ρου αριος 2005 Τµ ηµα Π. Ιω αννου & Θ. Αποστολ ατου ΘΕΜΑ 1 (25 µον αδες) Σωµατ ιδιο µοναδια ιας µ αζας κινε ιται σ υµφωνα µε το δυναµικ

Διαβάστε περισσότερα

Κεφ αλαιο οτε ενα συναρτησοειδ εσ καθ ισταται στ ασιµο

Κεφ αλαιο οτε ενα συναρτησοειδ εσ καθ ισταται στ ασιµο Κεφ αλαιο 2 Λογισµ ος των Μετα ολ ων Σε π εντε λεπτ α θα πε ιτε οτι ολα ηταν τ οσο απ ιστευτα απλ α Sherlock Holes 2.1 Π οτε ενα συναρτησοειδ ες καθ ισταται στ ασιµο Στο προηγο υµενο κεφ αλαιο διατυπ ωσαµε

Διαβάστε περισσότερα

12:00 12:05 12:00 12:03

12:00 12:05 12:00 12:03 Εξετ ασεις στη Θεωρ ια της Ειδικ ης Σχετικ οτητας Ιο υνιος 4 Θ εµα : (α) Γρ αψτε υπ ο µορφ η π ινακα το µετασχηµατισµ ο oretz που συνδ εει τις χωροχρονικ ες συντεταγµ ενες δ υο συστηµ ατων που κινο υνται

Διαβάστε περισσότερα

Κεφ αλαιο Η Λαγκρανζιαν η και το φυσικ ο τησ περιε- οµενο

Κεφ αλαιο Η Λαγκρανζιαν η και το φυσικ ο τησ περιε- οµενο Κεφ αλαιο 3 Συν αρτηση Lagange 3. Η Λαγκρανζιαν η και το φυσικ ο της περιεχ οµενο Ε ιδαµε στο πρ ωτο Κεφ αλαιο οτι ο δυναµικ ος ν οµος του Νε υτωνα ε ιναι ισοδ υναµος µε την απα ιτηση η δρ αση, ως το ολοκλ

Διαβάστε περισσότερα

7.2 Κ ινηση φορτισµ ενου σωµατιδ ιου σε οµογεν εσ ηλεκτρικ ο και µαγνητικ ο πεδ ιο

7.2 Κ ινηση φορτισµ ενου σωµατιδ ιου σε οµογεν εσ ηλεκτρικ ο και µαγνητικ ο πεδ ιο Κεφ αλαιο 7 Παραδε ιγµατα Λαγκρανζιαν ων Συναρτ ησεων Σκο υπες σκουπ ακια ρουφηχτ ηρια φτερ α τιναχτ ηρια ξεσκον οπανα κουρελ οπανα κλ οουν θ ορυ οι και τρ οποι ακρο ατες, µαστ ιγιο π εφτουν οι κιν ησεις

Διαβάστε περισσότερα

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz Κεφ αλαιο 1 Αρχ η Ελ αχιστης ρ ασης Ο δικ ος µας κ οσµος ε ιναι ο καλ υτερος απ ο ολους τους δυνατο υς κ οσµους. Gottfried Wilhelm Leibniz 1.1 Εισαγωγικ ες παρατηρ ησεις Η νευτ ωνεια µηχανικ η, το πνευµατικ

Διαβάστε περισσότερα

Κεφ αλαιο Απ ο τη δυναµικ η στη στατικ

Κεφ αλαιο Απ ο τη δυναµικ η στη στατικ Κεφ αλαιο 4 Απ ο την Αρχ η του D Alembert στην Αρχ η της Ισοδυναµ ιας Αν στο µν ηµα σας χαρ αξουν κ ατι τ ετοιο, τ οτε τα π ατε περ ιφηµα. Richard Feynman Σχ ηµα 4.1: Το σχ εδιο αυτ ο ε ιναι χαραγµ ενο

Διαβάστε περισσότερα

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο

Πα κ έ τ ο Ε ρ γ α σ ί α ς 4 Α ν ά π τ υ ξ η κ α ι π ρ ο σ α ρ µ ο γ ή έ ν τ υ π ο υ κ α ι η λ ε κ τ ρ ο ν ι κ ο ύ ε κ π α ι δ ε υ τ ι κ ο ύ υ λ ι κ ο ΠΑΝΕΠΙΣΤΗΜΙΟ Θ ΕΣΣΑΛ ΙΑΣ ΠΟΛ Υ ΤΕΧ ΝΙΚ Η ΣΧ ΟΛ Η ΤΜΗΜΑ ΜΗΧ ΑΝΟΛ ΟΓ Ω Ν ΜΗΧ ΑΝΙΚ Ω Ν Β ΙΟΜΗΧ ΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ Π Π Σ ΣΥ ΝΟΠ Τ Ι Κ Η Ε Κ Θ Ε ΣΗ ΠΕ 4 Α Ν Α ΠΤ Υ Ξ Η Κ Α Ι ΠΡ Ο Σ Α Ρ Μ Ο Γ Η ΕΝ Τ Υ ΠΟ Υ Κ Α

Διαβάστε περισσότερα

Albert Einstein. Lagrange

Albert Einstein. Lagrange Κεφ αλαιο 3 Συν αρτηση Lagrange Αυτ ο που πραγµατικ α µε ενδιαφ ερει ε ιναι το αν ο Θε ος ε ιχε τη δυνατ οτητα επιλογ ης κατ α τη δηµιουργ ια του κ οσµου Albert Einstein 3.1 Η Λαγκρανζιαν η και το φυσικ

Διαβάστε περισσότερα

Κεφ αλαιο 6 6.1 Απειροστ ες στροφ ες διαν υσµατος

Κεφ αλαιο 6 6.1 Απειροστ ες στροφ ες διαν υσµατος Κεφ αλαιο 6 Στροφ ες Ειδικ η Θεωρ ια της Σχετικ οτητας Στο εξ ης ο χ ωρος και ο χρ ονος ως ανεξ αρτητες εννοιες ε ιναι καταδικασµ ενοι να σ ησουν, καταντ ωντας απλ ες σκι ες, και µ ονο ενα ε ιδος συν ενωσ

Διαβάστε περισσότερα

L 96/22 EL ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 696/98 ΤΗΣ ΕΠΙΤΡΟΠΗΣ τη 27η Μαρτ ιου 1998 για την εφαρµογ η του κανονισµο υ (ΕΚ) αριθ. 515/97 του Συµβουλ ιου περ ι τη αµοιβα ια συνδροµ η µεταξ υ των διοικητικ ων αρχ

Διαβάστε περισσότερα

Κεφ αλαιο 3. Αν αλυση µετρ ησεων και αποτελ εσµατα. 3.1 Μ εθοδος αν αλυσης δεδοµ ενων

Κεφ αλαιο 3. Αν αλυση µετρ ησεων και αποτελ εσµατα. 3.1 Μ εθοδος αν αλυσης δεδοµ ενων Κεφ αλαιο 3 Αν αλυση µετρ ησεων και αποτελ εσµατα 3.1 Μ εθοδος αν αλυσης δεδοµ ενων Για τον προσδιορισµ ο των ενεργ ων διατοµ ων απ ο τις µετρ ησεις στη Στουτγ αρδη αναλ υθηκαν τα φ ασµατα εκε ινα, τα

Διαβάστε περισσότερα

[ ` + = [ + + q τροχι ας ε ιναι: \ / : : 98< D "!$# ) + 3.W/X 1G &% ' & 98 + &Z W /0 98< \> /0 98< [ & 98 W + / : : 98 + \ / : : 98 / : : 98 $]^ ε αφο

[ ` + = [ + + q τροχι ας ε ιναι: \ / : : 98< D !$# ) + 3.W/X 1G &% ' & 98 + &Z W /0 98< \> /0 98< [ & 98 W + / : : 98 + \ / : : 98 / : : 98 $]^ ε αφο Κεντρικ α πεδ ια στα οπο ια ολες οι φραγ ενες τροχι ες ε ιναι και περιοδικ ες παραλλαγ η της απ οδειξης του Arnod σ. 3) Καθ ως ενα σωατ ιδιο οναδια ιας αζας κινε ιται σε ενα κεντρικ ο δυναικ ο η γων ια

Διαβάστε περισσότερα

1 Πολυπολικ η αν απτυξη του βαρυτικο υ δυναµικο υ

1 Πολυπολικ η αν απτυξη του βαρυτικο υ δυναµικο υ Πολ υπολα και το σχ ηµα της Γης Π. Ιω αννου & Θ. Αποστολ ατου Πολυπολικ η αν απτυξη του βαρυτικο υ δυναµικο υ Ε ιδαµε οτι το βαρυτικ ο δυναµικ ο πουπροκαλε ιται απ ο µ ια σφαιρικ η κατανοµ η µ αζας οτι

Διαβάστε περισσότερα

20/5/ /5/ /5/ /5/2005

20/5/ /5/ /5/ /5/2005 ΜΕΤΑΦΟΡΙΚΕΣ ΕΠ ΙΧ ΕΙΡΗ ΣΕΙΣ FINDA Α.Ε. ΥΠΟ Ε Κ Κ Α Θ Α Ρ Ι Σ Η ΟΙΚΟΝΟΜΙΚΕΣ ΚΑ Τ Α ΣΤ Α ΣΕΙΣ Γ ΙΑ Τ Η Ν Χ Ρ Η ΣΗ Π ΟΥ ΕΛ Η Ξ Ε Τ Η Ν 19.5.2006 ΠΕΡΙΕΧΟΜΕΝΑ Έ κ θ εσ η Eλέ γ χ ο υ Ε λεγ κ τ ώ ν 3 Κ α τ ά

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε

ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε ΚΑΝΟΝΙΣ ΜΟ Ι ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1 / 8 SCALE IC TRA CK ΕΛ. Μ. Ε. 2 0 1 9 Κλ ά δο ς θερ µ ι κώ ν τη λ εκα τ ευθυ νό µ εν ω ν α υ το κι νή τω ν. Υπ εύ θυνο ς Κ λ ά δ ο υ Ζωτιαδης Κωστας bo d @ e l - m e. gr

Διαβάστε περισσότερα

JEAN-CHARLES BLATZ 02XD34455 01RE52755

JEAN-CHARLES BLATZ 02XD34455 01RE52755 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ ΤΩΝ ΕΝ Ι ΑΜ ΕΣ ΩΝ ΟΙ Κ ΟΝΟΜ Ι Κ ΩΝ Κ ΑΤΑΣ ΤΑΣ ΕΩΝ ΤΗΣ ΕΤΑΙ ΡΙ ΑΣ Κ ΑΙ ΤΟΥ ΟΜ Ι ΛΟΥ Α Τρίµηνο 2005 ΑΝΩΝΥΜΟΣ Γ ΕΝΙ Κ Η ΕΤ ΑΙ Ρ Ι Α Τ ΣΙ ΜΕΝΤ ΩΝ Η Ρ ΑΚ Λ Η Σ ΑΡ. ΜΗ Τ Ρ. Α.Ε. : 13576/06/Β/86/096

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

Tη λ.: +30 (210) Fax: +30 (210)

Tη λ.: +30 (210) Fax: +30 (210) ΕΠΕΝ ΥΣΗ ΣΙ Λ Ο ΠΟ Ρ Τ ΣΑΪ Α.Ε. ΟΙΚΟΝΟΜΙΚΕΣ ΚΑ Τ Α ΣΤ Α ΣΕΙΣ Γ ΙΑ Τ Η Ν Π Ρ Ω Τ Η Π ΕΡ ΙΟ Ο Α ΝΑ Β ΙΩ ΣΗ Σ Π ΟΥ ΕΛ Η Ξ Ε Τ Η Ν 31.12.005 30.11.2005 έ ω ς 31.12.2005 ΠΕΡΙΕΧΟΜΕΝΑ Έ κ θ η γ χ ο υ Ο ρ κ ω

Διαβάστε περισσότερα

Τ τμημα Ηλεκτρ Λ γ α ργ ΨηφιακΦ Συα ημ τω Α αθμ Σκ π τη κη η Σκ π τηζ κη η ε αι α ρησ μ π ε π υδαα η Λ γ κθζ π Λε π ΛΛΦ ε δω α α δε ξε τ τρ π με π γ ε

Τ τμημα Ηλεκτρ Λ γ α ργ ΨηφιακΦ Συα ημ τω Α αθμ Σκ π τη κη η Σκ π τηζ κη η ε αι α ρησ μ π ε π υδαα η Λ γ κθζ π Λε π ΛΛΦ ε δω α α δε ξε τ τρ π με π γ ε Τ τμημα Ηλεκτρ Λ γ α ργ ΨηφιακΦ Συα ημ τω Α αθμ Σκ π τη κη η Σκ π τηζ κη η ε αι α ρησ μ π ε π υδαα η Λ γ κθζ π Λε π ΛΛΦ ε δω α α δε ξε τ τρ π με π γ ετα η εδ α η αι η Θε η απλφ Λ γ κφ κυκλωμ τω καθφ κα

Διαβάστε περισσότερα

Προσοµοίωση Π ρ ο µ ο ί ω Μ η χ α ν ο ί Ε λ έ γ χ ο υ τ ο υ Χ ρ ό ν ο υ Φάσεις σο ση ς ισµ ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Φάσεις τ η ς π ρ ο σο µ ο ί ω ση ς i. Κατασκευή το υ µ ο ν τέ λ ο υ π ρ ο

Διαβάστε περισσότερα

6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: : Σ Π σ

6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: : Σ Π σ 6 Α σ Ε Ε Ε ΓΑ Α Ε Α: Η σ σ ς σ ς & σ ώ : A χ ς: 2016-2017 : Σ Π σ ισα ω ή: Η ο σι ή ο ο ο ί αι ίσσ ι ισ ο ία ς ς α ά ' ί ς ώσσας, αι βασι ό α ς α ά α θ ώ ι έ ι. Καθώς ο έ α θ ος ό ος ς ι ό έσο ο ί α α

Διαβάστε περισσότερα

¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á

¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á F G H I J J K L L! " # $ % % & ' ( # ) * + ), -. - / 0 1 2 ), -. 3.. 4, 5 1 6 7 1 8 9 4 : ; < 4 = 4 < >? $ @ @ A B < < C D D E E E 1 8 9 4 >? U S U X s U V W U X X Y W U X U V W š T Z J J ^ _ h \ J F \

Διαβάστε περισσότερα

... Γυ άσιο... Ο ΑΔΑ ΑΘΗΤΩ :

... Γυ άσιο... Ο ΑΔΑ ΑΘΗΤΩ : Κ Ε Ν Σ Ρ Ο Ε Ρ Γ Α Σ Η Ρ Ι Α Κ Ο Ε Π Ι Σ Η Μ Ω Ν αι ί ια ο φ ς... Γυ άσιο... Ο ΑΔΑ ΑΘΗΤΩ : 1... 2... 3... Μου ού Π. 2018-1- Α Ω Η Ω Α: ως αι Ό αση Η ό ασ ί αι ο σ ο αιό ο αισθ ή ιο ό α ο ο α θ ώ ο. ο

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για την αποστολή στοιχείων απλήρωτων υποχρεώσεων & ληξιπρόθεσµων οφειλών του Προγράµµατος ηµοσίων Επενδύσεων

ΘΕΜΑ: Οδηγίες για την αποστολή στοιχείων απλήρωτων υποχρεώσεων & ληξιπρόθεσµων οφειλών του Προγράµµατος ηµοσίων Επενδύσεων Αθήνα, 27/11/2012 Αρ.Πρ:50858/ Ε6152 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ, ΑΝΤΑΓΩΝΙΣΤΙΚΟΤΗΤΑΣ, ΥΠΟ ΟΜΩΝ, ΜΕΤΑΦΟΡΩΝ & ΙΚΤΥΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΗΜΟΣΙΩΝ ΕΠΕΝ ΥΣΕΩΝ - ΕΣΠΑ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

Διαβάστε περισσότερα

Προσοµοίωση Ανάλυση Απ ο τ ε λε σµ άτ ω ν ιδάσκων: Ν ικό λ α ο ς Α µ π α ζ ή ς Ανάλυση Απ ο τ ε λε σµ άτ ω ν Τα απ ο τ ε λ έ σ µ ατ α απ ό τ η ν π αρ αγ ω γ ή κ αι τ η χ ρ ή σ η τ υ χ αί ω ν δ ε ι γ µ

Διαβάστε περισσότερα

?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :

Διαβάστε περισσότερα

613/97 ( 2 ) 2078/92,

613/97 ( 2 ) 2078/92, EL Επ ισηµη Εφηµερ ιδα των Ευρωπα ικ ων Κοινοτ ητων L 212/23 ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 1678/98 ΤΗΣ ΕΠΙΤΡΟΠΗΣ τη 29η Ιουλ ιου 1998 για την τροποπο ιηση του κανονισµο υ (ΕΟΚ) αριθ. 3887/92 για τι λεπτοµ ερειε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ

ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ ΤΜΗΜΑ ΦΩΚΑ/ΤΕΤΑΡΤΗ 09.00 -.00 5 ZE MI WA 0 0 0 9 0,95 9 ΑΓ ΓΕ ΠΑ 0 0 0 0 0 0 95 ΑΔ ΡΟ ΙΩ 0 0 0 0 0 0 97 ΑΙ ΚΩ ΠΑ 0 0 0 0 0 0 5 507 ΑΛ ΕΥ ΤΖ 0 0 0 0 0 0 6 99 ΑΝ ΟΡ ΚΩ 7 5 0 0 0,65 7 95 ΑΝ ΙΩ ΟΡ 9 9 9 6

Διαβάστε περισσότερα

Fax. : , Ω Ο. οσό σύ βασης : ,59 οσό σύ βασης α αθ ώ ηση & Α : ,52

Fax. : , Ω Ο. οσό σύ βασης : ,59 οσό σύ βασης α αθ ώ ηση & Α : ,52 Η Η Η Ο Α Α ο ία 03 / 07 /2013 Ο Ο Η Α Α.. : 24820/ 4/2372 Η Ο Η Α α. / σ : ι ι ής αι ίας Ο: Α Ο Ω Η Α Α Ο Ο & α. ώ ι ας : 272 00 13SYMV001535338 Ο Η Α Ο 2013-07-09 Ο Α -. : 2622-360502, 038371 Η Ο Α Ο

Διαβάστε περισσότερα

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1 2 Η γωνία - Ο κύκλος Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1, Π 2 τα οποία ονοµάζονται ηµιεπίπεδα

Διαβάστε περισσότερα

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ

Πρι τ αρακτηρ οτικ λαπλ ουοτηματα μικρ ετ εξεργατ δ π υ τ ι ε α τ Τ εγνα α α ετ κ λε τ υργικ ο τημα Η οτ ρ α τ υ αρ Γ ζε τ τη Φ λα δ α απ τ α φ ιτητ τ υ Πα ετ τημ υ τ υ λ νκ ξεκ νη ε αν μ α τ ρ τ Θε α να δημ υργηθε ακαλ τερ Ενα τ υ αμτ ρε ααντατ κρ ετα καλ τερα

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

d u d dt u e u d dt e u d u 1 u dt e 0 2 e

d u d dt u e u d dt e u d u 1 u dt e 0 2 e Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε

Διαβάστε περισσότερα

15PROC

15PROC Δ Ω Δ Δ - Δ Ω Δ Ω & Δ INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.02.09 10:47:54 EET Reason: Location: Athens Ε Δ Δ. Δ/.. Δ/ / π : : : : : :. 11 546 55,

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως

Διαβάστε περισσότερα

Α. Σύνθεση δύο ΑΑΤ της ίδιας συχνότητας, που γίνονται γύρω από το ίδιο σηµείο στην ίδια διεύθυνση

Α. Σύνθεση δύο ΑΑΤ της ίδιας συχνότητας, που γίνονται γύρω από το ίδιο σηµείο στην ίδια διεύθυνση Σύνθεση Ταλαντώσεων Σύνθετη ταλάντωση Αρχή της επαλληλίας Το αποτέλεσµα αυτής της σύνθεσης εξαρτάται από τα χαρακτηριστικά των συνιστωσών αρµονικών ταλαντώσεων, δηλαδή τις διευθύνσεις τους τις συχνότητές

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΛΓΙ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Σύνολο φυσικών: Í {,,,L} Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q / Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί µε τη µορφή κλάσµατος ακεραίων.

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

14/5/ /12/ /5/ /5/2007

14/5/ /12/ /5/ /5/2007 ΜΕΤΑΦΟΡΙΚΕΣ ΕΠ ΙΧ ΕΙΡΗ ΣΕΙΣ FINDA Α.Ε. ΕΤΗΣΙΕΣ Ο ΙΚ Ο Ν Ο Μ ΙΚ ΕΣ Κ Α ΤΑ ΣΤΑ ΣΕΙΣ ΣΥ Μ Φ Ω Ν Α Μ Ε ΤΑ ΙΕΘ Ν Η Π Ρ Ο ΤΥ Π Α Χ Ρ ΗΜ Α ΤΟ Ο ΙΚ Ο Ν Ο Μ ΙΚ ΗΣ Π Λ ΗΡ Ο Φ Ο Ρ ΗΣΗΣ ΤΗΣ Χ Ρ ΗΣΗΣ Π Ο Υ ΕΛ ΗΞ Ε

Διαβάστε περισσότερα

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1

FAX : 210.34.42.241 spudonpe@ypepth.gr) Φ. 12 / 600 / 55875 /Γ1 Ε Λ Λ Η Ν Ι Κ Η Η Μ Ο Κ Ρ Α Τ Ι Α Υ ΠΟΥ ΡΓΕΙΟ ΕΘΝ. ΠΑ Ι ΕΙΑ Σ & ΘΡΗΣ Κ/Τ Ω ΕΝΙΑ ΙΟΣ ΙΟΙΚΗΤ ΙΚΟΣ Τ ΟΜ ΕΑ Σ Σ ΠΟΥ Ω Ν ΕΠΙΜ ΟΡΦΩ Σ ΗΣ ΚΑ Ι ΚΑ ΙΝΟΤ ΟΜ ΙΩ Ν /ΝΣ Η Σ ΠΟΥ Ω Τ µ ή µ α Α Α. Πα π α δ ρ έ ο υ 37

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να

Διαβάστε περισσότερα

Ανώτερα Μαθηματικά ΙI

Ανώτερα Μαθηματικά ΙI Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής

Διαβάστε περισσότερα

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ

ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - ΚΑΡΑ ΣΑ ΒΒ ΟΓ ΠΟ Υ ΑΝ ΑΣΤΑΣΙΟΣ ΤΕΧΝ Οη ΟΓ ΙΚ Ο Ε Κ ΠΟ ΙΔ ΕΥ ΤΙ ΚΟ ΙΔΡΥΜΟ ΚΟΒΟΠΑΕ ΕΧΟΠΗ ΔΙϋΙ ΚΗ ΕΗ Σ ΚΑΙ Ο Ι ΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ηο ΓΙ ΣΤ ΙΚ ΗΣ ΘΕΜΑ: ΔΙΑΡΘΡΩΤΙΚΑ ΧΑ ΡΑ ΚΤ ΗΡ ΙΣ ΤΙ ΚΑ ΤΗΣ ΑΝΕΡΓΙΑΣ - ΠΤΥΧΙΑΚΗ ΕΡΓΑ ΣΙ Α - Καθηγητή ΚΑΡΑ ΣΑ ΒΒ

Διαβάστε περισσότερα

Im{z} 3π 4 π 4. Re{z}

Im{z} 3π 4 π 4. Re{z} ! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG

Διαβάστε περισσότερα

14SYMV Fax : e mail:

14SYMV Fax : e mail: Η Η Η Ο Α Α Ο Ο Ω σό 06/11/2014 Η Ο Α Ο Η Α Α Α ιθ. ω : 17848 έφ α : 2321 3 52610 Fax : 2321 3 52618 e mail: dimarxosep@0670.syzefxis.gov.gr ΒΑ Η Α Ο Η Η Ω ο ή ο α ο ή α ά αι σ ο ο ι ό α άσ α σή α 18/09/2014,

Διαβάστε περισσότερα

,00-20, ,00-19, ,00-18, ,00-17,00

,00-20, ,00-19, ,00-18, ,00-17,00 Χ ή ο Πά η Ά ια «σ ι ά» ο φί ο ο ή σ «αθ ι ή θ ία» αία ό σ, φ σι ά, ις Πα ε ή ιες Ε ε άσεις. Ή α ια ο ιά, ιαφο ι ή α ό α ές ο ί α σ θήσ ι, αφού έο οι αθ ές ά ο αι σ αθή α α ί ο ας σ ο ές σ ώ ό, α ό α α

Διαβάστε περισσότερα

15SYMV

15SYMV η η ο ατ α Νο ττ ο η ο α ου αγ η Ταχ. Δ/ ση: ωφ. ω / ου α α α ή 18 Ταχ. α : 166 73, Βο α ο α: 28-1-2015 A. Π ωτ.: 3258 Α Α Η : 5.416.68..Α. 23% : 1.245.84 Ο Ο : 6.662.52 Ω Η Ο Α : «Ο Η Α Ω Α Ο Η Α Α Ο

Διαβάστε περισσότερα

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É P13-2009-117.. μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1ˆ É ÉÊÉ Éμ³ μ Ô, ±Ä Ï, μ²óï 2 Ì μ²μ Î ± Ê É É, Õ ², μ²óï μ... P13-2009-117 μ ³ μ ³μ² ±Ê²Ö ÒÌ Êαμ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης

ΠΙΝΑΚΑΣ Ι: ΟΦΕΙΛΕΣ ΕΡΓΩΝ ΕΘΝΙΚΟΥ ΣΚΕΛΟΥΣ. Ληξιπρόθεσµες οφειλές (τιµολόγιο>90 ηµερών) Εγκεκριµένη πίστωση. Χωρις κατανοµή πίστωσης ΦΟΡΕΑΣ: Υπουργείο / Αποκεντρωµένη ιοίκηση..... ΕΙ ΙΚΟΣ ΦΟΡΕΑΣ: Γενική γραµµατεία... / Περιφέρεια..... Αναφορά για το µήνα: Ετος: 2012 ΣΑ έργου (Π Ε) Υποχρεώσεις πιστοποιηµένων εργασιών χωρίς τιµολόγιο

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΡΟΣΒΑΣΗ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗΣ ΤΟΠΟΛΟΓΙΑΣ. Χρ ηστος Παπαχρ ηστου Επι λ επουσα καθηγ ητρια: Φωτειν η-νι ο η Παυλ ιδου

ΠΟΛΛΑΠΛΗ ΠΡΟΣΒΑΣΗ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗΣ ΤΟΠΟΛΟΓΙΑΣ. Χρ ηστος Παπαχρ ηστου Επι λ επουσα καθηγ ητρια: Φωτειν η-νι ο η Παυλ ιδου ΠΟΛΛΑΠΛΗ ΠΡΟΣΒΑΣΗ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗΣ ΤΟΠΟΛΟΓΙΑΣ Χρ ηστος Παπαχρ ηστου Επι λ επουσα καθηγ ητρια: Φωτειν η-νι ο η Παυλ ιδου Αριστοτ ελειο Πανεπιστ ηµιο Θεσσαλον ικης Τµ ηµα Ηλεκτρολ ογων Μηχανικ ων

Διαβάστε περισσότερα

15PROC

15PROC Η Ι Η Η Α ΙΑ Α Α Η Α ΙΑ Ι Ω Α ιθ.. 1456 Η Α Η Α Α σό 09 02 2015 / Η Ι Ω Η ΙΩ, ΙΑ & Ι Α Η Α Ι Ω Η ΙΩ INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.02.10 11:22:02

Διαβάστε περισσότερα

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ

Διαβάστε περισσότερα

Α Α Α Α Α Α Α Α Α Α Α Ο

Α Α Α Α Α Α Α Α Α Α Α Ο 3ω η Α Α Α Α Α Α Α Α Α Α Α Α Α Ο 9/5/2014 Ο Α Α Α ιο οιώ ας α α α ά ω α αθέ α α οσ αθήσ α α α ήσ σ α ω ή α α ο α ο ο θού : Ο Α Ο Α Α «Π ι ὸ Τὲ ὑ ὑ ῖ ὑ ὶ ὰ Τ Τ ὶ ὺ Τ» (DK 14.7) Α «ὴ ὑ ὶ ὺ Τ ὑ Τ Τ ὑ Τῆ ῖ

Διαβάστε περισσότερα

D F g ヾ j gj k E k j i g g ヾg g j i kg ヾ j jk g ヾ j g kg k jji g gj G k g k i g H g gh gj g g k j j IJ K L M g N li g ヾ i g IJ L O M BC

D F g ヾ j gj k E k j i g g ヾg g j i kg ヾ j jk g ヾ j g kg k jji g gj G k g k i g H g gh gj g g k j j IJ K L M g N li g ヾ i g IJ L O M BC ! "#$ % "&$ ' ( ' ))$ % *$ ' ( ' +, + + &)$ % &)$ ' ( ' + + + ' + ' ' / 0 1 2 2 3 4 5 6789 : 2 5 ; ; ;?. 2?>> ;? 2 @ >> ;? 2 @ > ; A 2A> 2 2 5 -. D E F G H IJKL M IJ N L O M BC RS TU V RSW U V

Διαβάστε περισσότερα

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι

Διαβάστε περισσότερα

ΚΑΤΑΣΤΑΤΙΚΟ Τ ΟΥ Σ ΥΛΛΟΓΟΥ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΙΣ ΗΜΟΣΙΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΝΟΜΩΝ ΑΤΤΙΚΗΣ ΚΑΙ ΚΥΚΛΑ ΩΝ Όπως τροποποιήθηκε µε την απόφαση της Γενικής

ΚΑΤΑΣΤΑΤΙΚΟ Τ ΟΥ Σ ΥΛΛΟΓΟΥ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΙΣ ΗΜΟΣΙΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΝΟΜΩΝ ΑΤΤΙΚΗΣ ΚΑΙ ΚΥΚΛΑ ΩΝ Όπως τροποποιήθηκε µε την απόφαση της Γενικής ΚΑΤΑΣΤΑΤΙΚΟ Τ ΟΥ Σ ΥΛΛΟΓΟΥ ΕΡΓΑΖΟΜΕΝΩΝ ΣΤΙΣ ΗΜΟΣΙΕΣ ΟΙΚΟΝΟΜΙΚΕΣ ΥΠΗΡΕΣΙΕΣ ΝΟΜΩΝ ΑΤΤΙΚΗΣ ΚΑΙ ΚΥΚΛΑ ΩΝ Όπως τροποποιήθηκε µε την απόφαση της Γενικής Σ υν ελεύσεως της 26η ς/11/20ο5-1 - ΣΩΜΑΤΕΙΟ ΕΡΓΑΖΟΜΕΝΩΝ

Διαβάστε περισσότερα

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς.

Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4ο Ε Α α ο σίο Α' ίο 4-2015 ρε νη ική ρ ασία Θέ α: ωσ ή ια ροφή και άσκηση ια ο ς εφήβο ς. 4η Ο ά α 1ο Τ τ ά η ο Y ο ώτη α: ι ές α ές άσ ησης ια ο ς φήβο ς. Γενικές αρχές άσκησης: Εί η Άσ ησης Ια ι ός

Διαβάστε περισσότερα

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 Ο ΕΚΘΕΤΙΚΗ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ Από προηγούμενες τάξεις γνωρίζουμε τις παρακάτω ιδιότητες

Διαβάστε περισσότερα

1.3 Εσωτερικό Γινόμενο

1.3 Εσωτερικό Γινόμενο 1 Εσωτερικό Γινόμενο 1 Αν α = ( 1, ) i α β iii και β = ( 1, ), να υπολογίσετε τα εσωτερικά γινόμενα: ii ( α )( β ) α β α + β α iv Αν α =, β = 1 και ( αβ, ) = 15 ο, να υπολογίσετε το α β Με βάση το διπλανό

Διαβάστε περισσότερα

ΛΛΗΝΙΚΗΝ ΗΜΟΚΡΑΣΙΑ ΠΑΝ ΠΙΣΗΜΙΟΝΚΡΗΣΗ. Χη εία & Σύγχρο α Θέ ατα Διατροφής (ΧΗΜ-160)

ΛΛΗΝΙΚΗΝ ΗΜΟΚΡΑΣΙΑ ΠΑΝ ΠΙΣΗΜΙΟΝΚΡΗΣΗ. Χη εία & Σύγχρο α Θέ ατα Διατροφής (ΧΗΜ-160) ΛΛΗΝΙΚΗΝ ΗΜΟΚΡΑΣΙΑ ΠΑΝ ΠΙΣΗΜΙΟΝΚΡΗΣΗ Χη εία & Σύγχρο α Θέ ατα Διατροφής (ΧΗΜ-160) ασία ς οι ή ιας ι ί ο Κω σ α ί α Θέ α «οσ α ι ή άσ α ά ω ω οϊό ω ω ο ιού ά α ό Α ι οβό σ UVB σ Α θ ώ ι ο έ α ο έχ ι Α ασ

Διαβάστε περισσότερα

Φ2: ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ

Φ2: ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ Φ: ΣΥΝΑΡΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΠΑΡΑΤΗΡΗΣΕΙΣ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1

Διαβάστε περισσότερα

ΑΔΑ: ΒΕΤ49-Ψ4Χ. αθ ός Ασφα ίας:. α ούσι, PROC έφ ο : , α :

ΑΔΑ: ΒΕΤ49-Ψ4Χ. αθ ός Ασφα ίας:. α ούσι, PROC έφ ο : , α : Α Α Α Α Α Α Ω Α Α / Ω ΑΪ Ω Α Ω Α Ω Α Ω Ω Ω Ω Ω Α Α Α. α α έο α ούσι οφο ί ς:. ό ς, Α. Α ι ιώ ς έφ ο : 210 3443427, 2103443252 α : 210 3443127 e-mail: t13pxg2@minedu.gov.gr α ια θ ί έ ι:. αθ ός Ασφα ίας:.

Διαβάστε περισσότερα

ι λ γεται τετραγωνικη ρ ζα εν Θετικ αριθμ α και πι υμβ λ ζεται αυτη και τραιτεζι με ΔΓ Δ ην πλευρ ΔΓ

ι λ γεται τετραγωνικη ρ ζα εν Θετικ αριθμ α και πι υμβ λ ζεται αυτη και τραιτεζι με ΔΓ Δ ην πλευρ ΔΓ ι λ γεται τετραγωνικ ρ ζα εν Θετικ αριθμ α και πι υμβ λ ζεται αυτ Ποι αριθμ νομ ζεται ρρτ Πι ρ ζ νται ι πραγματικ αριθμ Θ ια ι λ γεται μ τ ν μια ξε α γων α ω ε ρθ γων υτριγι ν υ ι Μγεται εφαπτ μι μια οξε

Διαβάστε περισσότερα

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι

4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ Στο δι λανό Έστω η συνάρτηση f(x) = l n Αν f( x) = x+ x + 1. Να α οδείξετε ότι Γ Λυκείου - Θετική Τεχνολογική Κατεύθυνση ΣΥΝΑΡΤΗΣΕΙΣ 4 ΤΥΠΟΣ ΣΥΝΑΡΤΗΣΗΣ 4. Έστω η συνάρτηση () l n A) Βρείτε το εδίο ορισµού της B) Λύστε την εξίσωση + Γ) Λύστε την ανίσωση < ) Να δείξετε ότι + ( ) συν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

Η Α ο Η Α ο Η Α ο οση ία σ Ι ι ι ή Κ ι ι ή ός ι ύο, η σ β β η έ η ο Α- ΟΙΚ ο α α ισ έ η ή ί ο σα οση ία Η Α ο

Η Α ο Η Α ο Η Α ο οση ία σ Ι ι ι ή Κ ι ι ή ός ι ύο, η σ β β η έ η ο Α- ΟΙΚ ο α α ισ έ η ή ί ο σα οση ία Η Α ο Ο Η Ι Χ Η Η Α ΟΧΩ ΙΑ Α- ΟΙΚ ί ση ο α α ισ έ ης ή έ α ης οση ίας ας σ σ ή ο α α α έ σ ο Ο ό έ ο ς α ο ισ ό Πα ο ώ ο α ίο έσ ο ο οίο θα άβ άθ α α αία οφο ία όσο ια ις α ο ές όσο αι α η ο ία οση ι ώ ι ά,

Διαβάστε περισσότερα

α ό ι : α ό ι βάσ αφισ έ ή. Ό οι οι αθ ές- ό ια ί αι ίσ αι ο ύ ο ά σ ή. Α Α : αθ ής α έ ο- α ό ι ο ό ο ο α ή α αι σώ α βάσ ο α ή α, ος ίσ α α έ ος ή σ

α ό ι : α ό ι βάσ αφισ έ ή. Ό οι οι αθ ές- ό ια ί αι ίσ αι ο ύ ο ά σ ή. Α Α : αθ ής α έ ο- α ό ι ο ό ο ο α ή α αι σώ α βάσ ο α ή α, ος ίσ α α έ ος ή σ Α Α Α Α Α Α Α Α Α Α Α Α Α Α 2017 «ι ά θ α ά ι ο α ά ι;» Α ά ο ού ι αι ι ός αθ ές 1 Α Α Α Α Ω : ή α ά ι α ό ια σ ή α ι ά β ίσ ο αι οι αθ ές ιας ά ς αι ι ό α ο ο ώ ι ια ό ασ ο αθή α ος.. αι ά ι ο ο ού ι.

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α 31. Μία κυλινδρική δεξαµενή έχει µήκος βάσης 1,56 m. Η δεξαµενή είναι γεµάτη κατά τα 6 7 και περιέχει 75,36 m3 νερό. Να υπολογίσετε το βάθος της δεξαµενής. Να υπολογίσετε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝΣΤΑ ΟΡΙΑ

ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝΣΤΑ ΟΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΑ ΟΡΙΑ. α. Αν στην δοθείσα σέση θέσω =ψ=0 θα έω ƒ(0) = (ƒ(0)) ƒ(0)(ƒ(0) ) = 0 ƒ(0) = αφού δίδεται ότι ƒ(0) 0 β. θέτω = h = + h οπότε ƒ() = ƒ( + h) = [ƒ( ) ƒ(h)] = ƒ( ) ƒ(h) = ƒ( )

Διαβάστε περισσότερα

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2 11 Τριγωνομετρικές Συναρτήσεις 1 Δίνονται οι συναρτήσεις f ( ) ( ημ ) + σφ =, g( ) ημ ημ = και h( ) ημ( ) αποδειχθεί ότι η f είναι άρτια, η g περιττή και η h ούτε άρτια ούτε περιττή Να εξετασθεί αν είναι

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΤ ΑΣΤ ΑΣΕΙΣ Τ Η Σ ΕΤ ΑΙΡ ΙΑΣ ΑΜΠ ΕΡ Α.Ε. Γ ΙΑ Τ Η Χ Ρ Η ΣΗ Π ΟΥ ΕΛ Η Ξ Ε Τ Η Ν 31 η ΕΚΕΜΒ Ρ ΙΟΥ 2005 ΠΕΡΙΕΧΟΜΕΝΑ Σελ. Κ Α Τ Α ΣΤ Α ΣΗ Α Π Ο Τ Ε Λ Ε ΣΜ Α Τ Ω Ν Τ Η Σ Χ Ρ Η ΣΗ Σ Π Ο Υ Ε Λ Η

Διαβάστε περισσότερα

4.1 Πυρηνικ α µεγ εθη των θεωρητικ ων υπολογισµ ων

4.1 Πυρηνικ α µεγ εθη των θεωρητικ ων υπολογισµ ων Κεφ αλαιο 4 Θεωρητικο ι υπολογισµο ι Hauser-Feshbach και σ υγκριση µε τα πειραµατικ α αποτελ εσµατα 4.1 Πυρηνικ α µεγ εθη των θεωρητικ ων υπολογισµ ων Οπως αποδε ιχθηκε στην παρ αγραφο 1.5, ηενεργ ος διατοµ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ

ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΕΙΑΖΟΝΤΑΙ ΜΙΑ ΔΕΥΤΕΡΗ ΜΑΤΙΑ? Εύρεση πεδίου ορισμού σε συνθέσεις.. Δίνεται η γν. αύξουσα συνάρτηση :[ -, ] R. Α. Να βρεθεί το πεδίο ορισμού της g () = ( + ) + ( + ). Β. Να βρεθεί η μονοτονία

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής

Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής 1. * Η µέθοδος της µαθηµατικής επαγωγής χρησιµοποιείται για την απόδειξη προτάσεων Ρ (ν), όταν Α. ν R Β. ν Q Γ. ν R*. ν N Ε. κανένα από τα προηγούµενα 2. * Για τους ακεραίους

Διαβάστε περισσότερα