ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΑΝΑΛΥΣΗ ΠΟΛΥΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΣΥΝΑΦΕΙΑΣ ΜΕ ΔΙΑΤΑΞΙΜΕΣ ΜΕΤΑΒΛΗΤΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΑΝΑΛΥΣΗ ΠΟΛΥΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΣΥΝΑΦΕΙΑΣ ΜΕ ΔΙΑΤΑΞΙΜΕΣ ΜΕΤΑΒΛΗΤΕΣ ΤΑΞΙΝΟΜΗΣΗΣ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΠΟΛΥΔΙΑΣΤΑΤΩΝ ΠΙΝΑΚΩΝ ΣΥΝΑΦΕΙΑΣ ΜΕ ΔΙΑΤΑΞΙΜΕΣ ΜΕΤΑΒΛΗΤΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Μαρία Α. Παπαδοπούλου Διπλωματική Εργασία που υποβλήθηκε στο Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης του Πανεπιστημίου Πειραιώς ως μέρος των απαιτήσεων για την απόκτηση του Μεταπτυχιακού Διπλώματος Ειδίκευσης στην Εφαρμοσμένη Στατιστική Πειραιάς Ιούνιος 2007

2 H παρούσα Διπλωματική Εργασία εγκρίθηκε ομόφωνα από την Τριμελή Εξεταστική Επιτροπή που ορίσθηκε από τη ΓΣΕΣ του Τμήματος Στατιστικής και Ασφαλιστικής Επιστήμης του Πανεπιστημίου Πειραιώς στην υπ αριθμ... συνεδρίασή του σύμφωνα με τον Εσωτερικό Κανονισμό Λειτουργίας του Προγράμματος Μεταπτυχιακών Σπουδών στην Εφαρμοσμένη Στατιστική Τα μέλη της επιτροπής ήταν: -.(Επιβλέπων) Η έγκριση της Διπλωματικής Εργασίας από το Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης του Πανεπιστημίου Πειραιώς δεν υποδηλώνει αποδοχή των γνωμών του συγγραφέα.

3 UNIVERSITY OF PIRAEUS DEPARTMENT OF STATISTICS AND INSURANCE SCIENCE POSTGRADUATE PROGRAM IN APPLIED STATISTICS ANALYSIS OF MULTIWAY CONTINGENCY TABLES WITH ORDINAL VARIABLES OF CLASSIFICATION By Maria Α. Papadopoulou MSc Dissertation Submitted to the Department of Statistics and Insurance Science of the University in partial fulfillment of the requirements for the degree of Master of Science in Applied Statistics Piraeus, Greece June 2007

4 Στον Στέφανο, τη Νίκη, τους γονείς μου, τη γιαγιά μου και τον παππού μου

5 Ευχαριστίες Θα ήθελα να εκφράσω τις θερμές μου ευχαριστίες προς την κα Κατέρη Μαρία, Επίκουρη Καθηγήτρια του τμήματος Στατιστικής και Ασφαλιστικής Επιστήμης του Πανεπιστημίου Πειραιώς για την πολύ σημαντική καθοδήγηση, βοήθεια, υποστήριξη και υπομονή κατά τη διάρκεια υλοποίησης της παρούσας εργασίας. Επίσης, θα ήθελα να ευχαριστήσω τον κο Πολίτη Κωνσταντίνο, Επίκουρο Καθηγητή του τμήματος Στατιστικής και Ασφαλιστικής Επιστήμης του Πανεπιστημίου Πειραιώς και τον κο Πιτσέλη Γεώργιο, Επίκουρο Καθηγητή του τμήματος Στατιστικής και Ασφαλιστικής Επιστήμης του Πανεπιστημίου Πειραιώς, για την συμμετοχή τους στην τριμελή επιτροπή. Τέλος, θα ήθελα να ευχαριστήσω όλους τους φίλους μου για την αμέριστη συμπαράστασή τους. Παπαδοπούλου Μαρία Πειραιάς Ιούνιος 2007

6 Μετά το τέλος του 2 ου Περίληψη παγκόσμιου πολέμου, ξεκίνησε η ανάπτυξη των μεθόδων ανάλυσης δεδομένων. Στη δεκαετία του 60, άρχισε η μελέτη των (διατάξιμων) κατηγορικών δεδομένων σε πολυδιάστατους πίνακες συνάφειας και συγκεκριμένα η προσπάθεια μοντελοποίησής των, παραμετρικά και απαραμετρικά. Πρωτεργάτης σε αυτή την προσπάθεια θεωρείται ο Leo Goodman. Σημαντική εργασία έχει γίνει επίσης και στο πεδίο των γραφικών αναπαραστάσεων της δομής και των σχέσεων που διέπουν τα κατηγορικά δεδομένα. Στην παρούσα εργασία, θα ασχοληθούμε με την ανάλυση (διατάξιμων) κατηγορικών δεδομένων για πολυδιάστατους πίνακες συνάφειας. Στο πρώτο κεφάλαιο, παρατίθεται μια ιστορική αναδρομή στην ανάλυση κατηγορικών δεδομένων και στο δεύτερο κεφάλαιο παρουσιάζονται γραφικές αναπαραστάσεις των κατηγορικών δεδομένων με την βοήθεια των μωσαϊκών αλλά και των γραφικών αναπαραστάσεων συνάφειας. Στο τρίτο κεφάλαιο παρουσιάζονται τα λογαριθμογραμμικά μοντέλα συνάφειας για τρεις μεταβλητές, καθώς και ένας αλγόριθμος επιλογής βέλτιστου μοντέλου. Στο τέταρτο κεφάλαιο ορίζονται τα γραφήματα συνάφειας και δίνεται μια σύντομη αναφορά στα γραφικά μοντέλα. Στο πέμπτο κεφάλαιο παρουσιάζονται τα μοντέλα λανθανουσών μεταβλητών και στο έκτο κεφάλαιο η ανάλυση ομοιογένειας (ή πολλαπλή ανάλυση αντιστοιχιών) και δίνεται μια εφαρμογή αυτής βήμα προς βήμα.

7 Abstract The development of methods of data analysis had started after the end of the second world war. The beginning of the study of (ordinal) categorical data and especially an attempt of modeling them, parametrically and non parametrically, is placed at sixties. Leo Goodman is considered as a main contributor toward this direction. Serious effort has been made in the field of graphical representations of the structure and the relationships underlying categorical data. In this thesis, we focus our interest on the analysis of (ordinal) categorical data for multiple-way contingency tables. In the first chapter, a history of analysis of categorical data is represented and in the second chapter, we build graphical representations for categorical data, i.e. mosaics and association plots. In the third chapter, three variables loglinear association models are presented and also, an algorithm for model selection. In the forth chapter, we define association graphs and a brief report for graphical models is given. In the fifth chapter, we discuss latent variables models and in the sixth chapter, we present homogeneity analysis (or multiple correspondence analysis) and a detailed example.

8 Περιεχόμενα Περίληψη Abstract. Ιστορική Αναφορά στην Ανάλυση Κατηγορικών Δεδομένων.0 Εισαγωγή. To παρελθόν.2 Το παρόν 4.3 Το μέλλον 6 2. Γραφικές Απεικονίσεις Κατηγορικών Δεδομένων Εισαγωγή 7 2. Μωσαϊκά Παράδειγμα μωσαϊκού για πίνακα συνάφειας διπλής εισόδου Γενίκευση του μωσαϊκού σε πίνακα πολλαπλής εισόδου 2.2 Παράδειγμα μωσαϊκού για πίνακα συνάφειας τριπλής εισόδου Κλασικές παραμετρικές μέθοδοι για κατηγορικά δεδομένα και ανάλυση της σχέσης τους με τα μωσαϊκά Ανάλυση Αντιστοιχιών Λογαριθμογραμμικά μοντέλα Βασικές ιδιότητες των στατιστικών γραφημάτων Μαθηματική θεμελίωση των μωσαϊκών Χρήσιμα συμπεράσματα για τα μωσαϊκά Γραφικές αναπαραστάσεις συνάφειας Χρήσιμα συμπεράσματα για τις γραφικές αναπαραστάσεις συνάφειας Κατασκευή των μωσαϊκών και των γραφικών αναπαραστάσεων συνάφειας με τη βοήθεια εντολών της R 33 vii ix xii

9 3. Μοντέλα Συνάφειας για περισσότερες από δύο Κατηγορικές Μεταβλητές Εισαγωγή Συμβολισμοί Λογαριθμογραμμικά ιεραρχικά μοντέλα για τρεις μεταβλητές Λογαριθμογραμμικά μοντέλα 4 ης τάξης και άνω-μειονεκτήματα Μοντελοποίηση σε πίνακες συνάφειας τριπλής εισόδου με τη βοήθεια των local odds ratio Λογαριθμοπολλαπλασιαστικά μοντέλα συνάφειας για τρεις μεταβλητές Ανάλυση μοντέλων συνάφειας χωρίς τον όρο τριπλής αλληλεπίδρασης Ανάλυση μοντέλων συνάφειας με όρο τριπλής αλληλεπίδρασης Eκτιμήσεις Αλγόριθμος επιλογής βέλτιστου μοντέλου Παράδειγμα Ανακεφαλαίωση Γραφήματα Συνάφειας και Γραφικά Μοντέλα Εισαγωγή Γράφημα συνάφειας Ορισμός των γραφημάτων συνάφειας Χρησιμότητα των γραφημάτων συνάφειας Παράδειγμα Γραφικά μοντέλα με τη βοήθεια των γραφημάτων συνάφειας Χρησιμότητα των γραφικών μοντέλων Ορισμός γραφικού μοντέλου μέσω γραφήματος συνάφειας Συμπέρασμα για τα γραφικά μοντέλα 68 xiii

10 5. Μοντέλα Συνάφειας Λανθανουσών Μεταβλητών Εισαγωγή 7 5. Γραφικά μοντέλα λανθανουσών μεταβλητών Moντέλα με μια λανθάνουσα μεταβλητή ανά δείκτη Περιορισμοί προσδιορισμού-κλίμακας για μoντέλα με μια λανθάνουσα μεταβλητή ανά δείκτη Μοντέλα με πολλαπλές λανθάνουσες μεταβλητές ανά δείκτη Μοντέλα με ασυσχέτιστες λανθάνουσες μεταβλητές Μοντέλα με συσχετισμένες λανθάνουσες μεταβλητές Ομοιογενή και ετερογενή μοντέλα λανθανουσών μεταβλητών Κατασκευή μοντέλων λανθανουσών μεταβλητών από τα γραφήματα συνάφειας Συμπέρασμα-Πλεονεκτήματα των μοντέλων λανθανουσών μεταβλητών Ανάλυση Ομοιογένειας ή Πολλαπλή Ανάλυση Αντιστοιχιών Εισαγωγή 8 6. Ιστορική αναδρομή Το σύστημα Gifi Ανάλυση Ομοιογένειας Εισαγωγή Αρχές ομοιογένειας Γεωμετρική εισαγωγή στην Ανάλυση Ομοιογένειας/Διμερές Γράφημα Μαθηματική θεμελίωση της Ανάλυσης Ομοιογένειας Βασικές ιδιότητες της λύσης HOMALS Σύγκριση της Ανάλυσης Ομοιογένειας με άλλες τεχνικές ανάλυσης δεδομένων Σύγκριση με την Ανάλυση Αντιστοιχιών Σύγκριση με τη μέθοδο Multidimensional Scaling Σύγκριση με την Ανάλυση Συστάδων Σύγκριση με τη Διαχωριστική Ανάλυση και την Ανάλυση Διασποράς 92 xiv

11 6.5 Πολλαπλή Ανάλυση Αντιστοιχιών Ορισμός της Πολλαπλής Ανάλυσης Αντιστοιχιών Η Ανάλυση Ομοιογένειας(Πολλαπλή Ανάλυση Αντιστοιχιών) ως ένα πρόβλημα Ιδιοτιμών και Singular Value Decomposition Γεωμετρική ερμηνεία της πολλαπλής ανάλυσης αντιστοιχιών Παράδειγμα Σχολιασμός των γραφημάτων Ανάλυση με τη βοήθεια του πίνακα Burt Iδιότητες της ανάλυσης με τη βοήθεια του πίνακα Burt Αλγόριθμος υλοποίησης της πολλαπλής ανάλυσης αντιστοιχιών βάσει του πίνακα Burt-εφαρμογή στο παράδειγμα Διόρθωση στις ιδιοτιμές της πολλαπλής ανάλυσης αντιστοιχιών Από κοινού Ανάλυση Αντιστοιχιών Σύντομη ιστορική αναφορά στην απλή ανάλυση αντιστοιχιών- Σχέση της ανάλυσης αντιστοιχιών με την πολλαπλή ανάλυση αντιστοιχιών και τα λογαριθμογραμμικά μοντέλα Εναλλακτικοί τρόποι αντιμετώπισης της ανάλυσης ομοιογένειας (ή πολλαπλής ανάλυσης αντιστοιχιών) Το σύστημα κωδικοποίησης του πίνακα δείκτη-πλεονεκτήματα και μειονεκτήματα 6.4 Συμπέρασμα-Μειονεκτήματα της πολλαπλής ανάλυσης αντιστοιχιών 6.5 Πολλαπλή ανάλυση αντιστοιχιών με τη χρήση υπολογιστικών προγραμμάτων 2 ΠΑΡΑΡΤΗΜΑ A 5 ΠΑΡΑΡΤΗΜΑ B 6 ΒΙΒΛΙΟΓΡΑΦΙΑ 23 xv

12 ΚΕΦΑΛΑΙΟ ο Ιστορική Αναφορά στην Ανάλυση Κατηγορικών Δεδομένων.0 Εισαγωγή Η ιστορική αναφορά στην ανάλυση κατηγορικών δεδομένων (Categorical Data Analysis- CDA) θεωρείται απαραίτητη διότι είναι πολύ σημαντικό για έναν ερευνητή να γνωρίσει και να κατανοήσει την εξέλιξη των μεθόδων ανάλυσης των κατηγορικών δεδομένων. Κατά αυτόν τον τρόπο, θα συνειδητοποιήσει πώς έφτασαν στα χέρια του αυτές οι μέθοδοι ανάλυσης που χρησιμοποιεί ακόμα και σήμερα και τελικά θα μπορέσει να συλλάβει το τι ακριβώς θα πρέπει να περιμένει στο μέλλον. Και όλα αυτά διότι ο τομέας της ανάλυσης των κατηγορικών δεδομένων είναι δυναμικός και διαρκώς εξελισσόμενος, εξαιτίας και των εφαρμογών του σε άλλα ερευνητικά πεδία, όπως θα διαπιστώσουμε στη συνέχεια.. To παρελθόν Όπως αναφέρει ο Α.Αgresti στο βιβλίο του Categorical Data Analysis (2002), μετά το τέλος του 2 ου παγκοσμίου πολέμου, άρχισε η ανάπτυξη της θεωρητικής θεμελίωσης των πινάκων συνάφειας. O H.Cramer διατύπωσε ποικίλες εκφράσεις όσον αφορά σε κατανομές για μεγάλα δείγματα και ο C.R.Rao (957, 963) πραγματοποίησε σχετική εργασία με αυτές. Το 949, ο στατιστικός Νeyman, ο οποίος είχε ήδη παρουσιάσει σημαντική εργασία στον έλεγχο υποθέσεων και στις μεθόδους εκτίμησης διαστημάτων εμπιστοσύνης, μαζί με τον Ε.S.Pearson, παρουσίασε την οικογένεια βέλτιστων ασυμπτωτικά κανονικών εκτιμητών (Best Asymptotically Normal-ΒΑΝ), η οποία περιλαμβάνει εκτιμητές σταθμισμένων ελαχίστων τετραγώνων. Η απλότητα στους υπολογισμούς, τους κάνει να συγκρίνονται με τους εκτιμητές μέγιστης πιθανοφάνειας (Μaximum Likelihood-ΜL) και αποτελεί μια σημαντική διαπίστωση πριν την επινόηση των σύγχρονων υπολογιστικών συστημάτων. Στις αρχές της δεκαετίας του 950, ο W.Cochran εξέδωσε εργασίες που αφορούσαν σε μια ποικιλία από σημαντικά θέματα στην ανάλυση κατηγορικών δεδομένων: μοντελοποίησε Poisson και διωνυμικές αποκρίσεις με μετασχηματισμούς διακύμανσης(940), αναγνώρισε και μελέτησε τρόπους που ασχολούνται με την υπερμεταβλητότητα (overdispersion) (943)

13 και παρουσίασε μια γενίκευση του ελέγχου ΜcNemar (Cochran s Q) για σύγκριση ποσοστών κατά ζεύγη (950). Το κλασικό άρθρο του (954) εισάγει νέες μεθοδολογίες για την εφαρμοσμένη στατιστική. Επίσης, έδωσε κατευθυντήριες γραμμές για Χ 2 προσεγγίσεις σε μεγάλα δείγματα ώστε να «δουλέψουν» καλά για τη στατιστική συνάρτηση Χ 2 και τόνισε τη σημασία της διαμέρισης του στατιστικού X 2 σε συνιστώσες. Τέλος, ο Cochran πρότεινε έναν έλεγχο για υπό συνθήκη ανεξαρτησία σε διάφορους 2 2 πίνακες συνάφειας, που σχετίζεται πολύ με τον έλεγχο των Mantel-Haenszel (959). Η εργασία του Bartlett για τη δομή αλληλεπίδρασης σε πίνακες συνάφειας είχε μάλλον μικρό αντίκτυπο για τα επόμενα 20 χρόνια, αλλά από τα μέσα της δεκαετίας του 950 και αρχές της δεκαετίας του 60, η εργασία του Bartlett επεκτάθηκε με διάφορους τρόπους για πίνακες πολλαπλής εισόδου, από τους: Darroch (962), Good (963), Goodman (964b), Plackett (962), Roy&Kastenbaum (956) και Roy&Μitra (956). Τα άρθρα αυτά, καθώς και τα άρθρα του Μ.W.Birch (963, 964a,b, 965) αποτελούν την γένεση της έρευνας για τα λογαριθμογραμμικά μοντέλα κατά τα έτη 965 έως 975. Ο Βirch έδειξε με ποιο τρόπο λαμβάνουμε εκτιμητές μέγιστης πιθανοφάνειας των συχνοτήτων των κελιών σε πίνακες τριπλής εισόδου υπό από διάφορες συνθήκες και έδειξε την ισοδυναμία τους για Poisson και πολυωνυμικά δείγματα. Μαζί με τον Watson (959), επέκτειναν τα θεωρητικά αποτελέσματα των Cramer και Rao για κατανομές μεγάλων δειγμάτων για μοντέλα πινάκων συνάφειας. Ο Mantel συζήτησε πρώιμα αποτελέσματα και διασαφήνισε την τυποποίηση των λογαριθμογραμμικών μοντέλων. Ο Caussinus (966) παρουσίασε την quasi-συμμετρία σε τετραγωνικούς πίνακες. Τις επόμενες δεκαετίες, πραγματοποιήθηκε αρκετή έρευνα πάνω στα λογαριθμογραμμικά μοντέλα και στα μοντέλα logit σε τρία πανεπιστήμια της Αμερικής: το πανεπιστήμιο του Σικάγο, το Χάρβαρντ και το πανεπιστήμιο της Βόρειας Καρολίνας. Στο πανεπιστήμιο του Σικάγο, ο L.Goodman έγραψε μια σειρά από άρθρα που αφορούσαν στα εξής θέματα: διαμερισμός του X 2, μοντέλα για τετραγωνικούς πίνακες (quasi-ανεξαρτησία), stepwise διαδικασία για logit και λογαριθμογραμμικά μοντέλα, παραγωγίσιμες ασυμπτωτικά διασπορές, εκτιμητές μέγιστης πιθανοφάνειας λογαριθμογραμμικών παραμέτρων, μοντέλα λανθανουσών μεταβλητών (latent variables), μοντέλα συσχέτισης, ανάλυση αντιστοιχιών και μοντέλα συνάφειας. Ο Goodman (969b) έγραψε επίσης άρθρα για περιοδικά κοινωνικών επιστημών, που συνέβαλλαν ουσιαστικά στο να γίνουν δημοφιλείς λογαριθμογραμμικές και logit μέθοδοι για σχετικές εφαρμογές. Tα τελευταία 50 χρόνια, ο Goodman ήταν o πιο σημαντικός ερευνητής στην ανάπτυξη μεθόδων ανάλυσης κατηγορικών δεδομένων. Το πεδίο 2

14 της στατιστικής του οφείλει τεράστια ευγνωμοσύνη για το σημαντικό και τεράστιο όγκο της εργασίας του. Μαθητές του Goodman στο Πανεπιστήμιο του Σικάγο με τις εργασίες τους, συνέβαλλαν επίσης σημαντικά στον τομέα της στατιστικής, όπως ο Ηaberman το 970 όπου ολοκλήρωσε τη διδακτορική διατριβή του με το αναπτύξει και να μελετήσει τα λογαριθμικά μοντέλα και τα λογαριθμογραμμικά μοντέλα για διατάξιμες μεταβλητές ταξινόμησης. Μερικά από τα θέματα που ασχολήθηκε ήταν η ανάλυση καταλοίπων, η ύπαρξη εκτιμητών μέγιστης πιθανοφάνειας, τα λογαριθμογραμμικά μοντέλα για διατάξιμες μεταβλητές και θεωρητικά μοντέλα στα οποία ο αριθμός των παραμέτρων αυξάνει καθώς αυξάνει το μέγεθος του δείγματος. Ο C.Clogg ακολούθησε τα βήματα στην εργασία του Goodman, όσον αφορά στις κοινωνικές επιστήμες, στα μοντέλα συνάφειας, στη δημογραφία, στην απογραφή, στα μοντέλα για ποσοστά και άλλα παρόμοια θέματα. Ταυτόχρονα με την εργασία του Goodman, σχετική έρευνα σε μεθόδους μέγιστης πιθανοφάνειας για λογαριθμογραμμικά και logit μοντέλα πραγματοποιήθηκε στο Χάρβαρντ από τους μαθητές του F.Mosteller, όπως ο S.Fienberg, και του W.Cochran. Mεγάλο μέρος της εργασίας αυτής εμπνεύστηκε από τα προβλήματα που προέκυψαν στην ανάλυση πολυμεταβλητών συνόλων δεδομένων στη μελέτη για μια αναισθητική ουσία (Νational Halothane Study). Αυτή η μελέτη εξετάζει εάν η ουσία αυτή είναι πιο πιθανή να προκαλέσει θάνατο από άλλα αναισθητικά λόγω βλάβης στο συκώτι. Μια αναφορά από τον Mosteller (968) στην American Statistical Association περιγράφει πρώιμες χρήσεις των λογαριθμογραμμικών μοντέλων για εξομάλυνση πολυδιάστατων διακριτών συνόλων δεδομένων. Ο Fienberg και οι δικοί του μαθητές επέκτειναν την εργασία του Mosteller. Με το βιβλίο του «Διακριτή Πολυμεταβλητή Ανάλυση» (Discrete Multivariate Analysis) (975) συνέβαλε κατά πολύ στην παρουσίαση των λογαριθμογραμμικών μοντέλων στον ευρύτερο κόσμο της στατιστικής και παραμένει ακόμη μια άριστη αναφορά. Έρευνα στην Βόρεια Καρολίνα από τον G.Koch και διάφορους μαθητές και συνεργάτες του, επηρέασε σε μεγάλο βαθμό τις βιο-ιατρικές επιστήμες. Ο Koch ανέπτυξε μεθόδους σταθμισμένων ελαχίστων τετραγώνων για μοντέλα κατηγορικών δεδομένων και, το 969, το άρθρο του μαζί με τους J.Grizzle και F.Starmer έκανε δημοφιλή αυτήν την προσέγγιση. Ο Κοch και οι συνάδελφοί του την επέκτειναν σε επόμενα άρθρα, σε μια εντυπωσιακή ποικιλία προβλημάτων, συμπεριλαμβανομένων προβλημάτων για τα οποία η μέθοδος μέγιστης πιθανοφάνειας είναι περίεργο να χρησιμοποιηθεί, όπως η ανάλυση κατηγορικών δεδομένων επαναλαμβανόμενων μετρήσεων (977). Το 966, ο V.Bhapkar 3

15 έδειξε ότι ο εκτιμητής σταθμισμένων ελαχίστων τετραγώνων ταυτίζεται συχνά με τον εκτιμητή του Νeyman(Νeyman s minimum modified chi-squared estimator). Αρχικά, η βιβλιογραφία στα λογαριθμογραμμικά μοντέλα αντιμετώπιζε όλες ταξινομήσεις ως ποιοτικές. Ο Haberman (974b) και ο Simon (974) μελέτησαν τον τρόπο χειρισμού της διαταξιμότητας των μεταβλητών στα λογαριθμογραμμικά μοντέλα. Αυτή η εργασία επεκτάθηκε σε διάφορα άρθρα από τον Goodman (979a, 98a, b, 983, 985, 986). Οι επεκτάσεις αυτές περιλαμβάνουν τα μοντέλα συνάφειας (association models), που αντικαθιστούν τα διατεταγμένα σκορς στα λογαριθμογραμμικά μοντέλα με παραμέτρους. Ο Goodman επίσης ασχολήθηκε (985, 986, 996) και με τα μοντέλα συσχέτισης (correlation models), αλλά και μελέτησε μια προοπτική που στηρίζεται σε μεθόδους της ανάλυσης αντιστοιχιών (correspondence analysis). Στην ανάλυση αντιστοιχιών και την πολλαπλή ανάλυση αντιστοιχιών ή ανάλυση ομοιογένειας θα αναφερθούμε λεπτομερώς στο κεφάλαιο 6. Ωστόσο, τα μοντέλα συνάφειας, αλλά και τα μοντέλα (κανονικής) συσχέτισης δεν χρησιμοποιήθηκαν ευρέως, όπως συνέβη στα μοντέλα παλινδρόμησης. Τέλος, συγκεκριμένα λογαριθμογραμμικά μοντέλα με δομή υπό συνθήκη ανεξαρτησίας, παρέχουν γραφικά μοντέλα (graphical models) για πίνακες συνάφειας, τα οποία σχετίζονται και με τα γραφήματα συνάφειας (association graphs). Με αυτά ασχολήθηκαν πρώτοι οι Darroch et all(980). Επίσης, τα μοντέλα λανθανουσών μεταβλητών συνδέθηκαν αρκετά με τα γραφικά μοντέλα, κυρίως από τους Wermunt&Cox (998), Anderson&Bockenholt (2000), Anderson&Vermunt (2000), Anderson (2002)..2 Το παρόν Η πιο ενεργή περιοχή της νεότερης έρευνας στην ανάλυση κατηγορικών δεδομένων, κυρίως την τελευταία δεκαετία, αφορά στην μοντελοποίηση των δεδομένων κατά συστάδες (cluster analysis), όπως συμβαίνει στης διαχρονικές (longitudinal) μελέτες και σε άλλες μορφές επαναλαμβανόμενων μετρήσεων. Εδώ, υπάρχει μια ποικιλία από μεθόδους μοντελοποίησης, καθώς μετράται η συσχέτιση μεταξύ των αποκρίσεων στην ίδια συστάδα. Στις μεθόδους αυτές χρησιμοποιούνται εκτιμητές μέγιστης πιθανοφάνειας, αλλά η προσαρμογή τους σε ορισμένα μοντέλα είναι αρκετά δύσκολη υπολογιστικά. Τα λογαριθμογραμμικά μοντέλα και τα μοντέλα λογιστικής παλινδρόμησης, όπως προαναφέρθηκε, μελετήθηκαν από τις αρχές της δεκαετίας το 60. Ωστόσο, στη δεκαετία του 80 ιδιαίτερη προσοχή δόθηκε στα αθροιστικά (cumulative) logit μοντέλα από τους McCullach (980) και Goodman (979). Eπίσης, για διατάξιμες μεταβλητές αναπτύχθηκε το logit μοντέλο διαδοχικών κατηγοριών (adacent categories) από τον Simon (974) και Goodman (983). Ο τις 4

16 Becker (990) πρότεινε εκτιμητές μέγιστης πιθανοφάνειας για γενικευμένα μοντέλα συνάφειας και ο Becker (989), αλλά και οι Βecker&Clogg (989) πρόσθεσαν συμμεταβλητές στα μοντέλα συνάφειας. Οι Bartolucci&Forcina (2003) επέκτειναν τα μοντέλα συνάφειας με το μοντελοποιήσουν ταυτόχρονα τις περιθώριες κατανομές με διάφορα διατάξιμα logit μοντέλα. Ακόμη, αναπτύχθηκαν μέθοδοι εκτίμησης που στηρίζονται στις γενικευμένες εξισώσεις εκτίμησης (Generalized Estimating Equations-GEE), οι οποίες αφορούσαν αρχικά σε περιθώρια μοντέλα (marginal models) με μονομεταβλητές κατανομές, αλλά επεκτάθηκαν και σε άλλα αθροιστικά logit μοντέλα (Lipsitz και άλλοι, 994) και αθροιστικά probit μοντέλα (Τoledano&Gatsonis, 996) για επαναλαμβανόμενες διατάξιμες αποκριτικές μεταβλητές. Πιθανές επεκτάσεις των περιθωριακών μοντέλων ώστε να περιλαμβάνουν και πολυμεταβλητές περιπτώσεις στην ουσία υλοποιούνται με τη μέθοδο GEE (βλέπε Qu et all, 995). Μια προσέγγιση γενικευμένων γραμμικών mixed μοντέλων (Generalized Linear Mixed Models- GLMMs), μπορούμε να αναζητήσουμε στους Hedeker&Gibbons (994) και στον Fielding (999). Σήμερα, ένας από τους σημαντικότερους ερευνητές στον τομέα της ανάλυσης κατηγορικών δεδομένων, θεωρείται ο Αlan Αgresti, του οποίου το βιβλίο Categorical Data Analysis, Wiley (2002), αποτελεί σημείο αναφοράς για οποιονδήποτε μελετητή. Τέλος, η ανάπτυξη της μπεϋζιανής (bayesian) προσέγγισης στην ανάλυση κατηγορικών δεδομένων είναι μια συνεχώς αναπτυσσόμενη και ενεργή περιοχή, αλλά η πολυπλοκότητα των παραμέτρων περιπλέκει την μπεϋζιανή μοντελοποίηση. Ωστόσο, για πρώιμη χρήση της μπεϋζιανής εκτίμησης παραμέτρων, μπορούμε να αναζητήσουμε στον Good (965) και τον Lindley (964). To σχετικό άρθρο του Good εξελίχθηκε προφανώς από την εργασία του κατά τη διάρκεια του 2 ου παγκοσμίου πολέμου όπου μαζί με τον Alan Turing στο Βletchley Park της Αγγλίας «έσπαγαν» κωδικούς των Ναζί. Μπεϋζιανές προσεγγίσεις μπορούμε να αναζητήσουμε στους Tan et all(999), Chen&Dey(2000) και Qiu et all(2002). Οι Johnson&Albert(999) επικεντρώθηκαν σε μπεϋζιανές προσεγγίσεις σχετικά με διατάξιμες αποκριτικές μεταβλητές. Για επιπλέον μπεϋζιανές προσεγγίσεις, βλέπε Chipman&Hamada(996), Lang(999), Johnson(996), Albert&Chib (993), Cowles et all(996), Chib&Greenberg(998), Qu&Tan(998), Bradlow&Zaslavsky(999), Tan et all(999), Chen&Shao(999), Chib(2000), Ιshwaran&Gatsonis(2000), Ishwaran(2000), Xie et all(2000), Rossi et all(200), Βiswas&Das (2002), Webb&Forster(2004), Agresti&Hitchcock(2004). 5

17 .3 Το μέλλον Το να προβλέπει κανείς το μέλλον είναι πάντοτε ριψοκίνδυνο. Ωστόσο, o μεγαλύτερος όγκος εργασίας σχετικά με τα (διατάξιμα) κατηγορικά δεδομένα είναι πολύ πιθανό να επικεντρωθεί σε υπολογιστικές μεθόδους, όπως στα γενικευμένα γραμμικά mixed μοντέλα. Άλλο φλέγον θέμα είναι η ανάπτυξη αλγοριθμικών μεθόδων για τεράστια σύνολα δεδομένων με μεγάλο αριθμό μεταβλητών, που βρίσκεται πολύ μακριά από την παραδοσιακή μοντελοποίηση. Τέτοιες μέθοδοι, που συχνά αναφέρονται ως data mining, ασχολούνται με το χειρισμό περίπλοκων δομών δεδομένων, πλεονεκτώντας στη δύναμη της πρόβλεψης, αλλά θυσιάζοντας την απλότητα και την ερμηνεία της δομής. Σημαντικές περιοχές εφαρμογής αυτών είναι η γενετική, όπως η ανάλυση διακριτών DNA ακολουθιών με τη μορφή πολύ μεγάλης διάστασης πινάκων συνάφειας και εφαρμογές σε επιχειρήσεις όπως credit scoring και μεθόδους με δομή «δένδρου» (tree) για την πρόβλεψη μελλοντικής συμπεριφοράς πελατών. Σύμφωνα με την άποψη της Μ.Κατέρη (βλέπε Liu&Agresti, Discussion, 2005), το μέλλον των διατάξιμων κατηγορικών δεδομένων βρίσκεται στην ανάλυση των επαναλαμβανόμενων μετρήσεων ή γενικότερα σε συσχετισμένα δεδομένα. Επίσης, αναμένεται να αναπτυχθούν μη παραμετρικές μέθοδοι, ιδιαίτερα για προβλήματα υψηλότερης διάστασης, όπου να μπορούν να συγκριθούν ως προς τη δυναμική με τις αντίστοιχες παραμετρικές μεθόδους. Ωστόσο, το μέλλον των κατηγορικών δεδομένων και γενικότερα της στατιστικής τοποθετείται στην μπεϋζιανή ανάλυση, η οποία απαιτεί μικρού μεγέθους δείγματα που σημαίνει λιγότερες υπολογιστικές απαιτήσεις. 6

18 ΚΕΦΑΛΑΙΟ 2 ο Γραφικές Απεικονίσεις Κατηγορικών Δεδομένων 2.0 Εισαγωγή Οι στατιστικές μέθοδοι για κατηγορικά δεδομένα, όπως τα λογαριθμογραμμικά μοντέλα και η λογιστική παλινδρόμηση, είναι τεχνικές ανάλυσης δεδομένων ανάλογες της ανάλυσης διακύμανσης και των μεθόδων παλινδρόμησης για συνεχείς αποκριτικές μεταβλητές. Τα κατηγορικά δεδομένα αναπαρίστανται πιο συχνά σε πίνακες συνάφειας και οι αναλύσεις που χρησιμοποιούν λογαριθμογραμμικά μοντέλα και λογιστική παλινδρόμηση αναπαρίστανται πιο συχνά με όρους εκτίμησης παραμέτρων. Διάφορα σχήματα για γραφική αναπαράσταση πινάκων συνάφειας στηρίζονται στο γεγονός ότι αν οι μεταβλητές των γραμμών και των στηλών είναι ανεξάρτητες, οι αναμενόμενες συχνότητες των κελιών είναι το γινόμενο των αθροισμάτων των γραμμών και των στηλών διαιρεμένο με το συνολικό άθροισμα. Τότε, κάθε κελί του πίνακα συνάφειας μπορεί να αναπαρασταθεί ως ένα ορθογώνιο του οποίου το εμβαδόν δείχνει τη συχνότητα του κελιού ή την απόκλιση από την ανεξαρτησία. Παρόλο που οι τεχνικές γραφικής απεικόνισης είναι κοινό επακόλουθο της ανάλυσης διακύμανσης και της ανάλυσης παλινδρόμησης, οι μέθοδοι για την γραφική αναπαράσταση δεδομένων σε πίνακα συνάφειας δεν χρησιμοποιούνται στην πράξη τόσο ευρέως. Από την δεκαετία του 90, οι Hartigan and Kleiner, ο Friendly et all, ανέπτυξαν καινοτόμες μεθόδους απεικόνισης κατηγορικών δεδομένων, σχεδιασμένες ώστε να προσφέρουν απεικονίσεις ανάλογες με αυτές που χρησιμοποιούνται στα συνεχή δεδομένα όπου η φυσική ερμηνεία είναι άμεση. Στην παρούσα εργασία, θα ασχοληθούμε κυρίως με τα μωσαϊκά (mosaic plots), αλλά θα αναφερθούμε και στις γραφικές αναπαραστάσεις συνάφειας (association plots). 2. Μωσαϊκά Τα μωσαϊκά αναπαριστούν τις συχνότητες ενός πίνακα συνάφειας με ορθογώνια πλακίδια (tiles), των οποίων το μέγεθος είναι ανάλογο της συχνότητας του κελιού. Αυτή η γραφική απεικόνιση για τα κατηγορικά δεδομένα γενικεύεται εύκολα σε πίνακες πολλαπλής εισόδου. Τα μωσαϊκά εισήχθησαν από τους Hartigan and Kleiner (98, 984), οι οποίοι 7

19 υποστήριξαν ότι το μοτίβο των ορθογωνίων πλακιδίων που υπάρχουν σε αυτά είναι χρήσιμο για να διατυπωθούν υποθέσεις, να γίνουν οπτικές συγκρίσεις μεταξύ τμημάτων (υποπίνακες) ενός πίνακα συνάφειας και να δοθεί έμφαση σε κελιά με μεγάλες ή μικρές συχνότητες. Ο Friendly (994) επέκτεινε την χρήση των μωσαϊκών ως ένα εργαλείο ανάλυσης δεδομένων με τον εξής τρόπο: για συγκεκριμένη απεικόνιση, προσάρμοσε ένα βασικό μοντέλο ανεξαρτησίας ή μερική ανεξαρτησίας και χρησιμοποίησε χρώμα και σκίαση των ορθογώνιων πλακιδίων για να αποδώσει την αποχώρηση από την ανεξαρτησία. Για μη διατάξιμες μεταβλητές, για να δώσει μια ιδέα για το μοτίβο της συνάφειάς τους, αναδιέταξε τις κατηγορίες, κυρίως βασιζόμενος στην Singular Value Decomposition (SVD) των καταλοίπων της ανεξαρτησίας. Για πολλαπλούς πίνακες εισόδου, θεώρησε χρήσιμο να εξετάσει μια ακολουθία από μωσαϊκά για περιθωριακούς υποπίνακες ως διαδοχικές μεταβλητές. Παρόλο που οποιοδήποτε λογαριθμογραμμικό μοντέλο μπορεί να προσαρμοστεί σε ολόκληρο τον πίνακα, μια κλάση από μοντέλα της από κοινού ανεξαρτησίας παρέχει μια γραφική αναπαράσταση μια διαμέρισης του ολικού λόγου πιθανοφάνειας G 2 της πλήρης ανεξαρτησίας σε ολόκληρο τον πίνακα, σε μέρη που συμβάλλουν στη διατύπωση υποθέσεων για τους περιθωριακούς υποπίνακες. Στόχος των γραφικών αυτών μεθόδων είναι: Να παρέχουν μεθόδους απεικόνισης για διερεύνηση της δομής των κατηγορικών δεδομένων και προσαρμογή μοντέλων συγκρίσιμη με αυτή που χρησιμοποιείται στα συνεχή δεδομένα. Να υλοποιούν τις μεθόδους αυτές με ευανάγνωστο λογισμικό. 2.. Παράδειγμα μωσαϊκού για πίνακα συνάφειας διπλής εισόδου Θα παρουσιάσουμε σύντομα την γραφική απεικόνιση με μωσαϊκά για δισδιάστατους πίνακες συνάφειας, ώστε να γίνει πιο εύκολα κατανοητή η γενίκευσή τους στη συνέχεια για πολυδιάστατους πίνακες συνάφειας. Για το σκοπό αυτό, θα χρησιμοποιήσουμε τα δεδομένα που συνδέουν το χρώμα μαλλιών και χρώμα ματιών 592 σπουδαστών στο μάθημα της στατιστικής (Πίνακας 2.), τα οποία συλλέχθηκαν από τον Snee (974) και αναλύθηκαν από τον Friendly (994). 8

20 Χρώμα Μαλλιών Χρώμα Μαύρα Καστανά Κόκκινα Ξανθά Σύνολο Ματιών Καφέ Μπλε Φουντουκί Πράσινα Σύνολο Πίνακας 2. Δεδομένα για χρώμα ματιών και χρώμα μαλλιών Η στατιστική συνάρτηση X 2 του Pearson για τον έλεγχο καλής προσαρμογής του μοντέλου ανεξαρτησίας είναι 38.3 με 9 βαθμούς ελευθερίας, που δηλώνει ουσιαστική απομάκρυνση από την ανεξαρτησία. Το ζητούμενο, ωστόσο, είναι να κατανοήσουμε τη φύση της συνάφειας μεταξύ του χρώματος μαλλιών και ματιών. Για αυτό το σκοπό, ο Friendly κατασκεύασε και μελέτησε τα αντίστοιχα μωσαϊκά. Στα μωσαϊκά αυτά, για οποιοδήποτε πίνακα συνάφειας, οι αναμενόμενες συχνότητες υπό την συνθήκη της ανεξαρτησίας αναπαριστώνται με ορθογώνια των οποίων τα μήκη είναι ανάλογα με τη συνολική συχνότητα της κάθε στήλης και τα πλάτη είναι ανάλογα με την υπό συνθήκη συχνότητα για κάθε γραμμή δοθείσης της συχνότητα της κάθε στήλης. Το εμβαδόν κάθε ορθογωνίου είναι ανάλογο με τη συχνότητα κάθε κελιού του πίνακα συνάφειας. Η μορφή του γραφήματος που δικαιολογεί την ονομασία μωσαϊκό είναι αυτή του γραφήματος 2., και μοιάζει με ένα διαιρεμένο ραβδόγραμμα. Τα μήκη των ορθογωνίων εξακολουθούν και είναι ανάλογα με τη συνολική συχνότητα της κάθε στήλης, αλλά τα πλάτη είναι ανάλογα με την υπό συνθήκη συχνότητα για κάθε γραμμή (χρώμα ματιών) δοθείσης της συχνότητα της κάθε στήλης (χρώμα μαλλιών), έτσι ώστε το εμβαδόν του κάθε ορθογωνίου να είναι ανάλογο με τη συχνότητα του κελιού και η ανεξαρτησία να φαίνεται γραφικά όταν όλα τα ορθογώνια έχουν το ίδιο πλάτος. 9

21 Hair Μαύρα Καστανά ΞανθάΚόκκινα HairColorEyeColor Kαφέ Μπλέ Φουντουκί Πράσινα Eye Γράφημα 2. Μωσαϊκό για τις μεταβλητές Ηair, Eye. Όπως διαπιστώνουμε από το γράφημα 2., το χρώμα ματιών και το χρώμα μαλλιών δεν είναι ανεξάρτητες μεταβλητές. Επίσης, η πιο διαδεδομένη κατηγορία, όσοι έχουν χρώμα μαλλιών καστανό, έχουν κυρίως καφέ ή φουντουκί χρώμα ματιών και η λιγότερο διαδεδομένη κατηγορία, οι ξανθοί έχουν κυρίως καφέ ή μπλε μάτια. Επίσης, όσοι έχουν πράσινα μάτια, συνήθως έχουν και καστανά μαλλιά. 0

22 2..2 Γενίκευση του μωσαϊκού σε πίνακα πολλαπλής εισόδου H παραπάνω μορφή του μωσαϊκού γενικεύεται εύκολα για πολυδιάστατους πίνακες συνάφειας. Στη συνέχεια, θα περιγράψουμε με βήματα την κατασκευή ενός μωσαϊκού για πίνακα συνάφειας τριπλής εισόδου για τις μεταβλητές A, B, C με συχνότητες n ik, i=,, I, =,, J, k=,, K. Η γενίκευση σε πίνακες ν-οστής εισόδου είναι άμεση. Η δομή του μωσαϊκού στηρίζεται στη διαταξιμότητα των μεταβλητών. Η διαίρεση σε ορθογώνια συνήθως εναλλάσσεται κατακόρυφα και οριζόντια με την παρακάτω σειρά:. Πρώτα, η διαθέσιμη περιοχή του γραφήματος διαιρείται σε κατακόρυφες λωρίδες που το εμβαδόν τους είναι ανάλογο με τα περιθώρια αθροίσματα της μεταβλητής Α, έτσι ώστε τα μήκη να είναι ανάλογα στη συχνότητα n i.., όπου η τελεία συμβολίζει ότι το άθροισμα ως προς τον δείκτη αυτό. 2. Kάθε κατακόρυφη λωρίδα κατόπιν υποδιαιρείται οριζόντια ανάλογα με τις από κοινού συχνότητες με τη δεύτερη μεταβλητή, n i.. Αυτό σημαίνει ότι κάθε ορθογώνιο έχει πλάτος ανάλογο με την υπό συνθήκη συχνότητα της δεύτερης μεταβλητής δοθείσης της πρώτης μεταβλητής, n i. /n i.. και εμβαδόν ανάλογο της n i. 3. Kάθε IJ ορθογώνιο διαιρείται καθέτως ανάλογα με τη n ik., δίνοντας μήκη ανάλογα του n ik. /n i.., κ.ο.κ. Στη συνέχεια, παραθέτουμε μερικές επιπλέον ιδιότητες που μπορεί να έχουν τα μωσαϊκά και να μας παρέχουν επιπρόσθετες πληροφορίες για τη δομή των δεδομένων και τη συνάφεια μεταξύ των μεταβλητών. i. Διακεκομμένες γραμμές (spacings) H διαδικασία που περιγράφηκε παραπάνω δίνει ένα μωσαϊκό με IJK ορθογώνια χωρίς όμως διακεκομμένες γραμμές, όπου κελιά με μικρές συχνότητες είναι δύσκολο να εντοπιστούν. Σύμφωνα με τους Hartigan και Kleiner (98), η καλύτερη λύση είναι τα ορθογώνια να διαχωρίζονται με διακεκομμένες γραμμές σε προηγούμενες υποδιαιρέσεις, ώστε να τονίζονται τα κελιά με μικρές συχνότητες. Για παράδειγμα, στον πίνακα τριπλής εισόδου με κατακόρυφο διαχωρισμό στις διαστάσεις Ι και Κ, οι διαιρέσεις της πρώτης μεταβλητής διαχωρίζεται ανάλογα με το /(Ι-). Οι διαιρέσεις μεταξύ των επιπέδων της τρίτης μεταβλητής διαχωρίζονται ανάλογα με το /(ΙΚ-). ii. Προσαρμόζοντας λογαριθμογραμμικά μοντέλα Όταν παρουσιάζονται τρεις ή περισσότερες μεταβλητές σε ένα μωσαϊκό, μπορούμε να προσαρμόσουμε διαφορετικά μοντέλα ανεξαρτησίας και να αναπαραστήσουμε τα κατάλοιπα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΟΙΚΗΣΗ της ΥΓΕΙΑΣ» ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΔΟΣΗΣ ΠΡΟΣΩΠΙΚΟΥ: ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΙΔΙΩΤΙΚΟΥ ΝΟΣΟΚΟΜΕΙΟΥ ΠΑΡΑΓΙΟΥΔΑΚΗ ΜΑΓΔΑΛΗΝΗ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΟΙΚΗΣΗ της ΥΓΕΙΑΣ» ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΔΟΣΗΣ ΠΡΟΣΩΠΙΚΟΥ: ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΙΔΙΩΤΙΚΟΥ ΝΟΣΟΚΟΜΕΙΟΥ ΠΑΡΑΓΙΟΥΔΑΚΗ ΜΑΓΔΑΛΗΝΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΟΙΚΗΣΗ της ΥΓΕΙΑΣ» ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΔΟΣΗΣ ΠΡΟΣΩΠΙΚΟΥ: ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΙΔΙΩΤΙΚΟΥ ΝΟΣΟΚΟΜΕΙΟΥ ΠΑΡΑΓΙΟΥΔΑΚΗ ΜΑΓΔΑΛΗΝΗ Διπλωματική

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ

ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.247-256 ΑΛΓΟΡΙΘΜΟΣ ΕΠΙΛΟΓΗΣ ΥΠΟΠΙΝΑΚΑ ΜΕ ΤΗΝ ΠΛΗΣΙΕΣΤΕΡΗ ΑΠΕΙΚΟΝΙΣΗ ΜΕΣΩ ΤΗΣ AFC ΣΤΟ ΓΕΝΙΚΕΥΜΕΝΟ ΠΙΝΑΚΑ ΣΥΜΠΤΩΣΕΩΝ

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Ανάλυση εισοδήματος των μισθωτών και παράγοντες που το επηρεάζουν

Ανάλυση εισοδήματος των μισθωτών και παράγοντες που το επηρεάζουν Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ ΤΜΗΜΑ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ Ε Π Ι Σ Τ Η Μ Η Σ Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Ο ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Η Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ανάλυση εισοδήματος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να N161 _ (262) Στατιστική στη Φυσική Αγωγή Βιβλία ή 1 ΕΞΕΤΑΣΕΙΣ στο τέλος του εξαμήνου με ΑΝΟΙΧΤΑ βιβλία ΕΞΕΤΑΣΕΙΣ ο καθένας θα πρέπει να έχει το ΔΙΚΟ του βιβλίο ΔΕΝ θα μπορείτε να ανταλλάσετε βιβλία ή να

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Έρευνα και Συγγραφή

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Έρευνα και Συγγραφή ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΜΕ9900 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Έρευνα και Συγγραφή Βασιλική Ζήση, PhD

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΝΑΥΤΙΛΙΑΣ & ΒΙΟΜΗΧΑΝΙΑΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στη «ΝΑΥΤΙΛΙΑ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΝΑΥΤΙΛΙΑΣ & ΒΙΟΜΗΧΑΝΙΑΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στη «ΝΑΥΤΙΛΙΑ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΝΑΥΤΙΛΙΑΣ & ΒΙΟΜΗΧΑΝΙΑΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ στη «ΝΑΥΤΙΛΙΑ» ΟΔΗΓΙΕΣ ΓΙΑ ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ Α. ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΕΚΠΟΝΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Περιγραφική Στατιστική

ΙΕΚ ΞΑΝΘΗΣ. Μάθημα : Στατιστική Ι. Υποενότητα : Περιγραφική Στατιστική ΙΕΚ ΞΑΝΘΗΣ Μάθημα : Στατιστική Ι Υποενότητα : Περιγραφική Στατιστική Επαμεινώνδας Διαμαντόπουλος Ιστοσελίδα : http://users.sch.gr/epdiaman/ Email : epdiamantopoulos@yahoo.gr 1 Στόχοι της υποενότητας Μετά

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... vii Μέρος Α ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων Πρόλογος Α Μέρους... 3 Αρχικές πληροφορίες και

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 13

Περιεχόμενα. Πρόλογος... 13 Περιεχόμενα Πρόλογος... 3 Κεφάλαιο : Εισαγωγή... 9. Είδη των προβλημάτων λήψης αποφάσεων... 9.2 Το πρόβλημα της ταξινόμησης και η σημασία του... 24.3 Γενικό περίγραμμα των μεθοδολογιών ταξινόμησης... 29.4

Διαβάστε περισσότερα

5. (Λειτουργικά) Δομικά Διαγράμματα

5. (Λειτουργικά) Δομικά Διαγράμματα 5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες

Διαβάστε περισσότερα

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Φεβρουάριος 2015 1 Table of Contents ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΛΗΨΗ... 3 1. ΕΙΣΑΓΩΓΗ... 4 2. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΜΟΝΤΕΛΩΝ... 4 2.1 ΔΕΔΟΜΕΝΑ... 4 2.1.1

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ)

ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) «ΣΠ0ΥΔΑI», Τόμος 47, Τεύχος 3o-4o, Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 47, No 3-4, University of Piraeus ΑΠΟΣΤΑΣΕΙΣ ΓΙΑ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΠΟΙΟΤΙΚΕΣ ΜΕΤΑΒΛΗΤΈΣ (ΤΑΞΙΝΟΜΗΣΗ ΣΕ ΛΟΓΙΚΑ ΔΕΔΟΜΕΝΑ) Υπό Γιάννης

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Συλλογή και παρουσίαση στατιστικών δεδομένων

Συλλογή και παρουσίαση στατιστικών δεδομένων Συλλογή και παρουσίαση στατιστικών δεδομένων Απογραφή Δειγματοληψία Συνεχής καταγραφή Πίνακες Διαγράμματα Στατιστικές εκθέσεις Τρόποι συλλογής δεδομένων Οι μέθοδοι συλλογής δεδομένων ποικίλουν και κυρίως

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα

Η Παραγοντική Ανάλυση των Αντιστοιχιών µέσω του λογισµικού CHIC Analysis

Η Παραγοντική Ανάλυση των Αντιστοιχιών µέσω του λογισµικού CHIC Analysis Η Παραγοντική Ανάλυση των Αντιστοιχιών µέσω του λογισµικού Άγγελος Μάρκος, Γεώργιος Μενεξές, Γιάννης Παπαδηµητρίου Τµήµα Εφαρµοσµένης Πληροφορικής, Πανεπιστήµιο Μακεδονίας Εισαγωγή Το C.HI.C. (Correspondence

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος

ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος ΑΝΑΛΥΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Σ. ΖΗΜΕΡΑΣ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών- Χρηματοοικονομικών Μαθηματικών Σάμος Εισαγωγή Αριθμητικά δεδομένα αντιστοιχούν σε πραγματοποιήσεις τυχαίων

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ Τµήµα Εφαρµοσµένης Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ Τµήµα Εφαρµοσµένης Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ Τµήµα Εφαρµοσµένης Πληροφορικής Βοήθεια στην Ερµηνεία των Αποτελεσµάτων της Παραγοντικής Ανάλυσης των Αντιστοιχιών & Αλγόριθµοι Κατασκευής και Ανάλυσης Ειδικών Πινάκων Εισόδου Η

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ

ΠΕΡΙΕΧΟΜΕΝΑ ΜEΡOΣ A : ΓNΩΡΙΜΙΑ ΜΕ ΤΗΝ ΕΠΙΣΤΗΜOΝΙΚΗ ΕΡΓΑΣΙΑ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος στη δεύτερη έκδοση........................................... 13 Πρόλογος στην πρώτη έκδοση............................................ 17 Εισαγωγή................................................................

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΘΗΝΑ, 2001 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ iii ix ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1 1.1

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 10 6η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση προσαρμογής διαφορετικών ειδών τάσης σε διαγράμματα

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα