Η ΕΠΙΛΥΣΗ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΚΑΙ ΛΕΚΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΑΛΟΓΙΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΕΠΙΛΥΣΗ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΚΑΙ ΛΕΚΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΑΛΟΓΙΑΣ"

Transcript

1 Επίλυση Προβληµάτων Αναλογίας Η ΕΠΙΛΥΣΗ ΤΩΝ ΑΡΙΘΜΗΤΙΚΩΝ ΚΑΙ ΛΕΚΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΑΛΟΓΙΑΣ Μαρία Ηροδότου, Πολίνα Ιωάννου, Κατερίνα Κοντογιάννη, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Σκοπός της παρούσας εργασίας είναι η διερεύνηση της ύπαρξης σχέσης ανάµεσα στα αριθµητικά και τα λεκτικά προβλήµατα αναλογίας και η εξέταση του εύρους των στρατηγικών των Κύπριων µαθητών Ε και Στ τάξης ηµοτικού. Τα αποτελέσµατα της έρευνας φανερώνουν ότι τα αριθµητικά και τα λεκτικά προβλήµατα αναλογίας αντιµετωπίζονται διαφορετικά από τους µαθητές. Όσον αφορά τις στρατηγικές για την επίλυση των αριθµητικών αναλογικών προβληµάτων, οι µαθητές της Ε φαίνεται να προτιµούν την εύρεση του παράγοντα αλλαγής, ενώ οι µαθητές της Στ την εύρεση του παράγοντα αλλαγής και τη µέθοδο των τριών. Επίσης διαπιστώνεται ότι µεγάλο ποσοστό των µαθητών και των δύο τάξεων δεν έχουν ολοκληρωµένη αντίληψη των σχέσεων που διέπουν µια αναλογία. 1.Εισαγωγή Η αναλογία αποτελεί θεµελιώδη έννοια του αναλυτικού προγράµµατος των Μαθηµατικών αφού αποδεδειγµένα προωθεί την ανάπτυξη της µαθηµατικής σκέψης (Confrey & Smith, 1995, Nabors, 2003). Ως έννοια πρωτοεµφανίζεται στις πρώτες τάξεις του δηµοτικού σχολείου σε λεκτικά προβλήµατα πολλαπλασιασµού και διαίρεσης. Σταδιακά αναπτύσσεται σε καταστάσεις που περιλαµβάνουν ισοδυναµία ή σύγκριση κλασµάτων για να καταλήξει υπό µορφή βασικής γνώσης για την ανάπτυξη αλγεβρικών σχέσεων, τριγωνοµετρίας και θεωρίας πιθανοτήτων (Παπαγεωργίου & Χρίστου, 1999). Παρά το γεγονός ότι η αναλογία ως έννοια εµφανίζεται νωρίς στο αναλυτικό πρόγραµµα των µαθηµατικών, µεγάλος αριθµός ερευνών έδειξε ότι αποτελεί µια δύσκολη περιοχή για τους µαθητές (Nabors, 2003). Οι Post, Behr και Lesh (1988) υποστηρίζουν ότι µικρός αριθµός µαθητών µέσης εκπαίδευσης κάνουν ορθή χρήση του αναλογικού συλλογισµού, κάτι το οποίο παρατηρείται σε µεγάλο βαθµό και στην ανώτερη εκπαίδευση (Lawton, 1993). Παράλληλα υπάρχουν στοιχεία που δείχνουν ότι ένα µεγάλο ποσοστό του πληθυσµού δεν κατακτά επαρκώς την αναλογική σκέψη (Hoffer, 1988). Η αναλογία είναι µια σχέση δεύτερης τάξης, η οποία περιλαµβάνει µια ισοδύναµη τάξη µεταξύ δύο λόγων (Christou & Philippou, 2002), π.χ. α/β=γ/δ. Η αναλογία περιλαµβάνει τέσσερα στοιχεία, όπου το είδος της σχέσης ανάµεσα τους καθορίζει το είδος της στρατηγικής που θα χρησιµοποιηθεί για την επίλυση 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 55

2 Μ. Ηροδότου κ.ά. προβληµάτων (Lamon, 1994). Οι σχέσεις αυτές χωρίζονται σε δύο µεγάλες κατηγορίες: τις σχέσεις «εντός» (within), δηλαδή σχέσεις ποσοτήτων ιδίου είδους, και σχέσεις «εκτός» (between), δηλαδή σχέσεις αντίστοιχων ποσοτήτων διαφορετικού είδους (Kaput & West, 1994). Για παράδειγµα, στο πρόβληµα «Αν 3 κιλά πατάτες στοιχίζουν 90 σεντ, πόσο θα στοιχίζουν 12 κιλά;», υπάρχουν δύο µετρικοί χώροι, αυτός των κιλών και αυτός των χρηµάτων. Οι σχέσεις «εντός» αναφέρονται στη σύγκριση οµοειδών ποσοτήτων (π.χ κιλά µε κιλά) ενώ οι σχέσεις «εκτός» αναφέρονται στη σύγκριση διαφορετικού είδους ποσοτήτων (κιλά µε χρήµατα). O Ben-Chaim (1998) αναφέρει τρία είδη έργων που απαιτούν αναλογικό συλλογισµό: προβλήµατα άγνωστης ποσότητας (missing value problems), όπου δίνονται τα τρία στοιχεία µιας αναλογίας και ζητείται το τέταρτο, προβλήµατα αριθµητικής σύγκρισης (numerical comparison problems), όπου δίνονται και οι δύο λόγοι της αναλογίας και ο µαθητής καλείται να τους συγκρίνει και προβλήµατα σύγκρισης και ποιοτικής πρόβλεψης (qualitative prediction and comparison problems), τα οποία απαιτούν συγκρίσεις που δεν στηρίζονται σε συγκεκριµένες αριθµητικές τιµές. Λόγω της µεγάλης σηµασίας της αναλογικής σκέψης πολυάριθµες έρευνες έχουν διερευνήσει τις ορθές και λανθασµένες στρατηγικές των µαθητών στην προσπάθεια τους να επιλύσουν αναλογικά προβλήµατα άγνωστης ποσότητας (Christou & Philippou, 2002; Karplus, Pulos & Stage, 1983; Kaput & West, 1994; Tourniaire & Pulos, 1985). Με βάση τη βιβλιογραφία οι στρατηγικές επίλυσης προβληµάτων αναλογίας χωρίζονται µε βάση τη δοµή τους, σε στρατηγικές µε πολλαπλασιαστική και σε στρατηγικές µε προσθετική δοµή (Tourniaire & Pulos, 1985). Στην πρώτη κατηγορία ανήκουν η αναγωγή στη µονάδα, ο παράγοντας αλλαγής, η µέθοδος των τριών και τα ισοδύναµα κλάσµατα (Bart, Post, Behr, & Lesh, 1994). Η δεύτερη κατηγορία αφορά στρατηγικές επαναλαµβανόµενης πρόσθεσης οι οποίες αποτελούν άτυπη µορφή αναλογικού συλλογισµού (Christou & Philippou, 2002), όπως οι κλάσεις ισοδυναµίας και η δηµιουργία ζευγαριών (Bart et al., 1994). Η εφαρµογή καθεµιάς από τις στρατηγικές εξαρτάται άµεσα από το είδος του προβλήµατος και από τις σχέσεις που διέπουν τα αριθµητικά του δεδοµένα (Christou & Philippou, 2002;Karplus, Pulos & Stage, 1983; Tourniaire & Pulos, 1985). Η πιο συνηθισµένη προσέγγιση για την επίλυση αναλογικών προβληµάτων άγνωστης ποσότητας που συναντά κανείς στα µαθηµατικά εγχειρίδια της Κύπρου είναι η µέθοδος των τριών (Christou & Philippou, 2002), η οποία αποτελεί ένα µνηµονικό κανόνα για την επίλυση αναλογικών προβληµάτων και έρχεται σε αντίθεση µε τις άτυπες διαισθητικές στρατηγικές των µαθητών (Kaput & West, 1994). Η προσθετική στρατηγική είναι η πιο κοινή λανθασµένη στρατηγική στη βιβλιογραφία σε σχέση µε τις αναλογίες (Inhelder & Piaget, 1958; Hart, 1984). Ειδικότερα οι Misailidou και Williams (2003) κατασκεύασαν ένα εργαλείο διαγνωστικής αξιολόγησης αναλογικού συλλογισµού των µαθητών το οποίο µετρούσε, ανάµεσα σε άλλα, την τάση των µαθητών για εφαρµογή προσθετικής στρατηγικής. Πολλά µοντέλα (Droujkova & Berenson, 2003) παρουσιάζουν άµεσες συνδέσεις ανάµεσα στον αναλογικό συλλογισµό στα µαθηµατικά και στη ψυχολογία. Στα µαθηµατικά χρησιµοποιείται ο όρος proportional reasoning, ενώ στον τοµέα της ψυχολογίας, ο όρος που χρησιµοποιείται είναι analogical reasoning. Στην ελληνική 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 56

3 Επίλυση Προβληµάτων Αναλογίας γλώσσα ο όρος αναλογικός συλλογισµός χρησιµοποιείται και στους δύο τοµείς, κάτι το οποίο ακολουθήσαµε κατά τη συγγραφή της παρούσας έρευνας. Στις περιπτώσεις που απαιτείτο διάκριση, έγινε χρήση των όρων αριθµητικά και λεκτικά προβλήµατα αναλογίας για τα προβλήµατα που αφορούσαν τους τοµείς των µαθηµατικών και της ψυχολογίας αντίστοιχα. Οι Piaget και Campbell (2001) αναφέρουν: «οι λεκτικές αναλογίες (analogies) είναι ένα είδος ποιοτικής µαθηµατικής αναλογίας (proportion). Πρόκειται για σχέσεις ανάµεσα σε σχέσεις»(σ. 139). Ο αναλογικός συλλογισµός περιλαµβάνει σηµαντικές δοµικές σχέσεις και συνδέσεις ανάµεσα σε καταστάσεις ή ιδέες (English & Sharry, 1996). Οι λεκτικές αναλογίες µπορούν να σχηµατιστούν µε πολλούς τρόπους και εµπεριέχουν ποικίλες σηµασιολογικές σχέσεις ανάµεσα στις έννοιες σε διάφορα επίπεδα (Hoffman, 1998). Οι σχέσεις αυτές καλύπτουν ένα ευρύ φάσµα, από έννοιες που τις συνδέουν επιφανειακά χαρακτηριστικά (π.χ. οµόηχες λέξεις ή λέξεις µε ίδιο αριθµό γραµµάτων), σχέσεις οµοιότητας και διαφοράς, µέχρι έννοιες που τις συνδέουν πιο ψηλού επιπέδου χαρακτηριστικά (π.χ. τοποθεσία, λειτουργία, αλλαγή κατάστασης) (Sternberg, 1977). Μια τυπική µορφή έργου λεκτικής αναλογίας παρουσιάζεται ως Α:Β::Γ:. όπου η σχέση που ενώνει τις έννοιες Α και Β του πρώτου ζεύγους µεταφέρεται στις έννοιες Γ και του δεύτερου ζεύγους. Άγνωστο στοιχείο µπορεί να είναι µια από τις τέσσερις έννοιες ή και το ένα ζεύγος. Ένα παράδειγµα λεκτικής αναλογίας στο οποίο οι έννοιες συνδέονται σύµφωνα µε την τοποθεσία τους είναι το ακόλουθο: Φαρµακείο: Φάρµακα :: Φρουταρία: Φρούτα (Hoffman, 1998). Υπάρχουν στοιχεία που καταδεικνύουν τη σύνδεση ανάµεσα στον λεκτικό αναλογικό συλλογισµό και τη µάθηση (Vosniadou, 1989), τη διδασκαλία (Alexander, Willson, White & Fuqua, 1987) και την ευφυΐα ή δηµιουργικότητα (Marr& Sternberg, 1986). Ωστόσο δεν έχουν γίνει σε µεγάλο βαθµό προσπάθειες για τη διερεύνηση της ύπαρξης σχέσης ανάµεσα στα αριθµητικά και τα λεκτικά προβλήµατα αναλογίας, κάτι που θα αποτελέσει σκοπό αυτής της έρευνας. 2. Η Έρευνα Σκοπός της έρευνας- Ερωτήµατα Σκοπός της παρούσας εργασίας είναι να διερευνήσει την ύπαρξη σχέσης ανάµεσα στα αριθµητικά και στα λεκτικά προβλήµατα αναλογίας και να εξετάσει το εύρος των στρατηγικών που εφαρµόζουν οι Κύπριοι µαθητές Ε και Στ ηµοτικού σχολείου στα αριθµητικά αναλογικά προβλήµατα. Πιο συγκεκριµένα, τα ερωτήµατα της έρευνάς µας ήταν οι ακόλουθες: Ε1: Υπάρχει σχέση ανάµεσα στα αριθµητικά και στα λεκτικά προβλήµατα αναλογίας; Ε2: Ποιες στρατηγικές χρησιµοποιούν οι µαθητές όταν λύνουν αριθµητικά αναλογικά προβλήµατα άγνωστης ποσότητας και ποιες διαφοροποιήσεις υπάρχουν ανάλογα µε την τάξη; 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 57

4 Μ. Ηροδότου κ.ά. Υποκείµενα Υποκείµενα της έρευνας αποτέλεσαν 301 µαθητές της Ε τάξης και Στ τάξης διαφορετικών δηµοτικών σχολείων της Κύπρου. Συγκεκριµένα, το δείγµα της έρευνας αποτελούνταν από 139 µαθητές 10 ετών (Ε τάξη) και 162 µαθητές 11 ετών (Στ τάξη). Μέσα Συλλογής εδοµένων Για τη συλλογή των δεδοµένων χρησιµοποιήθηκε ένα δοκίµιο, το οποίο χορηγήθηκε και στους 301 µαθητές. Το δοκίµιο περιλάµβανε 8 διαφορετικά αναλογικά προβλήµατα (βλ. Παράρτηµα), τέσσερα αριθµητικά (άγνωστης ποσότητας) και τέσσερα λεκτικά προβλήµατα. Τα αριθµητικά προβλήµατα µπορούν να κατηγοριοποιηθούν ανάλογα µε τις σχέσεις των όρων τους. Το πρόβληµα 1 περιλαµβάνει ακέραιες πολλαπλασιαστικές σχέσεις «εντός» και «εκτός». Το πρόβληµα 2 περιλαµβάνει ακέραιες πολλαπλασιαστικές σχέσεις «εκτός». Το πρόβληµα αυτό ήταν παραλλαγή του προβλήµατος «onion soup» που χρησιµοποιήθηκε σε έρευνα των Hard et al. (1984). Το πρόβληµα 4 περιλαµβάνει ακέραιες πολλαπλασιαστικές σχέσεις «εντός», ενώ το πρόβληµα 3 δεν περιέχει ακέραιες πολλαπλασιαστικές σχέσεις ανάµεσα στους όρους του. Οι µαθητές για να βρουν την απάντηση σε κάθε πρόβληµα έπρεπε να συγκρίνουν τους λόγους που προκύπτουν από τα αριθµητικά δεδοµένα χρησιµοποιώντας ακέραιες «εντός» και «εκτός» σχέσεις ή άλλες αλγοριθµικές διαδικασίες. Ζητήθηκε επίσης να επεξηγήσουν τον τρόπο που χρησιµοποίησαν για την επίλυση κάθε προβλήµατος. Σκόπιµα οι αριθµοί που χρησιµοποιήθηκαν στα προβλήµατα ήταν σχετικά µικροί, αφού στόχος µας δεν ήταν οι πολύπλοκες αλγοριθµικές διαδικασίες από µέρους των παιδιών αλλά η µελέτη των στρατηγικών που θα χρησιµοποιούσαν. Τα λεκτικά προβλήµατα είχαν ως στόχο να εξετάσουν τον τρόπο µε τον οποίο σχετίζονται µεταξύ τους οι λέξεις της γλώσσας. Στο καθένα από τα προβλήµατα παρουσιάζονταν δύο ζευγάρια λέξεων και οι µαθητές καλούνταν να βρουν τη σχέση που υπάρχει ανάµεσα στις λέξεις του πρώτου ζευγαριού, ώστε να συµπληρώσουν τα κενά που υπήρχαν στο άλλο ζευγάρι. Για κάθε κενό δίνονταν τρεις εναλλακτικές λέξεις. Στα δύο πρώτα λεκτικά προβλήµατα, οι µαθητές έπρεπε να συµπληρώσουν τη δεύτερη λέξη του δεύτερου ζευγαριού, ενώ στα επόµενα δύο έπρεπε να συµπληρώσουν ολόκληρο το δεύτερο ζευγάρι. Μεταβλητές-Στατιστικές τεχνικές Οι απαντήσεις σε κάθε αριθµητικό πρόβληµα του δοκιµίου κωδικοποιήθηκαν ως εξής: Ορθή ή λανθασµένη απάντηση (Pa) Ορθή ή λανθασµένη εξήγηση (Pe) Το είδος της στρατηγικής (Sa,Sb,Sc,Sd,Se). Οι αριθµοί αυτοί αντιστοιχούν: Sa: Στη µέθοδο των τριών Sb: Στον παράγοντα αλλαγής Sc: Στην αναγωγή στη µονάδα Sd: Στην προσθετική στρατηγική (Λανθασµένη στρατηγική) Se: Στην επαναλαµβανόµενη πρόσθεση (building-up) 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 58

5 Επίλυση Προβληµάτων Αναλογίας Οι απαντήσεις σε κάθε λεκτικό πρόβληµα του δοκιµίου κωδικοποιήθηκαν ως εξής: Ορθή ή λανθασµένη απάντηση (Α) Έτσι, για παράδειγµα η µεταβλητή Pa1 αφορά την επίλυση του πρώτου αριθµητικού προβλήµατος, η µεταβλητή Sa2 αναφέρεται στην χρήση της µεθόδου των τριών στο δεύτερο αριθµητικό έργο, ενώ η µεταβλητή Α3, αναφέρεται στη συµπλήρωση του τρίτου λεκτικού αναλογικού προβλήµατος. Ως προς τη βαθµολόγηση, όλες οι µεταβλητές έπαιρναν τιµές 0 και 1. Έτσι, η σηµασία των τιµών διαµορφώθηκε ως εξής: για την επίλυση Λάθος:0, Σωστό:1, για την εξήγηση, Χωρίς/Λανθασµένη Εξήγηση:0, Ορθή Εξήγηση:1 και για τις στρατηγικές, Μη χρήση συγκεκριµένης στρατηγικής:0, Χρήση συγκεκριµένης στρατηγικής:1. Για τη στατιστική ανάλυση των δεδοµένων χρησιµοποιήθηκε το στατιστικό πακέτο SPSS (t-test, independent groups) και το πρόγραµµα CHIC (Bodin, Coutourier, & Grass, 2000) από το οποίο χρησιµοποιήθηκαν το συνεπαγωγικό διάγραµµα και το διάγραµµα οµοιότητας. Τα διαγράµµατα οµοιότητας παρουσιάζουν οµάδες µεταβλητών που δηµιουργούνται µε βάση οµοιότητες στις απαντήσεις των µαθητών σε αυτές τις µεταβλητές. Οι αλυσίδες συνεπαγωγής παρουσιάζουν συνεπαγωγές ανάµεσα στις διάφορες µεταβλητές της µορφής Α Β, όπου επιτυχία στην ερώτηση Α συνεπάγεται την επιτυχία στην ερώτηση Β. 3. Ποσοτική Ανάλυση των εδοµένων Ο δείκτης αξιοπιστίας του δοκιµίου ήταν ικανοποιητικός (a=0.656). Για το λόγο αυτό προχωρήσαµε σε περαιτέρω ανάλυση των δεδοµένων. Η επίδοση των µαθητών σε κάθε είδος προβλήµατος παρουσίασε διαφοροποιήσεις ως προς την τάξη (Πίνακας 1). Συγκεκριµένα η επίδοση των µαθητών της Στ τάξης ήταν πιο ψηλή σε όλα τα έργα του δοκιµίου, τόσο στα αριθµητικά προβλήµατα ( X Ε =0,42, X Στ =0,66) όσο και στα λεκτικά προβλήµατα ( X Ε =0,45, X Στ =0,58). Από τους µέσους όρους επιτυχίας στα αριθµητικά προβλήµατα φαίνεται ότι πιο δύσκολο έργο και για τις δυο τάξεις αποτέλεσε το πρόβληµα τρία ενώ πιο εύκολο το πρόβληµα ένα. Όσον αφορά τα λεκτικά προβλήµατα πιο δύσκολο ήταν το πρόβληµα δύο και για τις δύο τάξεις ενώ πιο εύκολο το πρόβληµα ένα. Μια πιο λεπτοµερής σύγκριση των επιδόσεων των µαθητών των δύο τάξεων, φανερώνει ότι υπάρχει στατιστικά σηµαντική διαφορά στην επίδοση των µαθητών στα αριθµητικά προβλήµατα (t=-6,57; p<0,01), µε τους µαθητές της Στ τάξης να είναι καλύτεροι από αυτούς της Ε τάξης. Η διαφορά στα λεκτικά προβλήµατα είναι εξίσου σηµαντική (t=- 4,06; p<0,01), αφού και πάλι παρατηρείται καλύτερη επίδοση στους µαθητές της Στ τάξης συγκριτικά µε τους µαθητές της Ε τάξης. Τα αποτελέσµατα αυτά µας επιτρέπουν να συµπεράνουµε ότι η επίδοση των µαθητών στα προβλήµατα του δοκιµίου εξαρτάται από την τάξη στην οποία φοιτούν οι µαθητές. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 59

6 Μ. Ηροδότου κ.ά. Πίνακας 1: Οι µέσοι όροι επιτυχίας στα οκτώ προβλήµατα του δοκιµίου Είδος Προβλήµατος Αριθµητικά Λεκτικά Πρόβληµα Ε Στ Ε Στ 1 0,80 0,84 0,78 0,81 2 0,30 0,62 0,27 0,35 3 0,26 0,53 0,35 0,54 4 0,32 0,65 0,38 0,61 Σύνολο 0,42 0,66 0,45 0,58 Οι στρατηγικές που χρησιµοποίησαν κυρίως οι µαθητές για την επίλυση των αριθµητικών προβληµάτων του δοκιµίου ήταν η µέθοδος των τριών, η εύρεση του παράγοντα αλλαγής, η αναγωγή στην µονάδα και η επαναλαµβανόµενη πρόσθεση (Πίνακας 2). Μια από τις λανθασµένες στρατηγικές που χρησιµοποιήθηκε από τους µαθητές είναι η προσθετική στρατηγική. Οι υπόλοιπες λανθασµένες στρατηγικές δεν κατηγοριοποιήθηκαν ξεχωριστά λόγω του χαµηλού ποσοστού εµφάνισης τους αλλά οµαδοποιήθηκαν στην κατηγορία «Άλλη λανθασµένη στρατηγική». Ξεχωριστή κατηγορία αποτέλεσε η απουσία στρατηγικής, στην οποία εντάχθηκαν οι απαντήσεις χωρίς επίδειξη συγκεκριµένης στρατηγικής και οι κενές απαντήσεις. Η µέθοδος των τριών χρησιµοποιείται σε µεγαλύτερο ποσοστό, σε όλα τα αριθµητικά προβλήµατα, από τους µαθητές της Στ τάξης ( X Ε =0,03, X Στ =0,25) ενώ οι υπόλοιπες στρατηγικές χρησιµοποιούνται στον ίδιο βαθµό από τους µαθητές και των δύο τάξεων. Η εύρεση του παράγοντα αλλαγής αποτελεί την πιο δηµοφιλή στρατηγική για τους µαθητές και των δύο τάξεων. Η στρατηγική αυτή παρατηρήθηκε κυρίως στο πρόβληµα 1, όπου οι ακέραιες σχέσεις που περιλάµβανε το πρόβληµα βοήθησαν τους µαθητές και των δύο τάξεων στην εύρεση του παράγοντα αλλαγής. Πρόβληµα Μέθοδος των τριών (Sa) Παράγ. Αλλαγής (Sb) Αναγωγή στη µονάδα (Sc) Στρατηγικές Επαναλ. Πρόσθεση (Se) Προσθετική Στρατηγική (Sd) Άλλη λανθασµένη στρατηγική Απουσία στρατηγικής Ε Στ Ε Στ Ε Στ Ε Στ Ε Στ Ε Στ Ε Στ 1 0,02 0,19 0,68 0,62-0,02-0,01 0,01 0,02 0,12 0,06 0,17 0,08 2 0,01 0,23 0,11 0,12 0,09 0,09 0,07 0, ,42 0,22 0,30 0,19 3 0,04 0,30 0,06 0,10 0,14 0,15 0,01 0,01 0,27 0,09 0,19 0,10 0,29 0,25 4 0,04 0,26 0,26 0,35 0,02 0,02 0,01 0,01 0,04 0,02 0,24 0,09 0,39 0,25 Σύνολο 0,03 0,25 0,28 0,30 0,06 0,07 0,02 0,05 0,08 0,03 0,24 0,25 0,29 0,19 Πίνακας 2: Οι µέσοι όροι χρήσης των στρατηγικών στα αριθµητικά προβλήµατα του δοκιµίου Η προσθετική στρατηγική παρατηρήθηκε σε σχετικά µεγάλο ποσοστό ( X =0,27) στο πρόβληµα 3 από τους µαθητές της Ε τάξης, κατάσταση που ίσως να οφείλεται στη δυσκολία που συνάντησαν στο συγκεκριµένο πρόβληµα, η οποία φαίνεται από το χαµηλό ΜΟ επιτυχίας του προβλήµατος. Οι περισσότεροι µαθητές της 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 60

7 Επίλυση Προβληµάτων Αναλογίας Στ τάξης που επίλυσαν το συγκεκριµένο πρόβληµα το έλυσαν µε τη χρήση της µεθόδου των τριών. Στο διάγραµµα οµοιότητας 1, παρουσιάζονται οι απαντήσεις που έδωσαν οι µαθητές της Ε τάξης σε όλα τα προβλήµατα του δοκιµίου και οι επεξηγήσεις τους στα αριθµητικά προβλήµατα αναλογίας. Με βάση τις απαντήσεις των µαθητών στα έργα αυτά, σχηµατίζονται δύο οµάδες οµοιότητας, ανεξάρτητες µεταξύ τους. Στην πρώτη οµάδα οµαδοποιούνται οι απαντήσεις και οι επεξηγήσεις των αριθµητικών αναλογικών προβληµάτων 1 και 4 µαζί µε το 3 ο λεκτικό πρόβληµα, ενώ η δεύτερη οµάδα αποτελείται από τα προβλήµατα και τις επεξηγήσεις των αριθµητικών προβληµάτων 1 και 4 µαζί µε τα λεκτικά προβλήµατα 1,2 και 4. Έτσι, φαίνεται ότι οι µαθητές αντιµετώπισαν τα προβλήµατα της πρώτης οµάδας διαφορετικά από τα προβλήµατα της δεύτερης οµάδας. Μεταξύ των οµάδων, φαίνεται να υπάρχει µια συστηµατικότητα στον τρόπο χειρισµού των έργων από τα παιδιά, όσον αφορά την παροχή επεξήγησης στα αριθµητικά προβλήµατα αναλογίας. Ειδικότερα, στην πρώτη οµάδα οµοιότητας, υπάρχει στατιστικά σηµαντική οµοιότητα σε επίπεδο 99% µεταξύ της απάντησης και επεξήγησης στο πρώτο λεκτικό αναλογικό πρόβληµα και της απάντησης και επεξήγησης στο τέταρτο λεκτικό αναλογικό πρόβληµα. Στη δεύτερη οµάδα οµοιότητας, υπάρχει στατιστικά σηµαντική οµοιότητα σε επίπεδο 99% µεταξύ της απάντησης και της επεξήγησης στο δεύτερο λεκτικό αναλογικό πρόβληµα, αφού φαίνεται ότι η παροχή επεξήγησης σχετίζεται άµεσα µε την ορθή επίλυση του συγκεκριµένου προβλήµατος. ιάγραµµα 1: ιάγραµµα οµοιότητας µεταξύ των απαντήσεων και επεξηγήσεων στα αριθµητικά προβλήµατα αναλογίας και των απαντήσεων στα λεκτικά προβλήµατα αναλογίας στην Ε τάξη Στο συνεπαγωγικό διάγραµµα 2, παρουσιάζονται οι απαντήσεις που έδωσαν οι µαθητές της Ε τάξης στα έργα του δοκιµίου, οι επεξηγήσεις και οι στρατηγικές τους στα αριθµητικά προβλήµατα. ηµιουργούνται πέντε αλυσίδες συνεπαγωγής. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 61

8 Μ. Ηροδότου κ.ά. Από τα λεκτικά αναλογικά προβλήµατα, µόνο τα προβλήµατα 1 και 3 σχετίζονται µε το αριθµητικό πρόβληµα 3 σε ποσοστό 90%. H παροχή εξήγησης σε κάθε αριθµητικό αναλογικό πρόβληµα, συνεπάγεται και την ορθή απάντηση σε κάθε ένα από αυτά (Pe i Pa i ). Σε κάθε αριθµητικό πρόβληµα, εκτός από το δεύτερο, η χρήση της στρατηγικής του παράγοντα αλλαγής συνεπάγεται και την ορθή επίλυση του προβλήµατος. (Sb i Pa i ). Στην περίπτωση του δεύτερου λεκτικού προβλήµατος, η χρήση της στρατηγικής της αναγωγής στη µονάδα, συνεπαγόταν την ορθή λύση του προβλήµατος (Sc 2 Pa 2 ). Η εφαρµογή της προσθετικής, άρα και λανθασµένης στρατηγικής στο πρόβληµα 4, συνεπάγεται και την εφαρµογή της για την επίλυση του προβλήµατος 3. Το ευκολότερο πρόβληµα για τους µαθητές της Ε τάξης, ήταν το πρώτο λεκτικό πρόβληµα, καθώς και πιο εύκολη ήταν η εφαρµογή της µεθόδου των τριών στο πρώτο αναλογικό πρόβληµα. ιάγραµµα 2: Συνεπαγωγικό ιάγραµµα ανάµεσα στις απαντήσεις που έδωσαν οι µαθητές της Ε τάξης στα έργα του δοκιµίου, τις επεξηγήσεις και τις στρατηγικές τους στα αριθµητικά προβλήµατα Στο διάγραµµα οµοιότητας 3 παρουσιάζονται οι απαντήσεις που έδωσαν οι µαθητές της Στ`τάξης σε όλα τα προβλήµατα του δοκιµίου και οι επεξηγήσεις τους στα αριθµητικά προβλήµατα αναλογίας. Με βάση τις απαντήσεις των παιδιών στα έργα αυτά, φαίνεται ότι σχηµατίζονται δύο οµάδες οµοιότητας. Στην πρώτη οµάδα οµαδοποιούνται οι απαντήσεις και οι επεξηγήσεις όλων των αριθµητικών προβληµάτων και η ορθή απάντηση στο δεύτερο λεκτικό πρόβληµα. Η δεύτερη οµάδα είναι εντελώς ανεξάρτητη από την πρώτη και αποτελείται από τα λεκτικά προβλήµατα 1, 3 και 4. Έτσι, φαίνεται ότι οι µαθητές αντιµετώπισαν µε διαφορετικό τρόπο τα αριθµητικά σε σχέση µε τα λεκτικά προβλήµατα αναλογίας, εκτός από την περίπτωση του προβλήµατος 2, το οποίο παρόλ αυτά έχει αδύνατη σχέση οµοιότητας µε το δεύτερο λεκτικό πρόβληµα. Μεταξύ της πρώτης οµάδας, φαίνεται να υπάρχει µια συστηµατικότητα στον τρόπο χειρισµού των αναλογικών προβληµάτων. Η απάντηση σε κάθε αριθµητικό πρόβληµα, οµαδοποιείται µε την εξήγηση στο αντίστοιχο πρόβληµα. Η πρώτη οµάδα, χωρίζεται σε 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 62

9 Επίλυση Προβληµάτων Αναλογίας δύο κλάδους οµοιότητας, µε τον πρώτο να περιλαµβάνει τις απαντήσεις και τις επεξηγήσεις στα αριθµητικά προβλήµατα αναλογίας 1,3 και 4 και το δεύτερο να περιλαµβάνει την απάντηση και την επεξήγηση στο δεύτερο αριθµητικό πρόβληµα και την απάντηση στο δεύτερο λεκτικό πρόβληµα. Ειδικότερα, υπάρχει στατιστικά σηµαντική οµοιότητα σε επίπεδο 99% ανάµεσα στον πρώτο και δεύτερο κλάδο. Στο δεύτερο κλάδο οµοιότητας, παρατηρείται στατιστικά σηµαντική οµοιότητα σε επίπεδο 99% ανάµεσα στην απάντηση και στην επεξήγηση του αριθµητικού προβλήµατος 2. Ο πρώτος κλάδος οµοιότητας, χωρίζεται σε δύο άλλες υποοµάδες, οι οποίες σχετίζονται πάλι σε επίπεδο 99%. Η πρώτη υποοµάδα αποτελείται από την απάντηση και την επεξήγηση στο αριθµητικό πρόβληµα 1 και από την απάντηση και επεξήγηση στο αριθµητικό πρόβληµα 4, παρουσιάζοντας στατιστικά σηµαντική οµοιότητα σε επίπεδο 99%. Η δεύτερη υποοµάδα του πρώτου κλάδου οµοιότητας, αποτελείται από την απάντηση και την επεξήγηση στο αριθµητικό πρόβληµα 3, όπου παρατηρείται στατιστικά σηµαντική οµοιότητα σε επίπεδο 99% µε την πρώτη υποοµάδα. α β γ 1 2 Α Β ιάγραµµα 3: ιάγραµµα οµοιότητας ανάµεσα στις απαντήσεις και επεξηγήσεις στα αριθµητικά προβλήµατα αναλογίας και στις απαντήσεις στα λεκτικά προβλήµατα αναλογίας στη Στ τάξη Στο συνεπαγωγικό διάγραµµα 4, παρουσιάζονται οι απαντήσεις που έδωσαν οι µαθητές της Στ τάξης στα έργα του δοκιµίου, οι επεξηγήσεις και οι στρατηγικές τους στα αριθµητικά προβλήµατα. ηµιουργούνται τέσσερις αλυσίδες συνεπαγωγής. Η χρήση της µεθόδου των τριών στα αριθµητικά προβλήµατα 1 και 2 συνεπάγεται τη χρήση της ίδιας στρατηγικής στο πρόβληµα 4 και κατά συνέπεια και στο πρόβληµα 3. Η χρήση αυτής της στρατηγικής συνεπάγεται την ορθή εξήγηση στα αριθµητικά προβλήµατα καθώς και την ορθή απάντηση σε αυτά. H παροχή εξήγησης σε κάθε αριθµητικό αναλογικό πρόβληµα, συνεπάγεται και την ορθή απάντηση σε κάθε ένα από αυτά (Pe i Pa i ), εκτός από το πρόβληµα 3. Από τα λεκτικά προβλήµατα, εµφανίζεται µόνο το πρόβληµα 2, το οποίο συνεπάγεται και την ορθή επίλυση στο αριθµητικό πρόβληµα 1. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 63

10 Μ. Ηροδότου κ.ά. ιάγραµµα 4: Συνεπαγωγικό ιάγραµµα ανάµεσα στις απαντήσεις που έδωσαν οι µαθητές της Στ τάξης στα έργα του δοκιµίου, τις επεξηγήσεις και τις στρατηγικές τους στα αριθµητικά προβλήµατα 4. Ποιοτική Ανάλυση των εδοµένων Όπως φάνηκε από την ποσοτική ανάλυση των δεδοµένων οι µαθητές χρησιµοποίησαν ποικιλία στρατηγικών για την επίλυση των αριθµητικών προβληµάτων αναλογίας. Στη συνέχεια παρουσιάζεται ένα παράδειγµα από κάθε ορθή στρατηγική καθώς και δείγµατα από τυπικές λανθασµένες στρατηγικές που εντοπίστηκαν στα δοκίµια των µαθητών. Ορθές στρατηγικές Όλα τα παραδείγµατα ορθών στρατηγικών που παρουσιάζουµε σκόπιµα αναφέρονται µόνο στο πρόβληµα 1, για να φανούν οι διάφορες στρατηγικές που µπορούν να χρησιµοποιηθούν για την επίλυση του ίδιου προβλήµατος. Στο πιο πάνω παράδειγµα, βλέπουµε ένα µαθητή της Στ ο οποίος χρησιµοποιεί τη µέθοδο των τριών για να βρει την απάντηση. Πρόκειται για πολλαπλασιαστική 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 64

11 Επίλυση Προβληµάτων Αναλογίας στρατηγική, που σύµφωνα µε τους Philippou και Christou (2001) είναι ένας µνηµονικός κανόνας για την επίλυση προβληµάτων αναλογίας και έρχεται σε αντίθεση µε τις άτυπες µεθόδους επίλυσης των µαθητών (Kaput & West, 1994). Στα σχολεία της Κύπρου, αποτελεί την τυπική σχολική προσέγγιση για την επίλυση τέτοιου είδους προβληµάτων και ενισχύεται και από τη χρήση του διαγράµµατος αναλογίας της Marshall (1995). Πιο πάνω παρουσιάζεται η στρατηγική του παράγοντα αλλαγής, όπως αυτή χρησιµοποιήθηκε από ένα µαθητή της Ε. Ειδικότερα, ο µαθητής εντοπίζει τη σχέση ανάµεσα σε αντίστοιχες ποσότητες διαφορετικού είδους («εκτός» σχέση κονσέρβες = κιλά x 3) και µετά εφαρµόζει τον παράγοντα αλλαγής (3) ανάµεσα στις ποσότητες του δεύτερου είδους. Ο µαθητής της Στ σε αυτό το παράδειγµα πάλι χρησιµοποίησε τη στρατηγική του παράγοντα αλλαγής, µε τη διαφορά τώρα ότι βρήκε την «εντός» σχέση ανάµεσα στα κιλά (διπλασιάζονται) και τη µετέφερε στις κονσέρβες για να λύσει το πρόβληµα. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 65

12 Μ. Ηροδότου κ.ά. Ο µαθητής της Στ χρησιµοποιεί την αναγωγή στη µονάδα για την επίλυση του προβλήµατος. Ουσιαστικά η µέθοδος της αναγωγής στη µονάδα βασίζεται στις διαδικασίες της επαναλαµβανόµενης πρόσθεσης ή αφαίρεσης µε τη διαφορά ότι η διαίρεση στη συγκεκριµένη περίπτωση, έχει την έννοια του µερισµού αντί της οµαδοποίησης (Παπαγεωργίου & Χρίστου, 1999). Στο πιο πάνω παράδειγµα, ο µαθητής της Στ έλυσε το πρόβληµα κάνοντας χρήση της επαναλαµβανόµενης πρόσθεση (building up). Αρχικά, αναγνωρίζονται και διακρίνονται οι δύο µετρικοί χώροι και τα αντίστοιχα σύνολα. Η διαδικασία που ακολουθείται, απαιτεί µια επαναλαµβανόµενη πράξη πρόσθεσης ή αφαίρεσης. Λανθασµένες στρατηγικές Παραδείγµατα λανθασµένης στρατηγικής στο πρόβληµα 1: Στη πιο πάνω περίπτωση παρατηρείται παρανόηση από µέρους τους µαθητή. Ενώ έχει εντοπίσει τον παράγοντα αλλαγής ανάµεσα στα κιλά και τις κονσέρβες του Κοκαλιάρη, αδυνατεί να µεταφέρει τον παράγοντα αυτό και στη σχέση κιλά-κονσέρβες του Λιχούδη. Σε αυτή την περίπτωση ο µαθητής βρίσκει τη σχέση που υπάρχει ανάµεσα στα κιλά των δύο σκύλων (6kg :2 = 3kg) και διαιρεί δια 2 και το άλλο αριθµητικό στοιχείο που του 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 66

13 Επίλυση Προβληµάτων Αναλογίας δίνει η άσκηση, δηλαδή το 9, χωρίς να λάβει υπόψη του σε ποιο σκύλο αναφέρεται η συγκεκριµένη ποσότητα κονσερβών. Παραδείγµατα λανθασµένης στρατηγικής στο πρόβληµα 2: Ο µαθητής στο πιο πάνω πρόβληµα βλέπουµε ότι χρησιµοποιεί µόνο τους δύο από τους τέσσερις όρους του προβλήµατος για να το επιλύσει, αγνοώντας ότι το πρόβληµα καθιστά σαφές ότι τα 2 αυγά απαιτούνται για 12 κρέπες, κατάσταση που δηλώνει ότι δεν έχει κατανοήσει την έννοια της αναλογίας. Επειδή το 54 δεν είναι ακέραιο πολλαπλάσιο του 12, ο µαθητής δεν µπορεί να βρει πόσα αυγά θα χρειαστεί ο µάγειρας για 54 κρέπες έχοντας µια συνταγή για 12. Έτσι προχωρά στο πλησιέστερο στο 54 πολλαπλάσιο του 12, που είναι το 60 και βρίσκει πόσα αυγά θα χρειαστούν για 60 κρέπες. Φαίνεται ότι χρησιµοποιεί τη στρατηγική παράγοντας αλλαγής και µάλιστα within. Συγκρίνει τις 12 κρέπες της συνταγής µε τις 60 που θα φτιάξει και βρίσκει ότι τα αυγά από 2 θα γίνουν 10. Παραδείγµατα λανθασµένης στρατηγικής στο πρόβληµα 3: Στα δύο πιο πάνω παραδείγµατα έγινε χρήση της προσθετικής στρατηγικής, µε αποτέλεσµα η µαθητές να οδηγηθούν σε λάθος αποτέλεσµα. Στην πρώτη περίπτωση ο µαθητής βρήκε τη διαφορά µεταξύ των αγωνισµάτων που κέρδισε η κίτρινη και η κόκκινη οµάδα και τη διαφορά αυτή τη µετέφερε στους βαθµούς της κίτρινης οµάδας έτσι ώστε να βρει τους βαθµούς της κόκκινης οµάδας. Κάτι ανάλογο έκανε και άλλος µαθητής στη δεύτερη περίπτωση, µε τη διαφορά ότι βρήκε τη συσχέτιση µεταξύ των 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 67

14 Μ. Ηροδότου κ.ά. αγωνισµάτων βαθµών της κίτρινης οµάδας και τη µετέφερε στα αγωνίσµατα της κόκκινης οµάδας. Ο µαθητής φτιάχνει ένα δικό του πίνακα µε συγκεκριµένα αγωνίσµατα και αναλύει τους 15 βαθµούς της κόκκινης οµάδας στα 6 αγωνίσµατα, χωρίς να φαίνεται να υπάρχει κάποια λογική στον τρόπο που χρησιµοποιεί. Έτσι οι βαθµοί που πήρε η κόκκινη οµάδα προέρχονται 3 από την µπάλα, 2 από την καλαθόσφαιρα, 4 από το χάντµπολ κλπ. Με το ίδιο σκεπτικό, δίνει στην κίτρινη οµάδα τους ίδιους βαθµούς µε την κόκκινη στα πρώτα 4 αγωνίσµατα που έβαλε στον πίνακα του, προσθέτει τους βαθµούς και βρίσκει 11. Παραδείγµατα λανθασµένης στρατηγικής στο πρόβληµα 4: Στην περίπτωση αυτή παρατηρείται πλήρης σύγχυση στο µυαλό του µαθητή για την έννοια της αναλογίας και απουσία κατανόησης του τι ζητά το πρόβληµα. Ο µαθητής προσθέτει όλα τα αριθµητικά στοιχεία του προβλήµατος, ακόµα και αυτά που αποτελούν επεξήγηση και επανάληψη προηγούµενων δεδοµένων του προβλήµατος. 5. Συµπεράσµατα Στην έρευνα αυτή έγινε προσπάθεια να διερευνηθεί η ύπαρξη σχέσης ανάµεσα στα αριθµητικά και λεκτικά προβλήµατα αναλογίας και να αναγνωριστούν οι στρατηγικές που χρησιµοποιούν οι µαθητές Ε και Στ τάξης όταν πρόκειται να λύσουν αριθµητικά προβλήµατα αναλογίας. Από την ανάλυση των δεδοµένων φάνηκε ότι η επίδοση των µαθητών της Στ τάξης ήταν πιο ψηλή σε όλα τα έργα του δοκιµίου, τόσο στα αριθµητικά προβλήµατα όσο και στα λεκτικά προβλήµατα κάτι το οποίο ήταν αναµενόµενο λόγω των αυξηµένων εµπειριών τους σε σχέση µε τους µαθητές της Ε τάξης. Το γεγονός αυτό ενισχύει την άποψη των Christou και Philippou (2001) ότι η επίδραση της σχολικής 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 68

15 Επίλυση Προβληµάτων Αναλογίας διδασκαλίας διαδραµατίζει καθοριστικό ρόλο στην ανάπτυξη της έννοιας της αναλογίας. Όσον αφορά τη χρήση στρατηγικών, οι µαθητές της Ε και Στ τάξης χρησιµοποίησαν σε µεγάλο βαθµό τη στρατηγική εύρεσης του παράγοντα αλλαγής για την επίλυση των αριθµητικών προβληµάτων. Παράλληλα οι µαθητές της Στ τάξης εφάρµοσαν σε πολλές περιπτώσεις τη µέθοδο των τριών αντίθετα µε το µικρό ποσοστό χρήσης της συγκεκριµένης στρατηγικής από τους µαθητές της Ε τάξης, κατάσταση που οφείλεται στη διδασκαλία της µεθόδου αυτής στην Στ τάξη. Αυτό φαίνεται και από τα παραδείγµατα λανθασµένων στρατηγικών στην ποιοτική ανάλυση. Τα µεγάλα ποσοστά χρήσης οποιασδήποτε λανθασµένης στρατηγικής φανερώνουν ότι οι µαθητές δεν έχουν ολοκληρωµένη αντίληψη των σχέσεων που διέπουν µια αναλογία. Τέλος, όσον αφορά τη σχέση ανάµεσα στα αριθµητικά και λεκτικά προβλήµατα αναλογίας, από τις απαντήσεις των µαθητών φάνηκε ότι τόσο οι µαθητές της Ε όσο και οι µαθητές της Στ τάξης, αντιµετωπίζουν διαφορετικά τα δυο είδη προβληµάτων. Για το λόγο αυτό, θεωρείται απαραίτητη η διεξαγωγή περαιτέρω έρευνας για διερεύνηση της σχέσης ανάµεσα στις επιδόσεις των µαθητών στα αριθµητικά και λεκτικά προβλήµατα αναλογίας. Είναι σηµαντικό οι µαθητές να έχουν εµπειρίες σε µεγάλο εύρος αναλογικών προβληµάτων ούτως ώστε να αντιλαµβάνονται την καταλληλότητα και τους περιορισµούς κάθε στρατηγικής. Επίσης δραστηριότητες όπως αυτές που χρησιµοποιήθηκαν στο δοκίµιο µπορούν να χρησιµοποιηθούν από τους εκπαιδευτικούς για να κατανοήσουν τα προβλήµατα που αντιµετωπίζουν οι µαθητές τους στα έργα αναλογίας και να διαµορφώσουν κατάλληλα τη διδασκαλία τους για καλύτερη κατανόηση της έννοιας της αναλογίας από τους µαθητές. ΑΝΑΦΟΡΕΣ Alexander, P.A., Willson, V.L., White, C.S., & Fuqua, J.D. (1987). Analogical reasoning in young children. Journal of Educational Psychology,79, Bart, W., Post, T., Behr, M., & Lesh, R. (1994). A diagnostic analysis of a proportional reasoning test item: an introduction to the properties of a semi-dense item. Focus on Learning Problems in Mathematics, 16, Ben-Chaim, D., Fey, J.T., Fitzgerald W.M., Benedetto, C., & Miller, J. (1998). Educational Studies in Mathematics, 36, Christou, C., & Philippou, G. (2002). Mapping and development of intuitive proportional thinking. Journal of Mathematical Behavior, 20, Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of exponential functions. Journal for Research in Mathematics Education, 26, ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 69

16 Μ. Ηροδότου κ.ά. Droujkova, M.A., & Berenson, S. (2003). Software design as a method of accessing students understanding. Retrieved from on 21 February, English, L.D., & Sharry, P. (1996). Analogical reasoning and the development of algebraic abstraction. Educational Studies in Mathematics, 30, Hart, K. M. (1984). Ratio: children s strategies and errors. Windsor: NFER-NELSON. Hart, K. M., Brown, M., & Küchemann, D. (1984). Chelsea diagnostic mathematics tests: ratio and proportion. Windsor: NFER-NELSON. Hoffer, A. (1988). Ratios and proportional thinking. In T.Post (Eds), Teaching Mathematics in Grades K-8: Research based methods (pp ). Boston: Allyn and Bacon. Inhelder, B. & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. Kaput, J., & Maxwell-West, M. (1994). Missing-value proportional reasoning problems: factors affecting informal reasoning patterns. In G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp ). Albany: State University of New York Press. Karplus, R., Pulos, S., & Stage, E. K. (1983). Proportional reasoning of early adolescents. In: R. Lesh, & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp ). New York: Academic Press. Lamon, S. (1993). Ratio and proportion: children s cognitive and metacognitive processes. In: T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational numbers. An integration of research (pp ). Hillsdale, NJ: Lawrence Erlbaum Associates. Lamon, S. (1994). Ratio and proportion: cognitive foundations in unitizing and norming. In: G. Harel, & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp ). Albany: State University of New York Press. Marr, D.B., & Sternberg, R.J. (1986). Analogical reasoning with novel concepts: Differential attention of intellectually gifted and nongifted children to relevant and nonrelevant novel stimuli. Cognitive Development, 1, Marshall, P. S. (1995). Schemas in Problem Solving Cambridge: Cambridge University Press. Misailidou, C., & Williams, J. (2003). Diagnostic assessment of children s proportional reasoning. Journal of Mathematical Behavior, 22, Nabors, W.K. (2003). From fractions to proportional reasoning: a cognitive schemes of operation approach. Journal of Mathematical Behavior,22, ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 70

17 Επίλυση Προβληµάτων Αναλογίας Nesher, P., & Sukenik, M. (1991). The effect of formal representation on the learning of ratio concepts. Cognition and Instruction, 1, Piaget, J., & Campbell, R.L. (2001). Studies in relfective abstraction. Philadelphia, PA: Taylor and Francis. Post, T. R., Behr, M. J., & Lesh, R. (1988). Proportionality and the development of prealgebra understanding. In A. Coxford and A. Schute (eds), The Ideas of Algebra, K 12,1988 Yearbook of the National Council of Teachers of Mathematics, Reston, VA.: The Council, pp Sternberg, R.J. (1977). İntelligence, information processing, and analogical reasoning: A compnential analysis of human abilities. Hillsdale, NJ: Lawrence Erlbaum Associate, Inc. Tourniaire, F., & Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16, Vosniadou, S.O. (1989). Similarity and analogical reasoning. Cambridge, NY: Cambridge University Press. Παπαγεωργίου, E., & Χρίστου, Κ. (1999). Στρατηγικές επίλυσης προβληµάτων αναλογίας. Στους Α. Κόλλιας, Α. Μαργετουσάκη, & Π. Μιχαηλίδης (Εκδ.), Πρακτικά του τέταρτου πανελλήνιου συνεδρίου διδακτικής των µαθηµατικώνπληροφορική στην εκπαίδευση (σ ). Ρέθυµνο: Ελλήν. ΠΑΡΑΡΤΗΜΑ ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ 1. Στην κατασκήνωση υπάρχουν δυο σκύλοι, ο Κοκαλιάρης και ο Λιχούδης. Τα σκυλιά τρώνε κονσέρβες σκυλοτροφής ανάλογα µε το βάρος τους. Ο Κοκαλιάρης είναι 3 κιλά και τρώει 9 κονσέρβες σκυλοτροφής. Ο Λιχούδης είναι 6 κιλά. Πόσες κονσέρβες σκυλοτροφής τρώει ο Λιχούδης; 2. Ο µάγειρας της κατασκήνωσης θα κατασκευάσει κρέπες για τα παιδιά. Στο βιβλίο µαγειρικής υπάρχει η ακόλουθη συνταγή για 12 κρέπες: 1 φλυντζάνι αλεύρι 2 αυγά 1 φλυντζάνι γάλα 1 κουταλιά της σούπας λάδι 2 κουταλιές της σούπας ζάχαρη 1 φακελάκι βανίλια Αν ο µάγειρας θέλει να φτιάξει 54 κρέπες, πόσα αυγά θα χρησιµοποιήσει; 3. Τα παιδιά στην κατασκήνωση έχουν χωριστεί σε οµάδες και διαγωνίζονται σε διάφορα αθλήµατα για το κύπελλο των «Μικρών Περιπατητών». Η Μαρία και ο Αλέκος, παρατηρούν τον πίνακα µε τη βαθµολογία κάθε οµάδας. Η Κίτρινη Οµάδα κέρδισε σε 6 αγωνίσµατα και έχει 15 βαθµούς. Η Κόκκινη Οµάδα κέρδισε σε 4 αγωνίσµατα. Ποια είναι η βαθµολογία της Κόκκινης Οµάδας; 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 71

18 Μ. Ηροδότου κ.ά. 4. Σε µια εξερεύνηση στο δάσος τα παιδιά χρησιµοποιούν ένα χάρτη. Η κλίµακα σε αυτό το χάρτη είναι 3 προς 80 (δηλαδή, 3 εκατοστά στο χάρτη είναι 80 εκατοστά στην πραγµατικότητα). Στο χάρτη υπάρχει ένα γεφύρι που έχει µήκος 12 εκατοστά. Πόσα εκατοστά είναι το γεφύρι στην πραγµατικότητα; ΛΕΚΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ 1. Κατασκηνωτής:Αντίσκηνο:: Πουλί: Σπηλιά Φωλιά Κλουβί 2. Πρόβατο:Μαλλί:: Κότα: Αυγά Πούπουλα Κρέας 3. Κρεβάτι : Ύπνος :: : Χαρτί Φαγητό Τραπέζι Βροχή Νερό Βιβλίο 4. Ψωµί:Μαχαίρι :: : Χαρτί Μελάνι Σεντόνι Ψαλίδι Ξύλο Ξυράφι 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 72

ΣΤΡΑΤΗΓΙΚΕΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΑΛΟΓΙΑΣ

ΣΤΡΑΤΗΓΙΚΕΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΑΛΟΓΙΑΣ ΣΤΡΑΤΗΓΙΚΕΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΑΝΑΛΟΓΙΑΣ Ελένη Παπαγεωργίου, edelpa@ucy.ac.cy Kωνσταντίνος Χρίστου Πανεπιστήμιο Κύπρου, Τμήμα Επιστημών της Αγωγής, Λευκωσία 1678, Τ.Κ. 20537 Λέξεις Κλειδιά: προβλήματα

Διαβάστε περισσότερα

Ένα Διαφορετικό Πλαίσιο Διδασκαλίας της Έννοιας της Αναλογίας

Ένα Διαφορετικό Πλαίσιο Διδασκαλίας της Έννοιας της Αναλογίας Ένα Διαφορετικό Πλαίσιο Διδασκαλίας της Έννοιας της Αναλογίας Μοδεστίνα Μοδέστου * & Αθανάσιος Γαγάτσης ** * Παιδαγωγικό Ινστιτούτο Κύπρου ** Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου Περίληψη Βασικός

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ

Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ Αναπαραστάσεις και Κατανόηση Συνόλων Ο ΡΟΛΟΣ ΤΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΣΥΝΟΛΩΝ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΩΝ ΤΟΥΣ Ειρήνη Αριστοτέλους, Χρυστάλλα Περικλέους, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών Αγωγής,

Διαβάστε περισσότερα

ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ

ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Οι εκπαιδευόμενοι χρειάζεται να δουν και να χρησιμοποιήσουν ποικίλα μοντέλα του κλάσματος, εστιάζοντας αρχικά στα οικία κλάσματα όπως είναι το μισό, τα τέταρτα, πέμπτα,

Διαβάστε περισσότερα

ΙΑΙΣΘΗΤΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΑΘΗΤΩΝ ΗΜΟΤΙΚΟΥ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΙΑΙΣΘΗΤΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΑΘΗΤΩΝ ΗΜΟΤΙΚΟΥ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ιαισθητικές Αντιλήψεις στην Έννοια της Πιθανότητας ΙΑΙΣΘΗΤΙΚΕΣ ΑΝΤΙΛΗΨΕΙΣ ΜΑΘΗΤΩΝ ΗΜΟΤΙΚΟΥ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Κώστας Κωνσταντίνου, Γεωργία Τάνου, Ιλιάδα Ηλία, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών

Διαβάστε περισσότερα

BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS

BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS Effandi Zakaria and Norulpaziana Musiran The Social Sciences, 2010, Vol. 5, Issue 4: 346-351 Στόχος της

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S

Διαβάστε περισσότερα

ΣΥΓΓΡΑΦΗ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ

ΣΥΓΓΡΑΦΗ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ ΣΥΓΓΡΑΦΗ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ Τίτλος Ονοματεπώνυμο συγγραφέα Πανεπιστήμιο Ονοματεπώνυμο δεύτερου (τρίτου κ.ο.κ.) συγγραφέα Πανεπιστήμιο Η κεφαλίδα (μπαίνει πάνω δεξιά σε κάθε σελίδα): περιγράφει το θέμα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

Γιαννάκης Βασιλειάδης, Γιώργος Σαββίδης, Μαίρη Κουτσελίνη Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ

Γιαννάκης Βασιλειάδης, Γιώργος Σαββίδης, Μαίρη Κουτσελίνη Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Αναγνωστικός Αλφαβητισµός σε Μαθητές Ε Τάξης ηµοτικού ΑΝΑΓΝΩΣΤΙΚΟΣ ΑΛΦΑΒΗΤΙΣΜΟΣ: ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΣΕ ΜΑΘΗΤΕΣ Ε ΤΑΞΗΣ ΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΣΕ ΣΥΝΕΧΟΜΕΝΑ ΚΑΙ ΜΗ ΣΥΝΕΧΟΜΕΝΑ ΚΕΙΜΕΝΑ ΠΟΥ ΠΕΡΙΛΑΜΒΑΝΟΝΤΑΙ ΣΤΑ ΝΕΑ

Διαβάστε περισσότερα

Μαθηματική αναλογική σκέψη στο Δημοτικό και Γυμνάσιο: Ένα πολυδιάστατο γνωστικό και μεταγνωστικό μοντέλο

Μαθηματική αναλογική σκέψη στο Δημοτικό και Γυμνάσιο: Ένα πολυδιάστατο γνωστικό και μεταγνωστικό μοντέλο Προβλήματα Μάθησης Των Μαθηματικών Κατά τη Μετάβαση από το Δημοτικό στο Γυμνάσιο 81-102, Νοέμβριος 2007 Μαθηματική αναλογική σκέψη στο Δημοτικό και Γυμνάσιο: Ένα πολυδιάστατο γνωστικό και μεταγνωστικό

Διαβάστε περισσότερα

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5.1. Οι γνώσεις υποψηφίων δασκάλων για την υπολογιστική εκτίμηση Σε μια έρευνα των Lemonidis

Διαβάστε περισσότερα

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind

Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Εκµάθηση προµαθηµατικών εννοιών για ΑµεΑ στο φάσµα του Αυτισµού µε το λογισµικό LT125-ThinkingMind Λαδιάς Αναστάσιος, Σχολικός Σύµβουλος Πληροφορικής Β Αθήνας Μπέλλου Ιωάννα, Σχολικός Σύµβουλος Πληροφορικής

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΚΑΙ ΕΥΕΛΙΞΙΑ ΤΩΝ ΜΑΘΗΤΩΝ Ε ΚΑΙ ΣΤ ΤΑΞΗΣ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ

ΚΑΤΑΝΟΗΣΗ ΚΑΙ ΕΥΕΛΙΞΙΑ ΤΩΝ ΜΑΘΗΤΩΝ Ε ΚΑΙ ΣΤ ΤΑΞΗΣ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ 1 ΚΑΤΑΝΟΗΣΗ ΚΑΙ ΕΥΕΛΙΞΙΑ ΤΩΝ ΜΑΘΗΤΩΝ Ε ΚΑΙ ΣΤ ΤΑΞΗΣ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ ΜΕ ΡΗΤΟΥΣ ΠΕΡΙΛΗΨΗ Χαράλαμπος Λεμονίδης, Ιωάννα Καϊάφα Πανεπιστήμιο Δυτικής Μακεδονίας xlemon@uowm.gr, j.kaiafa@windowslive.com Στην

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Φοιτητής: Σκαρπέντζος Γεώργιος Καθηγήτρια: Κολέζα Ευγενία ΠΕΡΙΕΧΟΜΕΝΑ Βασικές θεωρίες σχεδιασμού της διδασκαλίας Δραστηριότητες και κατανόηση εννοιών

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

Η ΙΚΑΝΟΤΗΤΑ ΚΑΤΑΣΚΕΥΗΣ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ Η ΣΧΕΣΗ ΤΗΣ ΜΕ ΤΗΝ ΕΠΙ ΟΣΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Περίληψη

Η ΙΚΑΝΟΤΗΤΑ ΚΑΤΑΣΚΕΥΗΣ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ Η ΣΧΕΣΗ ΤΗΣ ΜΕ ΤΗΝ ΕΠΙ ΟΣΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Περίληψη Η ΙΚΑΝΟΤΗΤΑ ΚΑΤΑΣΚΕΥΗΣ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΚΑΙ Η ΣΧΕΣΗ ΤΗΣ ΜΕ ΤΗΝ ΕΠΙ ΟΣΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ριάνα Θεοδούλου Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου, e-mail: rianath@hotmail.com Γεώργιος Φιλίππου

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΣΕ ΧΩΡΕΣ ΤΗΣ ΕΥΡΩΠΑΙΚΗΣ ΕΝΩΣΗΣ

ΕΡΕΥΝΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΣΕ ΧΩΡΕΣ ΤΗΣ ΕΥΡΩΠΑΙΚΗΣ ΕΝΩΣΗΣ «ΠΡΟΩΘΩΝΤΑΣ ΤΗΝ ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ: ΜΙΑ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΕΡΕΥΝΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΣΕ ΧΩΡΕΣ ΤΗΣ ΕΥΡΩΠΑΙΚΗΣ ΕΝΩΣΗΣ Χαράλαμπος Χαραλάμπους Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο

Διαβάστε περισσότερα

Δήμητρα Ρεμούνδου, Εργαστήριο Μαθηματικών, Διδακτικής και Πολυμέσων Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πανεπιστήμιο Αιγαίου

Δήμητρα Ρεμούνδου, Εργαστήριο Μαθηματικών, Διδακτικής και Πολυμέσων Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πανεπιστήμιο Αιγαίου H εισαγωγή «νέων» εννοιών στα Μαθηματικά του Δημοτικού. Μια υποχρέωση για επικαιροποίηση και ενημέρωση σύμφωνα με τις προκλήσεις του παρόντος και του μέλλοντος: Από τα κλάσματα στον ρυθμό μεταβολής. Δήμητρα

Διαβάστε περισσότερα

ανάπτυξη μαθηματικής σκέψης

ανάπτυξη μαθηματικής σκέψης ανάπτυξη μαθηματικής σκέψης (έννοιες, αντιλήψεις, αναπαραστάσεις) οργάνωση περιεχομένου μαθηματικών, εννοιολογικές αντιλήψεις στα μαθηματικά και στους μαθητές Μαρία Καλδρυμίδου θέματα οργάνωση περιεχομένου

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία

Διαβάστε περισσότερα

Επιστημολογικές πεποιθήσεις για τα μαθηματικά και επίδοση σε αριθμητικά έργα με το μηδέν

Επιστημολογικές πεποιθήσεις για τα μαθηματικά και επίδοση σε αριθμητικά έργα με το μηδέν Επιστημολογικές πεποιθήσεις για τα μαθηματικά και επίδοση σε αριθμητικά έργα με το μηδέν Σοφοκλέους Παρασκευή Πανεπιστήμιο Κύπρου & Φιλίππου Γιώργος Πανεπιστήμιο Κύπρου Περίληψη Σημαντικό μέρος της έρευνας

Διαβάστε περισσότερα

Η ΚΑΤΑΝΟΗΣΗ ΠΙΘΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΠΟ ΜΑΘΗΤΕΣ ΗΛΙΚΙΑΣ ΕΤΩΝ

Η ΚΑΤΑΝΟΗΣΗ ΠΙΘΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΠΟ ΜΑΘΗΤΕΣ ΗΛΙΚΙΑΣ ΕΤΩΝ Κατανόηση Πιθανοτήτων Η ΚΑΤΑΝΟΗΣΗ ΠΙΘΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΠΟ ΜΑΘΗΤΕΣ ΗΛΙΚΙΑΣ 11-12 ΕΤΩΝ Μαρία Αναστασίου, Ζωή Καουρή, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Ο βασικός

Διαβάστε περισσότερα

ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΤΗΣ ΣΤ ΗΜΟΤΙΚΟΥ

ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΤΗΣ ΣΤ ΗΜΟΤΙΚΟΥ Αναπαραστάσεις στη Στατιστική της ΣΤ ηµοτικού ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΤΗΣ ΣΤ ΗΜΟΤΙΚΟΥ Αθανάσιος Γαγάτσης, Αντρέας Κουσιάππας, Ελένη Κοιλιάρη Τµήµα Επιστηµών της Αγωγής-Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ Κάθε αναφορά απόψεις που προέρχεται από εξωτερικές πηγές -βιβλία, περιοδικά, ηλεκτρονικά αρχεία, πρέπει να επισημαίνεται, τόσο μέσα στο κείμενο όσο και στη βιβλιογραφία,

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Α ΣΥΝΕΔΡΙΟ ΕΝΩΣΗΣ ΕΡΕΥΝΗΤΩΝ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-ΑΘΗΝΑ 2005

Α ΣΥΝΕΔΡΙΟ ΕΝΩΣΗΣ ΕΡΕΥΝΗΤΩΝ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-ΑΘΗΝΑ 2005 Α ΣΥΝΕΔΡΙΟ ΕΝΩΣΗΣ ΕΡΕΥΝΗΤΩΝ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ-ΑΘΗΝΑ 2005 Η ικανότητα επίλυσης μαθηματικών προβλημάτων και η χρήση στρατηγικών από μαθητές Β δημοτικού ΕΛΕΝΑ ΠΑΝΑΓΙΔΟΥ, ΜΑΡΙΑ ΤΣΙΑΝΝΗ Πανεπιστήμιο

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Μαθησιακά στυλ και προτιµώµενες στρατηγικές λύσης προβληµάτων. Παναγιώτα Μεταλλίδου Πανεπιστήµιο Θεσσαλίας & Μαρία Πλατσίδου Πανεπιστήµιο Μακεδονίας

Μαθησιακά στυλ και προτιµώµενες στρατηγικές λύσης προβληµάτων. Παναγιώτα Μεταλλίδου Πανεπιστήµιο Θεσσαλίας & Μαρία Πλατσίδου Πανεπιστήµιο Μακεδονίας Μεταλλίδου, Π., & Πλατσίδου, Μ. (2004). Μαθησιακά στυλ και προτιµώµενες στρατηγικές λύσης προβληµάτων. Στο: Ν. Μακρής & εσλή,. (Επιµ.Εκδ.), Η γνωστική ψυχολογία σήµερα: Γέφυρες για τη µελέτη της νόησης

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ. ΤΕΙ Αθήνας & 2ης Περιφ. Νομαρχίας Αθήνας, e-mail : kapelou@rhodes.aegean.gr

ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ. ΤΕΙ Αθήνας & 2ης Περιφ. Νομαρχίας Αθήνας, e-mail : kapelou@rhodes.aegean.gr 95 ΣΥΓΚΡΙΣΗ ΤΩΝ ΠΡΟΤΑΣΕΩΝ ΠΡΟΣΕΓΓΙΣΗΣ ΤΟΥ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΣΕ ΣΥΓΧΡΟΝΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (NCTM & ΑΠΣ/ΔΕΠΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΚΑΙ ΠΡΩΤΟΣΧΟΛΙΚΗ ΒΑΘΜΙΔΑ ΚΑΠΕΛΟΥ ΚΑΤΕΡΙΝΑ ΤΕΙ Αθήνας &

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Ανασκόπηση Βιβλιογραφίας. Δρ. Ιωάννης Γκιόσος

Ανασκόπηση Βιβλιογραφίας. Δρ. Ιωάννης Γκιόσος Ανασκόπηση Βιβλιογραφίας Δρ. Ιωάννης Γκιόσος Γιατί κάνουμε ανασκόπηση στη βιβλιογραφία; 1. Γιαναπροσδιορίσουμεκενάστηνέρευνατου γνωστικού μας αντικειμένου 2. Για να εντοπίσουμε νέες τάσεις στην έρευνα

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Νοήματα που παράγονται κατά τη διαδικασία ισοδιαμέρισης ενός ορθογωνίου χρησιμοποιώντας εργαλεία μεταβολής

Νοήματα που παράγονται κατά τη διαδικασία ισοδιαμέρισης ενός ορθογωνίου χρησιμοποιώντας εργαλεία μεταβολής Νοήματα που παράγονται κατά τη διαδικασία ισοδιαμέρισης ενός ορθογωνίου χρησιμοποιώντας εργαλεία μεταβολής Ιωάννης Ζάντζος, Χρόνης Κυνηγός izantzos@math.uoa.gr, kynigos@ppp.uoa.gr Εθνικό και Καποδιστριακό

Διαβάστε περισσότερα

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009)

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) 1. Ταυτότητα της Έρευνας Το πρόβλημα του λειτουργικού αναλφαβητισμού στην Κύπρο στις ηλικίες των 12 με 15 χρόνων

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής

Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής 4.3. ΠΟΛΥΨΗΦΙΟΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΙ ΚΑΙ ΔΙΑΙΡΕΣΕΙΣ 4.3.. Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής Παρουσίαση δεδομένων από το αρχικό

Διαβάστε περισσότερα

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Κατηγορίες προβλημάτων - Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Κατηγορίες προβλημάτων - Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Κατηγορίες προβλημάτων - Ρεαλιστικά Μαθηματικά Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΟΠΤΙΚΗ ΑΝΤΙΛΗΨΗ, ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΑΝΑΛΟΓΙΑΣ ΚΑΙ ΟΙ ΕΝΝΟΙΕΣ ΤΗΣ ΠΕΡΙΜΕΤΡΟΥ ΚΑΙ ΤΟΥ ΕΜΒΑ ΟΥ

ΟΠΤΙΚΗ ΑΝΤΙΛΗΨΗ, ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΑΝΑΛΟΓΙΑΣ ΚΑΙ ΟΙ ΕΝΝΟΙΕΣ ΤΗΣ ΠΕΡΙΜΕΤΡΟΥ ΚΑΙ ΤΟΥ ΕΜΒΑ ΟΥ Η Ψευδαίσθηση της Αναλογίας ΟΠΤΙΚΗ ΑΝΤΙΛΗΨΗ, ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΑΝΑΛΟΓΙΑΣ ΚΑΙ ΟΙ ΕΝΝΟΙΕΣ ΤΗΣ ΠΕΡΙΜΕΤΡΟΥ ΚΑΙ ΤΟΥ ΕΜΒΑ ΟΥ Αθανάσιος Γαγάτσης, Γεώργιος Γεωργίου Γεώργιος Τούρβας, Ελευθερία Χαραλάµπους Τµήµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Υπεύθυνος καθηγητής Χαράλαμπος Λεμονίδης Μέντορας Γεώργιος Γεωργιόπουλος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Πρόσθεση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

Λογιστική Θεωρία και Έρευνα

Λογιστική Θεωρία και Έρευνα Μεταπτυχιακό Πρόγραμμα στη Λογιστική & Χρηματοοικονομική Master of Science (MSc) in Accounting and Finance ΤΕΙ ΠΕΙΡΑΙΑ Λογιστική Θεωρία και Έρευνα Εισαγωγή στη Λογιστική Έρευνα Η αναζήτηση της αλήθειας

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΕΚΠΑΙ ΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΕΚΠΑΙ ΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΠΡΟΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΕΚΠΑΙ ΕΥΤΙΚΗ ΑΞΙΟΛΟΗΣΗ Όνομα : εωργίου Ιακώβου Ελένη Ομάδα :ΛΕΥΑ1 Ειδικότητα :Μαθηματικός Αρ. Ταυτότητας :77876

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ

ΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ1.15 Αναπτύσσουν την έννοια του πολλαπλασιασμού ως αθροιστικής επανάληψης ίσων προσθετέων και διαισθητικά την έννοια της

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Η ΑΝΑΛΟΓΙΑ (f(x) = ax) ΩΣ ΕΠΙΣΤΗΜΟΛΟΓΙΚΟ ΕΜΠΟ ΙΟ;

Η ΑΝΑΛΟΓΙΑ (f(x) = ax) ΩΣ ΕΠΙΣΤΗΜΟΛΟΓΙΚΟ ΕΜΠΟ ΙΟ; Η Αναλογία (f(x) = ax) ως Επιστηµολογικό Εµπόδιο; Η ΑΝΑΛΟΓΙΑ (f(x) = ax) ΩΣ ΕΠΙΣΤΗΜΟΛΟΓΙΚΟ ΕΜΠΟ ΙΟ; Μοδεστίνα Μοδέστου Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Στο άρθρο αυτό γίνεται µια

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 415 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ Μεταφετζής Γιώργος Δάσκαλος, 1ο ΔΣ Βόλου gmetafetz@in.gr

Διαβάστε περισσότερα

ΜΙΑ ΕΙΚΟΝΑ ΑΞΙΖΕΙ ΧΙΛΙΕΣ ΛΕΞΕΙΣ...ΠΟΙΟ ΕΙ ΟΣ ΕΙΚΟΝΑΣ ΟΜΩΣ ΒΟΗΘΑ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ; Αθανάσιος Γαγάτσης. gagatsis@ucy.ac.

ΜΙΑ ΕΙΚΟΝΑ ΑΞΙΖΕΙ ΧΙΛΙΕΣ ΛΕΞΕΙΣ...ΠΟΙΟ ΕΙ ΟΣ ΕΙΚΟΝΑΣ ΟΜΩΣ ΒΟΗΘΑ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ; Αθανάσιος Γαγάτσης. gagatsis@ucy.ac. ΜΙΑ ΕΙΚΟΝΑ ΑΞΙΖΕΙ ΧΙΛΙΕΣ ΛΕΞΕΙΣ...ΠΟΙΟ ΕΙ ΟΣ ΕΙΚΟΝΑΣ ΟΜΩΣ ΒΟΗΘΑ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ; Ριάνα Θεοδούλου Πανεπιστήµιο Κύπρου Τµήµα Επιστηµών της Αγωγής Αθανάσιος Γαγάτσης Πανεπιστήµιο Κύπρου

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ PROJECT ΩΣ ΗΜΙΟΥΡΓΙΚΟ ΜΟΝΤΕΛΟ Ι ΑΣΚΑΛΙΑΣ

Η ΜΕΘΟ ΟΣ PROJECT ΩΣ ΗΜΙΟΥΡΓΙΚΟ ΜΟΝΤΕΛΟ Ι ΑΣΚΑΛΙΑΣ Η ΜΕΘΟ ΟΣ PROJECT ΩΣ ΗΜΙΟΥΡΓΙΚΟ ΜΟΝΤΕΛΟ Ι ΑΣΚΑΛΙΑΣ ΛΑΜΙΑ 26 /01/2013 Τσαρούχα Βικτωρία ΠΕ 06 ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Προγραµµατισµός και διεξαγωγή έρευνας 30% Περιεχόµενο ερευνητικής έκθεσης 30% Γλώσσα,

Διαβάστε περισσότερα

11. Καταχώρηση και ανάλυση δεδοµένων σε ειδικό στατιστικό λογισµικό (software)

11. Καταχώρηση και ανάλυση δεδοµένων σε ειδικό στατιστικό λογισµικό (software) 11. Καταχώρηση και ανάλυση δεδοµένων σε ειδικό στατιστικό λογισµικό (software) Σύνοψη Σ αυτό το κεφάλαιο γίνεται µία εισαγωγή για τον τρόπο εισαγωγής των δεδοµένων της έρευνας σε ειδικό στατιστικό λογισµικό

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση. «ΜΑΘΗΣΙΣ: Μία Ευφυής Διαδικτυακή Τάξη Άλγεβρας»

Εργαστηριακή εισήγηση. «ΜΑΘΗΣΙΣ: Μία Ευφυής Διαδικτυακή Τάξη Άλγεβρας» o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ Εργαστηριακή εισήγηση «ΜΑΘΗΣΙΣ: Μία Ευφυής Διαδικτυακή Τάξη Άλγεβρας» Δημήτριος Σκλαβάκης 1, Ιωάννης Ρεφανίδης 1 Μαθηματικός Υποψήφιος Διδάκτωρ, Τμήμα

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟ ΔΙΔΑΣΚΑΛΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΗ ΘΕΩΡΙΑ ΤΟΥ ΣΧΗΜΑΤΟΣ

ΜΟΝΤΕΛΟ ΔΙΔΑΣΚΑΛΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΗ ΘΕΩΡΙΑ ΤΟΥ ΣΧΗΜΑΤΟΣ ΜΟΝΤΕΛΟ ΔΙΔΑΣΚΑΛΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΗ ΘΕΩΡΙΑ ΤΟΥ ΣΧΗΜΑΤΟΣ Κωνσταντίνος Χρίστου, Επίκουρος Καθηγητής Γιώργος Φιλίππου, Αναπληρωτής Καθηγητής Διεύθυνση Επικοινωνίας: Κωνσταντίνος Χρίστου,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό

Διαβάστε περισσότερα

Η ΙΚΑΝΟΤΗΤΑ ΑΝΑΓΝΩΡΙΣΗΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΤΙΣ Γ - ΤΑΞΕΙΣ ΤΟΥ ΗΜΟΤΙΚΟΥ

Η ΙΚΑΝΟΤΗΤΑ ΑΝΑΓΝΩΡΙΣΗΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΤΙΣ Γ - ΤΑΞΕΙΣ ΤΟΥ ΗΜΟΤΙΚΟΥ Αναγνώριση και Κατασκευή Γεωµετρικών Σχηµάτων Η ΙΚΑΝΟΤΗΤΑ ΑΝΑΓΝΩΡΙΣΗΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΣΤΙΣ Γ - ΤΑΞΕΙΣ ΤΟΥ ΗΜΟΤΙΚΟΥ Ελένη Μιχαήλ, Κλεοπάτρα Μουσκή, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών

Διαβάστε περισσότερα

Περίγραμμα Εισηγήσεων

Περίγραμμα Εισηγήσεων Περίγραμμα Εισηγήσεων Τίτλος Μαθήματος: Αναπτυξιακή ψυχολογία Κωδικός Μαθήματος: 724 Διάλεξη 1 Εισαγωγή στην αναπτυξιακή ψυχολογία πρέπει να γνωρίζουν: τους στόχους και το αντικείμενο της Εξελικτικής Ψυχολογίας

Διαβάστε περισσότερα

(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού

(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού ΕΙΣΑΓΩΓΗ Τα Μαθηματικά της Φύσης και της Ζωής, που αναφέρονται στοn τίτλο του βιβλίου αυτού, αποτελούν την επωνυμία της ομάδας των επιστημόνων που εργάζονται για τον εκσυγχρονισμό της διδασκαλίας των μαθηματικών

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων 1. Οι ψηφιακές τεχνολογίες ως γνωστικά εργαλεία στην υποστήριξη της διδασκαλίας και της μάθηση

Διαβάστε περισσότερα

ΕΠΙΠΕ Α ΚΑΤΑΝΟΗΣΗΣ ΜΟΤΙΒΩΝ ΣΕ ΠΟΛΛΑΠΛΕΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΕ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΟΤΙΒΩΝ ΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΛΓΕΒΡΑ

ΕΠΙΠΕ Α ΚΑΤΑΝΟΗΣΗΣ ΜΟΤΙΒΩΝ ΣΕ ΠΟΛΛΑΠΛΕΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΕ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΟΤΙΒΩΝ ΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΛΓΕΒΡΑ Επίπεδα Κατανόησης Μοτίβων σε Πολλαπλές Αναπαραστάσεις ΕΠΙΠΕ Α ΚΑΤΑΝΟΗΣΗΣ ΜΟΤΙΒΩΝ ΣΕ ΠΟΛΛΑΠΛΕΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥΣ ΣΕ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΟΤΙΒΩΝ ΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΛΓΕΒΡΑ Λούκας Τσούκκας, Χρύσω

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

Εφαρμογές (apps) για εξάσκηση με τα κλάσματα σε επίπεδο Γ Δημοτικού

Εφαρμογές (apps) για εξάσκηση με τα κλάσματα σε επίπεδο Γ Δημοτικού Εφαρμογές (apps) για εξάσκηση με τα κλάσματα σε επίπεδο Γ Δημοτικού Fractions & Smart Pirates (δωρεάν) Ένα διαδραστικό παιχνίδι όπου οι μαθητές πρέπει να φέρουν εις πέρας δοκιμασίες που τους ανατίθενται.

Διαβάστε περισσότερα

Οι ικανότητες των μαθητών Στ δημοτικού σε ασκήσεις όγκου σύμφωνα με την τριαρχική θεωρία του Sternberg και η χρήση του λογισμικού DALEST

Οι ικανότητες των μαθητών Στ δημοτικού σε ασκήσεις όγκου σύμφωνα με την τριαρχική θεωρία του Sternberg και η χρήση του λογισμικού DALEST Οι ικανότητες των μαθητών Στ δημοτικού σε ασκήσεις όγκου σύμφωνα με την τριαρχική θεωρία του Sternberg και η χρήση του λογισμικού DALEST Καταλάνου Στυλιανή Πανεπιστήμιο Κύπρου & Σοφοκλέους Παρασκευή Πανεπιστήμιο

Διαβάστε περισσότερα

Η οµαδοποίηση των ζώων

Η οµαδοποίηση των ζώων ΣΧΕ ΙΟ ΜΑΘΗΜΑΤΟΣ Η οµαδοποίηση των ζώων ENOTHTA: Η οµαδοποίηση των ζώων ΜΑΘΗΜΑ: Επιστήµη ΤΑΞΗ: Β ΣΚΟΠΟΣ Οι µαθητές καλούνται να οργανώσουν µε βάση διαφορετικά κριτήρια κάθε φορά, πληροφορίες που είδη γνωρίζουν.

Διαβάστε περισσότερα

Ο ΠΙΟ ΑΞΙΟΘΑΥΜΑΣΤΟΣ ΔΑΣΚΑΛΟΣ ΜΟΥ

Ο ΠΙΟ ΑΞΙΟΘΑΥΜΑΣΤΟΣ ΔΑΣΚΑΛΟΣ ΜΟΥ Ο ΠΙΟ ΑΞΙΟΘΑΥΜΑΣΤΟΣ ΔΑΣΚΑΛΟΣ ΜΟΥ (MY MOST REMARKABLE TEACHER) Σκοπός Ο σκοπός αυτού του εργαλείου είναι να υποκινήσει τον αναστοχασμό στηριζόμενο στην προσωπική εμπειρία με τους εκπαιδευτικούς που κάθε

Διαβάστε περισσότερα

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών

Διαβάστε περισσότερα

Οι Διαστάσεις του Λειτουργικού Αναλφαβητισμού στην Κύπρο [Σχολική χρονιά ]

Οι Διαστάσεις του Λειτουργικού Αναλφαβητισμού στην Κύπρο [Σχολική χρονιά ] Οι Διαστάσεις του Λειτουργικού Αναλφαβητισμού στην Κύπρο [Σχολική χρονιά 2010-2011] 1. Ταυτότητα της Έρευνας Η έρευνα «Οι Διαστάσεις του Λειτουργικού Αναλφαβητισμού στην Κύπρο» διεξήχθη από το ΚΕΕΑ για

Διαβάστε περισσότερα

Η ΙΚΑΝΟΤΗΤΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗΣ ΣΤΗN ΕΠΙΛΥΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ

Η ΙΚΑΝΟΤΗΤΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗΣ ΣΤΗN ΕΠΙΛΥΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ Μοντελοποίηση και Λύση Προβλήµατος στα Μαθηµατικά Η ΙΚΑΝΟΤΗΤΑ ΜΟΝΤΕΛΟΠΟΙΗΣΗΣ ΣΤΗN ΕΠΙΛΥΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΒΛΗΜΑΤΟΣ Νίκος Μουσουλίδης, Μαρία Κάττου, Μάριος Πιττάλης, Κωνσταντίνος Χρίστου Τµήµα Επιστηµών

Διαβάστε περισσότερα

ΟΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΠΟΥ ΕΦΑΡΜΟΖΟΥΝ ΟΙ ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΤΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΥΓΡΟΠΟΙΗΣΗΣ

ΟΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΠΟΥ ΕΦΑΡΜΟΖΟΥΝ ΟΙ ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΤΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΦΑΙΝΟΜΕΝΩΝ ΕΞΑΤΜΙΣΗΣ ΚΑΙ ΥΓΡΟΠΟΙΗΣΗΣ Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Επιστημών Αγωγής Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Τομέας Θετικών Επιστημών ΟΙ ΔΙΔΑΚΤΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΠΟΥ ΕΦΑΡΜΟΖΟΥΝ ΟΙ ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΟΜΗΝΙΑ ΔΙΔΑΣΚΑΛΙΑΣ: 13/1/2009 ΣΧΟΛΕΙΟ: 2ο Πειραματικό Δημοτικό Σχολείο

Διαβάστε περισσότερα

ΓΙΑΤΙ ΟΙ ΜΑΘΗΤΕΣ ΥΣΚΟΛΕΥΟΝΤΑΙ ΣΤΑ ΚΛΑΣΜΑΤΑ;

ΓΙΑΤΙ ΟΙ ΜΑΘΗΤΕΣ ΥΣΚΟΛΕΥΟΝΤΑΙ ΣΤΑ ΚΛΑΣΜΑΤΑ; Γιατί οι Mαθητές υσκολεύονται στα Κλάσµατα; ΓΙΑΤΙ ΟΙ ΜΑΘΗΤΕΣ ΥΣΚΟΛΕΥΟΝΤΑΙ ΣΤΑ ΚΛΑΣΜΑΤΑ; Αθανάσιος Γαγάτσης, Κύπρος Ιωάννου, Ανδρούλα Σιηµητρά- Κωνσταντίνου, Όλγα Χριστοδουλίδου Τµήµα Επιστηµών της Αγωγής,

Διαβάστε περισσότερα

ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών

ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών 15 Μαΐου 2012 Τι είναι Εμπέδωση; ΠΡΙΝ Εξατομίκευση Θεραπευτική

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική

Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική Κεφάλαιο 15 Παραγοντική ανάλυση διακύµανσης 1 Παραγοντική ανάλυση διακύµανσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη των επιδράσεων περισσότερων από µια ανεξάρτητων µεταβλητών στην εξαρτηµένη καθώς

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Αξιολόγηση της ικανότητας επίλυσης προβλήµατος

Αξιολόγηση της ικανότητας επίλυσης προβλήµατος ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ MAΘHMA ΕΙΔΙΚΑ ΘΕΜΑΤΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

Διαβάστε περισσότερα

Οι Γνώσεις των Παιδαγωγών Προσχολικής Εκπαίδευσης, Σχετικά με τα Χαρακτηριστικά του Αυτισμού, και η Σημασία Αυτών.

Οι Γνώσεις των Παιδαγωγών Προσχολικής Εκπαίδευσης, Σχετικά με τα Χαρακτηριστικά του Αυτισμού, και η Σημασία Αυτών. Οι Γνώσεις των Παιδαγωγών Προσχολικής Εκπαίδευσης, Σχετικά με τα Χαρακτηριστικά του Αυτισμού, και η Σημασία Αυτών. Όνομα Φοιτήτριας: Βεκύρη Σοφία Επιβλέπουσα: Γιόκα Μαράνια BA (HONS) Early Childhood Studies

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

ΤΟ Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ ΣΕ ΠΑΙ ΙΑ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ ΚΑΙ Α ΤΑΞΗΣ ΗΜΟΤΙΚΟΥ

ΤΟ Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ ΣΕ ΠΑΙ ΙΑ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ ΚΑΙ Α ΤΑΞΗΣ ΗΜΟΤΙΚΟΥ ιδακτικό Συµβόλαιο και Παιδιά Προσχολικής Ηλικίας ΤΟ Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ ΣΕ ΠΑΙ ΙΑ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ ΚΑΙ Α ΤΑΞΗΣ ΗΜΟΤΙΚΟΥ Χρύσω Γεωργίου, Ελένη Ζαννέττου, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών Αγωγής, Πανεπιστήµιο

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 6: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιγραφική στατιστική ΕΡΩΤΗΜΑ ΑΠΑΝΤΗΣΗ Όλες

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΕΣ ΜΑΘΗΤΩΝ ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΣΤΟ ΘΕΜΑ ΤΗΣ ΜΕΤΑΦΟΡΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΣΥΜΠΕΡΙΦΟΡΕΣ ΜΑΘΗΤΩΝ ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΣΤΟ ΘΕΜΑ ΤΗΣ ΜΕΤΑΦΟΡΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Καβούζη, Ι., Μεσαρίτης, Γ., & Λεμονίδης, Χ., (2008). Συμπεριφορές μαθητών ΣΤ τάξης δημοτικού στο θέμα της μεταφοράς στα μαθηματικά. Πρακτικά 10 ου Παγκύπριου Συνεδρίου Μαθηματικής Παιδείας και Επιστήμης,

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 3: Δυο προσεγγίσεις που επηρεάζουν την εκπαιδευτική διαδικασία

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 3: Δυο προσεγγίσεις που επηρεάζουν την εκπαιδευτική διαδικασία Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 3: Δυο προσεγγίσεις που επηρεάζουν την εκπαιδευτική διαδικασία Νέο Πρόγραμμα iuσπcdcddccscsdcscsουδών Νηπιαγωγείου Διδάσκουσα: Μαρία Καμπεζά Τμήμα

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Εννοιολογική χαρτογράφηση. Τ. Α. Μικρόπουλος

Εννοιολογική χαρτογράφηση. Τ. Α. Μικρόπουλος Εννοιολογική χαρτογράφηση Τ. Α. Μικρόπουλος Οργάνωση γνώσης Η οργάνωση και η αναπαράσταση της γνώσης αποτελούν σημαντικούς παράγοντες για την οικοδόμηση νέας γνώσης. Η οργάνωση των εννοιών που αναφέρονται

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:

Διαβάστε περισσότερα

Γραμματισμός Κωφού Παιδιού:

Γραμματισμός Κωφού Παιδιού: Γραμματισμός Κωφού Παιδιού: Μοντέλα διδασκαλίας από κάτω προς τα επάνω Επιμέλεια: Βουλγαρίδου Μαρία, Εκπαιδευτικός Ειδικής Αγωγής Εισηγήτρια Πανεπιστημιακών Φροντιστηρίων Κολλίντζα 1 Σημασιολογικές δραστηριότητες

Διαβάστε περισσότερα

Οικοδόμηση εννοιών σχετικών με τα κλάσματα από παιδιά Δημοτικού με τη βοήθεια του λογισμικού ΚΟΜΜΑΤΙΑ ΚΑΙ ΟΛΟΚΛΗΡΑ

Οικοδόμηση εννοιών σχετικών με τα κλάσματα από παιδιά Δημοτικού με τη βοήθεια του λογισμικού ΚΟΜΜΑΤΙΑ ΚΑΙ ΟΛΟΚΛΗΡΑ Οικοδόμηση εννοιών σχετικών με τα κλάσματα από παιδιά Δημοτικού με τη βοήθεια του λογισμικού ΚΟΜΜΑΤΙΑ ΚΑΙ ΟΛΟΚΛΗΡΑ Χ. Σολομωνίδου Εισαγωγή Το εκπαιδευτικό λογισμικό πολυμέσων "Κομμάτια και Ολόκληρα" σχεδιάστηκε

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΟΣ ΚΑΙ ΜΗ ΑΝΑΛΟΓΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΣΕ ΜΑΘΗΤΕΣ ΜΕ ΣΥΜΠΤΩΜΑΤΑ ΥΣΛΕΞΙΑΣ

ΑΝΑΛΟΓΙΚΟΣ ΚΑΙ ΜΗ ΑΝΑΛΟΓΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΣΕ ΜΑΘΗΤΕΣ ΜΕ ΣΥΜΠΤΩΜΑΤΑ ΥΣΛΕΞΙΑΣ Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας ΑΝΑΛΟΓΙΚΟΣ ΚΑΙ ΜΗ ΑΝΑΛΟΓΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΣΕ ΜΑΘΗΤΕΣ ΜΕ ΣΥΜΠΤΩΜΑΤΑ ΥΣΛΕΞΙΑΣ Κυριακή Φράγκου, Χαράλαµπος Καψάλης, Αθανάσιος Γαγάτσης Τµήµα

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ ΤΟΥΣ ΣΤΗ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ ΤΟΥΣ ΣΤΗ ΤΡΙΤΟΒΑΘΜΙΑ ΕΚΠΑΙ ΕΥΣΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 17 ου Πανελληνίου Συνεδρίου Στατιστικής (2), σελ. 11-1 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΩΝ ΦΟΙΤΗΤΩΝ ΥΟ ΑΚΑ ΗΜΑΪΚΩΝ ΤΜΗΜΑΤΩΝ ΕΝΟΣ ΑΕΙ ΩΣ ΠΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΙΣΑΓΩΓΗΣ

Διαβάστε περισσότερα