Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com"

Transcript

1 Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης 1

2 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό έτος από τον καθηγητή του Τμήματος Μαθηματικών του Πανεπιστημίου Κρήτης Νικόλαο Τζανάκη: «Εάν ένα ορθογώνιο παραλληλόγραμμο χωριστεί σε μικρότερα με πλευρές παράλληλες στις πλευρές του αρχικού και με την ιδιότητα ότι κάθε ένα από αυτά έχει τουλάχιστον μία πλευρά της οποίας το μήκος είναι ακέραιος αριθμός, τότε η ιδιότητα αυτή μεταφέρεται και στο αρχικό ορθογώνιο παραλληλόγραμμο» 2

3 Η αφορμή συγγραφής της εργασίας «Εάν ένα ορθογώνιο παραλληλόγραμμο χωριστεί σε μικρότερα με πλευρές παράλληλες στις πλευρές του αρχικού και με την ιδιότητα ότι κάθε ένα από αυτά έχει τουλάχιστον μία πλευρά της οποίας το μήκος είναι ακέραιος αριθμός, τότε η ιδιότητα αυτή μεταφέρεται και στο αρχικό ορθογώνιο παραλληλόγραμμο» 3

4 Τι περιέχει η εργασία Προβλήματα των οποίων η λύση στηρίζεται σε χρωματισμό του σχήματος. Μέσω του χρωματισμού: Υπάρχουν προβλήματα στα οποία ο χρωματισμός απαντάει «αρνητικά» ως προς το αν μπορούν να ισχύουν οι απαιτήσεις του προβλήματος. Υπάρχουν προβλήματα στα οποία ο χρωματισμός απαντάει «θετικά». Υπάρχουν προβλήματα που ενώ φαίνεται ότι για την επίλυσή τους θα μπορούσε να χρησιμοποιηθεί ο χρωματισμός του σχήματος, εντούτοις αποδεικνύεται ότι δε μπορεί να δοθεί απάντηση με τη βοήθειά του. 4

5 Τι είδους προβλήματα περιλαμβάνονται; Προβλήματα κάλυψης ενός ορθογωνίου πλέγματος (λ.χ. σκακιέρα) με πολυόμινα (ντόμινο, τριόμινο, κτλ). Προβλήματα κίνησης μέσα σε κάποιο πλέγμα με συγκεκριμένο τρόπο που ορίζεται στο πρόβλημα (π.χ. κίνηση αλόγου μέσα σε σκακιέρα). Προβλήματα απαρίθμησης. Το πρόβλημα αφορμή συγγραφής του άρθρου. 5

6 Ένα γνωστό πρόβλημα Εάν από μία σκακιέρα αφαιρέσουμε δύο γωνιακά τετράγωνα που βρίσκονται στην ίδια διαγώνιο, να εξετάσετε εάν μπορούμε να την πλακοστρώσουμε με ορθογώνια διαστάσεων 2 1 (ντόμινο) χωρίς να υπάρχουν επικαλύψεις. Tα τετράγωνα που αφαιρούμε έχουν το ίδιο χρώμα, έστω μαύρο όπως στο διπλανό σχήμα. Άρα συνολικά στο τέλος υπάρχουν 62 τετράγωνα εκ των οποίων 32 είναι λευκά και 30 είναι μαύρα. Όμως κάθε ντόμινο καταλαμβάνει ένα λευκό και ένα μαύρο τετράγωνο άρα μετά την πλακόστρωση πρέπει να έχουμε ίδιο αριθμό λευκών και μαύρων τετραγώνων, άτοπο. Το πρόβλημα αυτό αναφέρεται για πρώτη φορά στο βιβλίο Critical Thinking (1946) του φιλοσόφου Max Black και μεταγενέστερα σε αρκετά άρθρα και βιβλία. Η ίδια απόδειξη για την αδυναμία κάλυψης λειτουργεί αν αφαιρέσουμε δύο οποιαδήποτε τετράγωνα ίδιου χρώματος από τη σκακιέρα. Ο Ralph Gomory σε ένα βιβλίο του R. Honsberger έδειξε ότι αν από τη σκακιέρα αφαιρέσουμε δύο οποιαδήποτε τετράγωνα αντίθετου χρώματος τότε 6 μπορούμε πάντοτε να την καλύψουμε με 31 ντόμινο.

7 Πρόβλημα 2 Μπορεί ένα άλογο να ξεκινήσει από το κάτω αριστερά τετράγωνο μιας 8 8 σκακιέρας και να καταλήξει στο πάνω δεξιά περνώντας από όλα τα τετράγωνα ακριβώς μία φορά; Λύση: Αν χρησιμοποιήσουμε το συνηθισμένο χρωματισμό της σκακιέρας, τότε το άλογο σε κάθε κίνηση μετακινείται από τετράγωνο ενός χρώματος σε τετράγωνο του αντίθετου χρώματος. Πρέπει όμως, να κάνει 63 κινήσεις για να περάσει από όλα τα ορθογώνια άρα θα πρέπει να καταλήξει σε τετράγωνο αντίθετου χρώματος από το τετράγωνο εκκίνησης, άτοπο διότι το τετράγωνο από το οποίο ξεκίνησε και εκείνο στο οποίο θα τερματίσει έχουν το ίδιο χρώμα. Πόρισμα: Εάν το άλογο ξεκινήσει από το κάτω αριστερά τετράγωνο μιας σκακιέρας και καταλήξει στο πάνω δεξιά περνώντας από όλα τα τετράγωνα της σκακιέρας, τότε υπάρχει τουλάχιστον ένα τετράγωνο από το οποίο περνάει δύο φορές και σίγουρα θα πρέπει να κάνει άρτιου πλήθους κινήσεις. 7

8 Πρόβλημα 3 25 ζηλιάρηδες γείτονες ζουν στα τετραγωνικά (μοναδιαία) διαμερίσματα ενός 5 5 τετραγωνικού πλέγματος. Καθένας από αυτούς νομίζει ότι, κάθε γείτονας του, που συνορεύει μαζί του οριζοντίως ή καθέτως, ζει σε καλύτερο διαμέρισμα από αυτόν. Είναι δυνατόν όλοι τους να μετακομίσουν με τέτοιο τρόπο, ώστε καθένας να καταλήξει σε κάποιο από τα ζηλευτά διαμερίσματα ενός πρώην γείτονά του; Λύση: Χρωματίζουμε το πλέγμα με το συνηθισμένο χρωματισμό της σκακιέρας όπως στο διπλανό σχήμα. Έχουμε 13 μαύρα και 12 λευκά τετράγωνα συνεπώς κάθε γείτονας μετά τη μετακόμιση θα βρεθεί από διαμέρισμα που είναι χρωματισμένο μαύρο σε διαμέρισμα που είναι χρωματισμένο λευκό. Όμως μία τέτοια μετακόμιση όλων, δεν είναι δυνατή καθώς δεν υπάρχουν 13 λευκά διαμερίσματα. 8

9 Πρόβλημα 4 Να δείξετε ότι μία σκακιέρα 8 8 δε μπορεί να καλυφθεί (χωρίς επικαλύψεις) με 15 τετρόμινο διαστάσεων 1 4 και ένα L- τετρόμινο της μορφής Λύση: Χρωματίζουμε, όπως στο σχήμα κάθε περιττή σειρά (ξεκινώντας απ το κάτω μέρος) της σκακιέρας με μαύρο χρώμα και κάθε άρτια με λευκό. Κάθε 1 4 τετρόμινο καταλαμβάνει πάντα άρτιο αριθμό λευκών ορθογωνίων, ανεξάρτητα από τον τρόπο που θα τοποθετηθεί (οριζόντια ή κατακόρυφα). Το ένα και μοναδικό L-τετρόμινο καταλαμβάνει περιττό αριθμό από λευκά τετράγωνα. Οι δύο παραπάνω παρατηρήσεις οδηγούν στο συμπέρασμα ότι αν ήταν δυνατή η κάλυψη της σκακιέρας, τότε ο συνολικός αριθμός λευκών τετραγώνων είναι περιττός, άτοπο αφού ο αριθμός των λευκών στη σκακιέρα είναι 32. 9

10 Πρόβλημα 5 Να δείξετε ότι ένα ορθογώνιο πλέγμα διαστάσεων δε μπορεί να καλυφθεί χωρίς επικαλύψεις με τετρόμινο διαστάσεων 1 4 Λύση: Χρωματίζουμε την πρώτη σειρά με γκρι και όμοια τη δεύτερη, την τρίτη και την τέταρτη με μπλε, κόκκινο, πράσινο αντίστοιχα και συνεχίζουμε όμοια. Προφανώς 3 σειρές είναι χρωματισμένες με το γκρι και 3 με μπλε ενώ 2 με κόκκινο και 2 με πράσινο. Άρα έχουμε από 3 10 =30 τετράγωνα χρωματισμένα με γκρι ή μπλε και από 20 χρωματισμένα με κόκκινο ή πράσινο. Κάθε τετρόμινο καλύπτει είτε 4 τετράγωνα ίδιου χρώματος είτε 4 τετράγωνα χρωματισμένα με 4 διαφορετικά χρώματα. Αν τέτοια κάλυψη ήταν δυνατή, η διαφορά του πλήθους των τετραγώνων που είναι χρωματισμένα με γκρι από το πλήθος των τετραγώνων που είναι χρωματισμένα με κόκκινο πρέπει να είναι αριθμός διαιρετός από το 4. Όμως η διαφορά του πλήθους των τετραγώνων που είναι χρωματισμένα με κόκκινο από το πλήθος των τετραγώνων που είναι χρωματισμένα με γκρι είναι 10, αριθμός που δεν είναι διαιρετός από το 4. 10

11 Πρόβλημα 6 Ένα ορθογώνιο πλέγμα διαστάσεων m n είναι καλυμμένο με τετρόμινο διαστάσεων 1 4 και τετρόμινο διαστάσεων 2 2. Από το ορθογώνιο αφαιρέθηκαν όλα τα τετρόμινο αλλά, ένα τετρόμινο διαστάσεων 2 2 χάθηκε και αντικαταστάθηκε με ένα τετρόμινο διαστάσεων 1 4. Είναι δυνατόν πλέον να καλυφθεί το αρχικό ορθογώνιο παραλληλόγραμμο από τα τετρόμινο; Λύση: Χρησιμοποιούμε το χρωματισμό του διπλανού σχήματος με 4 χρώματα ξεκινώντας το χρωματισμό από το κάτω αριστερά τετράγωνο του ορθογωνίου. Κάθε τετρόμινο διαστάσεων 2 2 καλύπτει ακριβώς ένα τετράγωνο που είναι χρωματισμένο με το χρώμα Α συνεπώς ο αριθμός των τετρόμινο διαστάσεων 2 2 συμπίπτει με τον αριθμό των τετραγώνων που είναι χρωματισμένα με το χρώμα Α. Κάθε τετρόμινο διαστάσεων 1 4 είτε δεν καλύπτει κανένα είτε καλύπτει δύο τετράγωνα με το χρώμα Α. Όταν όμως χάνεται το τετρόμινο διαστάσεων 2 2 μένει κενό ένα τετράγωνο που είναι χρωματισμένο με το χρώμα Α και με το τετρόμινο διαστάσεων 1 4 που 11 προστίθεται, δεν είναι δυνατή η κάλυψη όλων των τετραγώνων που είναι χρωματισμένα με το χρώμα Α.

12 Χαρακτηριστικό των προηγούμενων προβλημάτων Ζητούσαν να αποδειχθεί ότι είναι αδύνατη η κατασκευή που είχε ζητηθεί στην εκφώνηση συνεπώς ο χρωματισμός χρησιμοποιήθηκε για να αποδειχθεί ότι «κάτι» δεν είναι δυνατό να γίνει. Υπάρχουν άραγε προβλήματα στα οποία η χρήση χρωματισμού να απαντάει «θετικά»; Τα προβλήματα αυτά είναι ελάχιστα. Επιλέγω να παρουσιάσω δύο από αυτά. 13

13 Πρόβλημα 7 Ένα μουσείο διαθέτει έναν εκθεσιακό χώρο που αποτελείται από 16 δωμάτια. Η κάτοψή του φαίνεται στο διπλανό σχήμα. Μεταξύ κάθε ζεύγους οριζόντιων ή κατακόρυφων δωματίων που είναι διπλανά, υπάρχει μία πόρτα. Επιπλέον, κάθε δωμάτιο στη βόρεια και νότια πλευρά του κτιρίου (οι άνω και κάτω γραμμές της κάτοψης), έχει μια πόρτα που οδηγεί έξω από τον εκθεσιακό χώρο. Κατά το σχεδιασμό μιας νέας έκθεσης, ο φύλακας πρέπει να αποφασίσει ποιες πόρτες πρέπει να είναι ανοιχτές, έτσι ώστε οι επισκέπτες να εισέλθουν στην έκθεση μέσα από μια πόρτα που βρίσκεται στη βόρεια πλευρά, να επισκεφτούν κάθε δωμάτιο ακριβώς μια φορά και να βγουν έξω από μια πόρτα στη νότια πλευρά. Φυσικά, ο φύλακας θέλει επίσης να έχει όσο το δυνατόν λιγότερες πόρτες ανοιχτές. (α) Ποιος είναι ο ελάχιστος αριθμός των θυρών που θα πρέπει να είναι ανοικτές για την έκθεση; (β) Ποιες πόρτες εισόδου στην έκθεση και εξόδου από αυτή πρέπει να είναι ανοικτές; (Να αναφέρετε όλα τα ζευγάρια θυρών εισόδου-εξόδου που μπορεί να είναι ανοικτές για την έκθεση). 14

14 Πρόβλημα 7 Λύση: (α) Από ένα μονοπάτι μέσα από την έκθεση οι επισκέπτες θα επισκέπτονται κάθε δωμάτιο ακριβώς μια φορά και θα πρέπει να εισέρχονται σε κάθε δωμάτιο και να εξέρχονται από αυτό μέσω διαφορετικών θυρών. Αυτό σημαίνει, ότι τουλάχιστον 17 πόρτες πρέπει να είναι ανοικτές, μεταξύ των οποίων μία πόρτα εισόδου και μία πόρτα εξόδου. (β) Χρωματίζουμε κάθε τετράγωνο με το συνηθισμένο χρωματισμό της σκακιέρας. Γίνεται τότε φανερό ότι οποιαδήποτε διαδρομή μέσα από την έκθεση, θα πρέπει να περάσει από δωμάτιο σε δωμάτιο εναλλάσσοντας κάθε φορά χρώμα. Από το σύνολο των 16 δωματίων που θα επισκεφτεί ο επισκέπτης, το πρώτο και το τελευταίο τετράγωνο θα πρέπει να χρωματιστεί με αντίθετα χρώματα. Συνεπώς τα πιθανά ζεύγη θυρών που πρέπει να είναι ανοικτές είναι τα (Α1, Β1), (Α1, Β3), (Α2, Β2), (Α2, Β4) και συμμετρικά τα (Α4, Β4), (Α4, Β2), (Α3, Β3), (Α3, Β1). Τα παρακάτω σχήματα δείχνουν μία διαδρομή για καθένα από τα τέσσερα πρώτα ζεύγη που αναφέρονται παραπάνω. 15

15 Πρόβλημα 8 (α) Να βρείτε πόσα τετράγωνα τέμνει η διαγώνιος ενός ορθογωνίου πλέγματος διαστάσεων Βοηθητικό Λήμμα Έστω ότι η διαγώνιος ξεκινάει από την πάνω αριστερή γωνία του ορθογωνίου πλέγματος και καταλήγει στην κάτω δεξιά. Εάν το πλέγμα είναι διαστάσεων m n με m, n = 1 και η διαγώνιος τέμνει κάποιο τετράγωνο του ορθογωνίου, τότε το τέμνει σε εσωτερικό σημείο της πλευράς του (και όχι σε γωνιακό όπως π.χ. στο σχήμα). Απόδειξη ισχυρισμού Αν υποθέσουμε αντίθετα ότι τέμνει κάποιο τετράγωνο σε μία γωνία του (ας υποθέσουμε στο σημείο C του διπλανού σχήματος) και το τετράγωνο αφήνει k τετράγωνα πάνω και l τετράγωνα αριστερά από αυτό, τότε λόγω του ότι τα σημεία A, C, E είναι συνευθειακά, παίρνουμε την ομοιότητα των τριγώνων ABC και ADE κι έτσι ml = knκι επειδή m, n διότι n > l. = 1 άρα n l, άτοπο 16

16 Πρόβλημα 8 (α) Να βρείτε πόσα τετράγωνα τέμνει σε εσωτερικά τους σημεία η διαγώνιος ενός ορθογωνίου πλέγματος διαστάσεων Λύση: Είναι 1005,1009 = 1. Χρωματίζουμε όλα τα τετράγωνα που τέμνει η διαγώνιος μαύρα. Σε κάθε γραμμή του πλέγματος μαρκάρουμε το μαύρο τετράγωνο που βρίσκεται πιο κοντά στην αριστερή πλευρά του αρχικού ορθογωνίου με το γράμμα Α. Σε κάθε στήλη του πλέγματος μαρκάρουμε το μαύρο τετράγωνο που βρίσκεται πιο κοντά στην πάνω πλευρά του πλέγματος με το γράμμα Β. Στο διπλανό σχήμα φαίνεται το μαρκάρισμα που θα κάναμε σε ένα πλέγμα διαστάσεων

17 Πρόβλημα 8 (α) Να βρείτε πόσα τετράγωνα τέμνει σε εσωτερικά τους σημεία η διαγώνιος ενός ορθογωνίου πλέγματος διαστάσεων Λύση: Κάθε ένα από τα μαύρα τετράγωνα μαρκάρεται ακριβώς μία φορά με ένα από τα γράμματα Α ή Β εκτός από το πάνω αριστερά που μαρκάρεται και από τα δύο ( ). Συνεπώς ο αριθμός των μαύρων τετραγώνων είναι = Απόδειξη ισχυρισμού Αν υπήρχε κάποιο μαύρο τετράγωνο που δεν μαρκάρεται με κάποιο γράμμα τότε το τετράγωνο ακριβώς από πάνω του και το τετράγωνο αμέσως αριστερά από εκείνο, θα πρέπει να είναι μαύρα, δηλαδή, θα πρέπει να τέμνονται από τη διαγώνιο σε εσωτερικά τους σημεία. Όμως το μόνο κοινό σημείο αυτών είναι η κοινή κορυφή, άτοπο. Επίσης αν κάποιο τετράγωνο μαρκάρεται και με τα δύο γράμματα τότε δεν υπάρχει άλλο μαύρο τετράγωνο ούτε στην ίδια γραμμή και αριστερότερα από αυτό, ούτε στην ίδια στήλη και πάνω από αυτό. Αυτό σημαίνει, ότι η διαγώνιος διέρχεται από την πάνω αριστερά γωνία του τετραγώνου και αυτό μπορεί να συμβαίνει μόνο στο πάνω αριστερά τετράγωνο του πλέγματος. 18

18 Πρόβλημα 8 (β) Να βρείτε πόσα τετράγωνα τέμνει σε εσωτερικά τους σημεία η διαγώνιος ενός ορθογωνίου πλέγματος διαστάσεων Λύση: Είναι 12,9 = 3 και, 9 = 4,3 = 1, άρα 3 3 μπορούμε να φτιάξουμε 3 3 blocks κάθε ένα από τα οποία, θα αποτελείται από ορθογώνια πλέγματα διαστάσεων 4 3. Φέρουμε τη διαγώνιο του αρχικού πλέγματος η οποία θα περνάει από την κάτω δεξιά γωνία του πρώτου block από την πρώτη σειρά, από την κάτω δεξιά γωνία του δεύτερου block από τη δεύτερη σειρά, του τρίτου από την τρίτη σειρά (το ότι η διαγώνιος διέρχεται από αυτές τις γωνίες είναι εύκολο να αποδειχθεί με ομοιότητα τριγώνων). Σε κάθε block η διαγώνιος τέμνει 4+3-1=6 τετράγωνα άρα συνολικά στα 3 blocks θα τέμνει 3 6 = 18 τετράγωνα

19 Πρόβλημα 8 Φυσιολογική γενίκευση: Η διαγώνιος ενός ορθογωνίου πλέγματος διαστάσεων m n τέμνει m + n (m, n) τετράγωνα όπου με (m, n) συμβολίζουμε το μέγιστο κοινό διαιρέτη των αριθμών m και n. 20

20 Πρόβλημα 9 Να βρεθεί πιο τετράγωνο πρέπει να αφαιρεθεί από μία σκακιέρα 8 8 ώστε τα υπόλοιπα 63 τετράγωνα να μπορούν να καλυφθούν από τριόμινο διαστάσεων 1 3 Λύση: Θα δείξουμε ότι η σκακιέρα καλύπτεται από τριόμινο αν και μόνο αν το τετράγωνο που θα αφαιρέσουμε είναι κάποιο από τα 4 μαύρα τετράγωνα που εικονίζονται στο πάνω δεξιά σχήμα. Μία κάλυψη με τριόμινο φαίνεται στο κάτω δεξιά σχήμα. 21

21 Πρόβλημα 9 Χρησιμοποιούμε τρία χρώματα για να χρωματίσουμε τη σκακιέρα, ώστε κάθε τριόμινο που θα τοποθετηθεί οριζόντια ή κατακόρυφα να καλύπτει τρία τετράγωνα με διαφορετικό χρώμα (π.χ. διπλανό σχήμα) Με τον διπλανό τρόπο υπάρχουν 21 λευκά, 21 μπλε και 22 γκρι τετράγωνα. Συνεπώς, το τετράγωνο που θα αφαιρεθεί πρέπει να είναι υποχρεωτικά γκρι. Χρωματίζουμε απ την αρχή τη σκακιέρα με τρόπο ώστε ο καινούριος χρωματισμός να είναι ίδιος με τον προηγούμενο αν στον τελευταίο εφαρμόσουμε στροφή ως προς το κέντρο του τετραγώνου κατά 90 με την θετική φορά. Και πάλι το τετράγωνο που θα αφαιρεθεί πρέπει να είναι γκρι. Συγκρίνοντας τα δύο τελευταία σχήματα, τα μόνα γκρι τετράγωνα που μπορούν να αφαιρεθούν ώστε να μπορεί να γίνει η παραπάνω κάλυψη, είναι τα κοινά στα δύο προηγούμενα σχήματα δηλαδή τα τέσσερα που αναφέρθηκαν στην αρχή της λύσης. Geogebra 22

22 Πρόβλημα 10 Εάν ένα ορθογώνιο παραλληλόγραμμο χωριστεί σε μικρότερα με πλευρές παράλληλες στις πλευρές του αρχικού και με την ιδιότητα ότι κάθε ένα από αυτά έχει τουλάχιστον μία πλευρά της οποίας το μήκος είναι ακέραιος αριθμός, τότε η ιδιότητα αυτή μεταφέρεται και στο αρχικό ορθογώνιο παραλληλόγραμμο. Χρήσιμο Λήμμα 1 Αν κάποιο ορθογώνιο παραλληλόγραμμο με τουλάχιστον μία πλευρά του ακέραιο αριθμό το χωρίσουμε σε τετράγωνα διαστάσεων ξεκινώντας από την κάτω αριστερή γωνία και το χρωματίσουμε όπως τη σκακιέρα, τότε η συνολική περιοχή του τετραγώνου που είναι βαμμένη με λευκό είναι ίση με τη συνολική περιοχή που είναι βαμμένη με μαύρο. Στο διπλανό σχήμα βλέπουμε ένα τέτοιο ορθογώνιο διαστάσεων k 2 όπου k τυχαίος θετικός πραγματικός αριθμός. 1 23

23 Πρόβλημα 10 Το ίδιο συμβαίνει με ένα ορθογώνιο, το οποίο το χρωματίζουμε με τον παραπάνω τρόπο, με τη διαφορά ότι ο χωρισμός του σε τετράγωνα διαστάσεων 1 1 δεν ξεκινά 2 2 απαραίτητα από την κάτω αριστερή γωνία αλλά από οποιοδήποτε σημείο μιας πλευράς (βλέπε διπλανό σχήμα). Αυτό συμβαίνει διότι η συγκεκριμένη περίπτωση ανάγεται στην προηγούμενη με οριζόντια και κατακόρυφη μετατόπιση του σχήματος. Στο διπλανό σχήμα βλέπουμε το ορθογώνιο παραλληλόγραμμο ΑΒΓΔ διαστάσεων k 2, το οποίο εύκολα ανάγεται στο ορθογώνιο παραλληλόγραμμο ΕΖΗΘ με βάση τον προηγούμενο χρωματισμό. Geogebra 24

24 Πρόβλημα 10 Χρήσιμο Λήμμα 2 Αν κάποιο ορθογώνιο παραλληλόγραμμο με πλευρές k, l που είναι μικρότερες της μονάδας, το χωρίσουμε σε τετράγωνα διαστάσεων και χρωματίσουμε το σχήμα όπως τη σκακιέρα, η συνολική περιοχή που είναι βαμμένη με λευκό δεν είναι ίση με τη συνολική περιοχή που είναι βαμμένη με μαύρο. Για την απόδειξη αρκεί κάποιος να θεωρήσει τις περιπτώσεις α) k < 1 2 και 0 < l < 1 β) k > 1 2 και l > 1 2 και τα υπόλοιπα είναι θέμα απλής άλγεβρας. Geogebra 25

25 Πρόβλημα 10 Αν ξεκινήσουμε λοιπόν να χρωματίζουμε το αρχικό ορθογώνιο παραλληλόγραμμο με το συνηθισμένο χρωματισμό της σκακιέρας με τετράγωνα διαστάσεων 1 1 ξεκινώντας από την κάτω αριστερή γωνία, 2 2 τότε λόγω του ότι το κάθε μικρότερο ορθογώνιο παραλληλόγραμμο έχει τουλάχιστον μία πλευρά ακέραιο αριθμό, η συνολική περιοχή που είναι χρωματισμένη με λευκό είναι ίση με εκείνη που είναι χρωματισμένη με μαύρο. 26

26 Πρόβλημα 10 Αν υποθέσουμε λοιπόν ότι το ορθογώνιο παραλληλόγραμμο δεν έχει καμία πλευρά που να είναι ακέραιος αριθμός, τότε μπορούμε να το χωρίσουμε σε τέσσερα μικρότερα ορθογώνια παραλληλόγραμμα από τα οποία τα τρία έχουν τουλάχιστον μία πλευρά ακέραιο αριθμό (και επομένως (Χρήσιμο Λήμμα 1) η συνολική περιοχή που είναι χρωματισμένη με λευκό είναι ίση με εκείνη που είναι χρωματισμένη με μαύρο), ενώ στο τέταρτο στο οποίο καμία πλευρά δεν είναι ακέραιος αριθμός και μάλιστα κάθε πλευρά είναι μικρότερη της μονάδας, η συνολική περιοχή που είναι χρωματισμένη με λευκό δεν είναι ίση με εκείνη που είναι χρωματισμένη με μαύρο (Χρήσιμο Λήμμα 2). Το αρχικό ορθογώνιο έχει διαστάσεις α β και το [α] συμβολίζει το ακέραιο μέρος του α). 27

27 Πρόβλημα 10 Δηλαδή στο αρχικό ορθογώνιο παραλληλόγραμμο οι δύο περιοχές που είναι χρωματισμένες με λευκό και μαύρο δεν είναι ισεμβαδικές κάτι που έρχεται σε αντίφαση με όσα δείξαμε παραπάνω. Άρα το αρχικό ορθογώνιο παραλληλόγραμμο έχει τουλάχιστον μία πλευρά που είναι ακέραιος αριθμός. 28

28 Υπάρχουν προβλήματα που δε λύνονται με χρωματισμό; Υπάρχουν. Αξίζει να σημειώσουμε ένα άρθρο του Conway στο οποία αποδεικνύεται με αρκετά δύσκολη συνδυαστική θεωρία ομάδων, ότι το τρίγωνο Τ N μπορεί να καλυφθεί χρησιμοποιώντας τρίγωνα Τ 2 αν και μόνο αν N 0,2,9,11 (mod 12). Στο διπλανό σχήμα φαίνονται τα τρίγωνα Τ 2 και Τ 5. Το ενδιαφέρον είναι ότι στην ίδια εργασία αποδεικνύεται, ότι το παραπάνω θεώρημα δε μπορεί να αποδειχθεί με τη βοήθεια χρωματισμού. Το τρίγωνο αποτελείται από Ν σειρές με εξάγωνα ώστε η βάση του να περιέχει Ν εξάγωνα, η αμέσως επόμενη σειρά Ν-1 εξάγωνα έως την 1 η σειρά που περιέχει 1 εξάγωνο. Τα σχήματα που φαίνονται παραπάνω είναι παραδείγματα τέτοιων τριγώνων. 29

29 Σας ευχαριστώ πολύ 30

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Κεφάλαιο 1.Εντολές κίνησης

Κεφάλαιο 1.Εντολές κίνησης Προγραμματίζω με το ΒΥΟΒ 1 Κεφάλαιο 1.Εντολές κίνησης Από το μάθημα της Φυσικής γνωρίζουμε ότι κίνηση σημαίνει αλλαγή της θέσης ενός αντικειμένου. Οι εντολές κίνησης που μας παρέχει το ΒΥΟΒ χωρίζονται

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Δραστηριότητα για µαθητές Γυµνασίου

Δραστηριότητα για µαθητές Γυµνασίου Δραστηριότητα για µαθητές Γυµνασίου Παρουσίαση: Τεύκρος Μιχαηλίδης ΘΑΛΗΣ+ΦΙΛΟΙ Επικοινωνία info@thalesandfriends.org Ιστοσελίδα www.thalesandfriends.org Το τρίγωνο του Sierpinski Α Β Γ ΘΑΛΗΣ+ΦΙΛΟΙ 2 Στο

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0 ΕΞΙΣΩΣΕΙΣ.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ Η εξίσωση α 0 Στο Γυμνάσιο μάθαμε τον τρόπο επίλυσης των εξισώσεων της μορφής α 0 για συγκεκριμένους αριθμούς α,,με α 0 Γενικότερα τώρα, θα δούμε πώς με την οήθεια των

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΘΕΜΑ Ενημέρωση για θέματα εξετάσεων της Γ γυμνασίου για το μάθημα της πληροφορικής (σχετικά με τη logo).

ΘΕΜΑ Ενημέρωση για θέματα εξετάσεων της Γ γυμνασίου για το μάθημα της πληροφορικής (σχετικά με τη logo). ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΤΤΙΚΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Β Δ/ΝΣΗΣ ΔΕΥΤ/ΘΜΙΑΣ ΕΚΠ. ΑΘΗΝΑΣ Μεσογείων 402-15342 - Αγία Παρασκευή 210-6392243,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Παιχνιδάκια με τη LOGO

Παιχνιδάκια με τη LOGO Όταν σβήνει ο υπολογιστής ξεχνάω τα πάντα. Κάτι πρέπει να γίνει Κάθε φορά που δημιουργώ ένα πρόγραμμα στη Logo αυτό αποθηκεύεται προσωρινά στη μνήμη του υπολογιστή. Αν θέλω να διατηρηθούν τα προγράμματά

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β ΕΝΕΡΓΕΙΕΣ ΕΝΗΜΕΡΩΣΗΣ ΚΑΙ ΔΗΜΟΣΙΟΤΗΤΑΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΑΑ

ΠΑΡΑΡΤΗΜΑ Β ΕΝΕΡΓΕΙΕΣ ΕΝΗΜΕΡΩΣΗΣ ΚΑΙ ΔΗΜΟΣΙΟΤΗΤΑΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΑΑ ΠΑΡΑΡΤΗΜΑ Β ΕΝΕΡΓΕΙΕΣ ΕΝΗΜΕΡΩΣΗΣ ΚΑΙ ΔΗΜΟΣΙΟΤΗΤΑΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΑΑ 1 ΕΝΕΡΓΕΙΕΣ ΕΝΗΜΕΡΩΣΗΣ ΚΑΙ ΔΗΜΟΣΙΟΤΗΤΑΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΑΑ Σύμφωνα με τον κανονισμό 1974/2006 (παράρτημα VI) για τη θέσπιση λεπτομερών

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Το παιχνίδι tangram. PIERCE Αμερικανικό Κολλέγιο Ελλάδος Μαθητε ς/τριες Γ, Β και Α Γυμνασι ου3, 2, 1. sdoukakis@acg.edu

Το παιχνίδι tangram. PIERCE Αμερικανικό Κολλέγιο Ελλάδος Μαθητε ς/τριες Γ, Β και Α Γυμνασι ου3, 2, 1. sdoukakis@acg.edu Το παιχνίδι tangram Ανδριανού Αφροδίτη 3, Γεωργιάδης Μάρκος 2, Γεωργιάδης Μάριος 1, Δεσποτάκης Γεράσιμος 2, Καραμπάσης Κλείτος 2, Κουτσιούμπας Ευριπίδης 1, Μελένιου Μιράντα 2, Ξενάκης Αριστοτέλης 1, Παπαβασιλόπουλος

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Δευτέρα, 25/5/2015

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου.

Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου. ΜΟΡΦΟΛΟΓΙΑ Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου. Διακρίνουμε τα εξής σχήματα - Οβάλ - Οβάλ μακρύ - Ορθογωνικό - Στρογγυλό - Τετραγωνικό - Τριγωνικό - Εξαγωνικό - Τραπεζοειδές

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD

ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD ΚΕΦΑΛΑΙΟ ΙΙΙ ΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΕΙΣ LU, QR και SVD Εισαγωγή To παρόν κεφάλαιο χωρίζεται σε μέρη. Στο (Α), μεταξύ άλλων, εξηγούμε γιατί μας ενδιαφέρει η λεγόμενη ανάλυση σε παράγοντες ειδικούς πίνακες (decompositio)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα