ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΕΚΠΑΙ ΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ
|
|
- Ευστάθιος Λύκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΡΟΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΕΚΠΑΙ ΕΥΤΙΚΗ ΑΞΙΟΛΟΗΣΗ Όνομα : εωργίου Ιακώβου Ελένη Ομάδα :ΛΕΥΑ1 Ειδικότητα :Μαθηματικός Αρ. Ταυτότητας :77876 Μάθημα :Εκπαιδευτική Αξιολόγηση Καθηγητής :Κυριακίδης Λεωνίδας ΜΑΡΤΙΟΣ 006
2 ΚΑΤΑΣΚΕΥΗ ΟΚΙΜΙΟΥ ΑΞΙΟΛΟΗΣΗΣ 1. Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ Οι πιο κάτω διδακτικοί στόχοι έχουν οριστεί για την ενότητα ΑΝΑΛΥΣΗ ΠΟΛΥΩΝΥΜΟΥ ΣΕ ΙΝΟΜΕΝΟ ΠΑΡΑΟΝΤΩΝ Στόχοι :Ο μαθητής να είναι ικανός να αναλύει οποιοδήποτε πολυώνυμο σε γινόμενο παραγόντων χρησιμοποιώντας τη μέθοδο Α. Του κοινού παράγοντα. Β. Της ομαδοποίησης.. Της διαφοράς τετραγώνων.. Του αθροίσματος και της διαφοράς κύβων. Ε. Του τέλειου τετραγώνου Ζ. Του τριωνύμου Η. Της αλλαγής προσήμου σε παρένθεση. Θ. Συνδυασμός όλων των πιο πάνω σε πιο σύνθετες ασκήσεις. Ι. Να απλοποιεί οποιοδήποτε αλγεβρικό κλάσμα αναλύοντας τον αριθμητή και τον παρονομαστή σε γινόμενο παραγόντων. Ο χρόνος που αφιερώθηκε για τη διδασκαλία της ενότητας ήταν 14 περίοδοι των 45 λεπτών. Ως προς τα επίπεδα του γνωσιολογικού τομέα της πυραμίδας του Bloom κατανεμήθηκαν οι ασκήσεις με τον πιο κάτω τρόπο: 40% σε δραστηριότητες επιπέδου γνώσης 40% σε δραστηριότητες επιπέδου κατανόησης 0% σε δραστηριότητες επιπέδου εφαρμογής
3 . ΠΙΝΑΚΑΣ ΠΡΟ ΙΑΡΑΦΩΝ Ο πίνακας προδιαγραφών που ακολουθεί μας δίνει πληροφορίες για το πλήθος και τον αριθμό της κάθε ερώτησης σε σχέση με τις ενότητες και τα επίπεδα ταξινόμησης του Bloom που αντιπροσωπεύουν, γνώση, κατανόηση, εφαρμογή. Παρουσιάζεται επίσης και η σχέση μεταξύ των διδακτικών στόχων και τις ενότητες διδασκαλίας. ΝΩΣΗ: περιλαμβάνει υλικό το οποίο ο μαθητής ανακαλεί στη μνήμη του ή αναγνωρίζει τη μορφή που παρουσιάστηκε στη διδακτική ύλη. ΚΑΤΑΝΟΗΣΗ : αναφέρεται στην ικανότητα της βαθύτερης κατανόησης εκείνων των στοιχείων που ο μαθητής αποκόμισε από μια διαδικασία μάθησης. Με την αξιολόγηση σ αυτό το επίπεδο διαπιστώνεται αν ο μαθητής μπορεί να ερμηνεύσει τα στοιχεία που έχει διδαχθεί. ΕΦΑΡΜΟΗ : περιλαμβάνει διδακτικό υλικό στο οποίο χρειάζεται ο μαθητής να εφαρμόσει τις γνώσεις του σε νέες αλλά συγκεκριμένες καταστάσεις. ΣΤΟΧΟΙ ΝΩΣΗ ΚΑΤΑΝΟΗΣΗ ΕΦΑΡΜΟΗ Α 1α, 1γ β Β α 1β, δ 1δ Ε 1ζ Ζ 1ε Η γ Θ α,β γ, 6, 5 Ι 4α 4β,4γ
4 Λαμβάνοντας υπόψη τους διδακτικούς στόχους και τον πίνακα προδιαγραφών έγινε η κατασκευή του δοκιμίου αξιολόγησης με βάση τις πιο κάτω αρχές που πρέπει πάντοτε να λαμβάνονται υπόψη στη κατασκευή ενός δοκιμίου (το δοκίμιο φαίνεται στο παράρτημα ). Σαφήνεια στη διατύπωση των ερωτήσεων Το επίπεδο της τάξης Τη δυσκολία των ερωτήσεων Την έκταση και το χρόνο επίλυσης του δοκιμίου Το δοκίμιο αποτελείτε από 6 ασκήσεις των οποίων οι βαθμολογία φαίνεται στο παράρτημα..χορηηση ΟΚΙΜΙΟΥ Οι μαθητές είχαν προειδοποιηθεί από νωρίς (10 μέρες πιο πριν) για την ημερομηνία διεξαγωγής του διαγωνίσματος. Κατά τη χορήγηση του δοκιμίου στους μαθητές δεν παρουσιάστηκαν προβλήματα ή δυσκολίες. Το δοκίμιο ήταν αρκετά σαφές και δε δημιούργησε σοβαρές απορίες ή παρανοήσεις. 4. ΑΝΑΛΥΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΟΥ ΟΚΙΜΙΟΥ Το δοκίμιο δόθηκε σε δύο τμήματα της υμνασίου των 0 μαθητών το κάθε ένα. Μετά τη διόρθωση του δοκιμίου προέκυψαν οι πιο κάτω βαθμοί: 4, 10, 19.5, 1.5, 9,1.5, 19.75, 7, 7, 18.75, 8, 14, 17.5, 1.45, 8, 15.5, 16, 19.5, 0,18, 19.5, 10.5, 19.5, 1.5, 15.5, 18.5, 8.5, , 9.5, 0, 5.5, 14, 5.5, 19.75, 9.5,14.5,10.7, 1.4, 1.1,
5 Από τον πιο πάνω πίνακα φαίνεται ότι οι βαθμοί των μαθητών κυμαίνονται μεταξύ του 4 και του0. Η κατανομή των βαθμών των μαθητών φαίνεται στον πίνακα που ακολουθεί. ΒΑΘΜΟΙ ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ % Πέρα από την ανάλυση του δοκιμίου, ως ολότητα, θα πρέπει να γίνει και η ανάλυση των ερωτήσεων ξεχωριστά, για περισσότερες πληροφορίες σχετικά με το πόσο κατάλληλες ή ελαττωματικές ήταν οι ερωτήσεις. Η ανάλυση των
6 ερωτήσεων γίνεται με τη χρήση του δείκτη δυσκολίας και του δείκτη διάκρισης. Οι μαθητές ταξινομούνται ανάλογα τον βαθμό που έχουν πάρει, από το μεγαλύτερο μέχρι το μικρότερο και χωρίζονται σε τρεις ομάδες, όπου η ομάδα Α και η ομάδα πρέπει να είναι ισοδύναμες σε πλήθος. ΕΙΚΤΗΣ ΥΣΚΟΛΙΑΣ ΜΙΑΣ ΕΡΩΤΗΣΗΣ: Είναι ο δείκτης που πληροφορεί τον καθηγητή κατά πόσο μια ερώτηση είναι εύκολη ή δύσκολη. ΤΥΠΟΣ : = A NA R + + R N Οι ερωτήσεις είναι αποδεκτές, όταν ο δείκτης δυσκολίας βρίσκεται στο διάστημα [0,10-0,90]. : είκτης δυσκολίας. R A : Άθροισμα μονάδων ορθών απαντήσεων της Α ομάδας. R : Άθροισμα μονάδων ορθών απαντήσεων της ομάδας. N A : ( Πλήθος μαθητών της Α ομάδας ) Χ ( Μονάδες της άσκησης ) N : ( Πλήθος μαθητών της ομάδας ) Χ ( Μονάδες της άσκησης ) ΕΙΚΤΗΣ ΙΑΚΡΙΣΗΣ : Είναι ο δείκτης που πληροφορεί τον καθηγητή αν η συγκεκριμένη ερώτηση του δοκιμίου διακρίνει τους δυνατούς από τους αδύνατους μαθητές. ΤΥΠΟΣ : D = A R R N A Οι ερωτήσεις που έχουν δείκτη διάκρισης μέσα στο διάστημα [ 0,0-1,0 ] είναι αποδεκτές. Όσο μεγαλύτερος είναι ο δείκτης διάκρισης μιας ερώτησης, τόσο καλύτερα γίνεται η διάκριση μεταξύ δυνατών και αδύνατων μαθητών. D: είκτης διάκρισης.
7 R A : Άθροισμα μονάδων ορθών απαντήσεων της Α ομάδας. R : Άθροισμα μονάδων ορθών απαντήσεων της ομάδας. N A : Πλήθος μαθητών της Α ομάδας ( ή της ομάδας ) Χ Μονάδες άσκησης. 1,00 Δ 0,80 είκτης ιάκρισης 0,60 0,40 Α Β 0,0 0,00 0,00 0,10 0,0 0,0 0,40 0,50 0,60 0,70 0,80 0,90 1,00 είκτης υσκολίας Ο πίνακας που ακολουθεί παριστάνει αναλυτικά τη βαθμολογία των μαθητών από το μεγαλύτερο βαθμό στο μικρότερο. Βάση αυτού του πίνακα θα παρουσιαστούν αναλυτικά οι σχετικές πληροφορίες για το είκτη υσκολίας και το είκτη ιάκρισης. ΑΠΟΤΕΛΕΣΜΑΤΑ ΟΚΙΜΙΟΥ ****Ο ΠΙΝΑΚΑΣ ΜΕ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΟΚΙΜΙΟΥ ΙΝΕΤΑΙ ΣΤΟ ΠΑΡΑΡΤΗΜΑ**** Στον παρακάτω πίνακα παρουσιάζονται τα αποτελέσματα για το είκτη υσκολίας και το είκτη ιάκρισης.
8 ΑΣΚΗΣΗ 1α 1β 1γ 1δ 1ε 1ζ α β γ δ α β γ 4 α 4β 4γ 5 6 είκτης υσκολίας είκτης ιάκρισης Η ανάλυση των ασκήσεων, θεωρώ ότι είναι πολύ σημαντική διαδικασία γιατί μπορεί να βοηθήσει τον εκπαιδευτικό να βελτιώσει την τεχνική των διαγωνισμάτων για μελλοντική χρήση. Η ανάλυση των ασκήσεων δεν έδειξε ασκήσεις που κρίνονται ακατάλληλες εκτός από 1α, 1β,1ε οι οποίες είναι καλό αποφεύγονται. 5.ΕΙΣΗΗΣΕΙΣ ΙΑ ΒΕΛΤΙΩΣΗ ΤΟΥ ΟΚΙΜΙΟΥ Από τον πιο πάνω πίνακα φαίνεται ότι οι ερωτήσεις 1α, 1β, 1ε είναι εύκολες και καλό θα ήταν να αποφεύγονται σε τέτοια διαγωνίσματα ενότητας. Αυτό φαίνεται από το δείκτη δυσκολίας που είναι μεγάλος. Οι ασκήσεις 1α, 1β, α και 4α που έχουν μικρό δείκτη διάκρισης ( μικρότερο από 0. ) δεν κάνουν εύκολα τη διάκριση μεταξύ των καλών και των αδύνατων μαθητών.οι ασκήσεις δ, α, β, 4γ, 5, είναι ασκήσεις με ψηλό δείκτη διάκρισης και είναι καλές ασκήσεις που βοηθούν στη διάκριση του επιπέδου των μαθητών. ενικό συμπέρασμα είναι ότι το δοκίμιο έχει φέρει τα αναμενόμενα αποτελέσματα και έχει επιτύχει τους στόχους που έχουμε βάλει. Η ανάλυση των αποτελεσμάτων έχει για στόχο την ανατροφοδότηση για τη επίτευξη των στόχων της ενότητας. Αυτό φαίνεται ότι έχει επιτευχθεί σε σημαντικό βαθμό αφού τα αποτελέσματα ήταν αρκετά ικανοποιητικά και μέσα στα επιτρεπτά όρια. Ο είκτης υσκολίας κυμαίνεται μεταξύ και οι στόχοι έχουν επιτευχθεί κατά 50% με 80%. Από την ανάλυση φαίνεται επίσης ότι το δοκίμιο μπορεί να βελτιωθεί ακόμα περισσότερο για να έχουμε ακόμη καλύτερα αποτελέσματα. Οι μαθητές που έχουν γράψει κάτω από 7 είναι μόνο 6 στο σύνολο 4 μαθητών και από αυτούς οι δύο είναι άτομα με σοβαρά μαθησιακά προβλήματα.
9 Αυτό που πάντα ισχύει είναι η ανάγκη περισσότερης επανάληψης κάτι φυσικά που δεν γίνεται εφικτό λόγω πάντα έλλειψης χρόνου. Βέβαια, κάθε διαγώνισμα δίνει στον εκπαιδευτικό την δυνατότητα να αναγνωρίσει το επίπεδο του κάθε μαθητή και να προσπαθήσει να το βελτιώσει.
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαμορφωτική Αξιολόγηση του Μαθητή: Από τη Θεωρία στη Χάραξη Πολιτικής. Λεωνίδας Κυριακίδης, Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου
Διαμορφωτική Αξιολόγηση του Μαθητή: Από τη Θεωρία στη Χάραξη Πολιτικής Λεωνίδας Κυριακίδης, Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου 1 Δομή παρουσίασης Αξιολόγηση: Έννοια & Σημασία Σκοποί Αξιολόγησης
Σας εύχομαι καλή μελέτη και επιτυχία.
ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.
ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )
ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ
ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ 140 ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ Για την αξιολόγηση του µαθητή και της διδασκαλίας ενός µαθήµατος θα πρέπει να υπάρχει ένας συνολικός σχεδιασµός κατά ευρύτερη διδακτική ενότητα
Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη
Κατασκευή Μαθησιακών Στόχων και Κριτηρίων Επιτυχίας: Αξιολόγηση για Μάθηση στην Πράξη Μαργαρίτα Χριστοφορίδου 25 Απριλίου 2015 ΕΚΠΑΙΔΕΥΤΙΚΗ ΗΜΕΡΙΔΑ «ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ- ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ-ΠΡΑΚΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ»
Εργαλείο αναστοχασμού Νεοεισερχόμενων Εκπαιδευτικών για τη διδασκαλία τους
ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Πρόγραμμα Εισαγωγικής Επιμόρφωσης (Πρόγραμμα Επιμόρφωσης Μεντόρων) Το Έργο συγχρηματοδοτείται από το Ευρωπαϊκό Κοινωνικό Ταμείο (ΕΚΤ) κατά 85% και από εθνικούς πόρους
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΣΥΜΒΟΥΛΟΥ ΚΑΘΗΓΗΤΗ: ΑΚΑΔ. ΕΤΟΣ: ΠΑΡΑΤΗΡΗΣΕΙΣ ΟΝ/ΜΟ ΣΠΟΥΔΑΣΤΗ:... ΤΜΗΜΑ:
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΥΜΒΟΥΛΟΥ ΚΑΘΗΓΗΤΗ: ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΟΝ/ΜΟ ΣΠΟΥΔΑΣΤΗ:... ΤΜΗΜΑ: Β ΔΙΔΑΚΤΙΚΗ ΕΜΠΕΙΡΙΑ: ΕΠΑΣ ΜΑΘΗΤΕΙΑΣ ΟΑΕΔ ΕΙΔΟΣ ΔΙΔΑΣΚΑΛΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: 00/00/2017 ΟΝ/ΜΟ ΣΥΜΒΟΥΛΟΥ: ΜΑΘΗΜΑ: ΕΝΟΤΗΤΑ: ΤΑΞΗ:
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ
ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΕΠΙ ΟΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΟ 3ο ΚΑΙ ΤΟ 4ο ΚΕΦΑΛΑΙΟ ΤΗΣ ΑΛΓΕΒΡΑΣ Τα θέµατα που συνθέτουν τα σχέδια κριτηρίων που ακολουθούν αντλήθηκαν από τις ερωτήσεις του σχεδιασµού αξιολόγησης
Διαμορφωτική Αξιολόγηση στο μάθημα της Οικιακής Οικονομίας. Σεμινάρια Σεπτέμβρη 2016
Διαμορφωτική Αξιολόγηση στο μάθημα της Οικιακής Οικονομίας Σεμινάρια Σεπτέμβρη 2016 ΑΞΙΟΛΟΓΗΣΗ «Είναι μια συνεχής διαδικασία παρακολούθησης και ελέγχου του βαθμού επίτευξης των διδακτικών στόχων (δεικτών),
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0
3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς
,1-9,4 9, , , ,1 20
1 «ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ: ΠΑΡΑΤΗΡΗΣΕΙΣ-ΠΡΟΤΑΣΕΙΣ» ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΓΥΜΝΑΣΙΟ Οι Προαγωγικές και Απολυτήριες Εξετάσεις στο
ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ
1 ΠΡΟΑΓΩΓΙΚΕΣ ΚΑΙ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ Νομοθεσία. Παρατηρήσεις για τα θέματα των προαγωγικών και απολυτήριων εξετάσεων Γυμνασίων και Λυκείων, περιόδου Μαΐου- Ιουνίου 2008. Προτάσεις.
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού
Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1
Εργαλείο Διεξαγωγής Παρατηρήσεων σε τάξεις που διδάσκουν Νεοεισερχόμενοι Εκπαιδευτικοί
Τομέας Επιμόρφωσης, Παιδαγωγικό Ινστιτούτο Κύπρου Ονοματεπώνυμο Νεοεισερχόμενου: Ονοματεπώνυμο Μέντορα: Μάθημα: Εργαλείο Διεξαγωγής Παρατηρήσεων σε τάξεις που διδάσκουν Νεοεισερχόμενοι Εκπαιδευτικοί Ημερομηνία
Σχέδια μαθήματος Μαθηματικών Α ΕΠΑ.Λ. για τη συνδιδασκαλία
ο ΠΕ.Κ.Ε.Σ.ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ, 1ο, ο ΕΠΑ.Λ. ΡΟΔΟΥ Σχέδια μαθήματος Μαθηματικών Α ΕΠΑ.Λ. για τη συνδιδασκαλία Στο πλαίσιο της ΜΝΑΕ για τα ΕΠΑ.Λ. 1ο και ο ΕΠΑ.Λ. Ρόδου 018-019 ΠΡΟΛΟΓΟΣ Στη συνέχεια δίνονται
( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x
ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ
Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ. Παιδαγωγικό Ινστιτούτο Κύπρου
Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ Παιδαγωγικό Ινστιτούτο Κύπρου Προφίλ του Σχολείου Αριθμός Μαθητών: 397 Αριθμός Εκπαιδευτικών: 68 Αριθμός Τμημάτων: 20 Ιδιαίτερα χαρακτηριστικά της σχολικής μονάδας: 1. Αστικό σχολείο
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
Εργαλείο παρατήρησης μαθήματος
ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ Πρόγραμμα Εισαγωγικής Επιμόρφωσης (Πρόγραμμα Επιμόρφωσης Μεντόρων) Το Έργο συγχρηματοδοτείται από το Ευρωπαϊκό Κοινωνικό Ταμείο (ΕΚΤ) κατά 85% και από εθνικούς πόρους
Α1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ
Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία
ΘΕΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΚΑΤΑΣΚΕΥΗ ΕΡΩΤΗΣΕΩΝ. Άννα Κουκά
ΘΕΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΚΑΤΑΣΚΕΥΗ ΕΡΩΤΗΣΕΩΝ Άννα Κουκά Αξιολόγηση της επίδοσης των μαθητών. Μετρήσεις. Σημαντικές παρατηρήσεις Γενικός ορισμός με πρακτικά κριτήρια Αξιολόγηση είναι η απόδοση μιας ορισμένης
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα
Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.
Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ. Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου
Η ΠΟΙΟΤΗΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΤΟ ΔΥΝΑΜΙΚΟ ΜΟΝΤΕΛΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου ΕΙΣΑΓΩΓΗ Το Δυναμικό Μοντέλο Εκπαιδευτικής Αποτελεσματικότητας
αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και
1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα
1. Να λυθούν οι παρακάτω εξισώσεις : α. 3
. Να λυθούν οι παρακάτω εξισώσεις : α. 0 6 β. ( + ) + ( ) = ( + ) γ. ( + ) 4 = ( ) δ. ( 7) + = ε. ( ) + ( + 4)( 4) + 8 = ( + ) στ. ( 7) + = ζ. ( ) = ( )( 4) + 9. Ομοίως : α. ( + 5) (9 5) + 6 + 0 = 0 β.
Ρόδος, 26/04/2017. Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν.
Ρόδος, 26/04/2017 Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100
Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης
ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας
Δομές Δεδομένων. Τι είναι η δομή δεδομένων; Έστω η ακολουθία αριθμών: 8, 10,17,19,22,5,12 Λογικό Επίπεδο. Φυσικό Επίπεδο RAM. Ταξινομημένος.
Δομές Δεδομένων Τι είναι η δομή δεδομένων; Έστω η ακολουθία αριθμών: 8, 10,17,19,22,5,12 Λογικό Επίπεδο Φυσικό Επίπεδο RAM Πίνακας 8 10 17 19 22 Ταξινομημένος Πίνακας 5 8 10 12 17 Δένδρο 8 5 10 12 19 17
Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"
Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας
Αξιολόγηση του μαθητή για βελτίωση των μαθησιακών αποτελεσμάτων
Αξιολόγηση του μαθητή για βελτίωση των μαθησιακών αποτελεσμάτων Λεωνίδας Κυριακίδης Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου kyriakid@ucy.ac.cy Διήμερο Εκπαιδευτικού Μέσης Γενικής και Μέσης Τεχνικής
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. ΕΨΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Για την Γ' τάξη του Ενιαίου Λυκείου
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΨΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Για την Γ' τάξη του Ενιαίου Λυκείου ΑΘΗΝΑ 1999 ΕΦΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Βιβλίο Καθηγητή «ΕΦΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ» ΣΥΝΤΕΛΕΣΤΕΣ
Αναλυτικό Πρόγραμμα Μαθηματικών
Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,
Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
Διδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Διδακτικός Σχεδιασμός Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Στοιχείαδιδακτικής. Στόχοι μαθήματος φύλλα εργασίας ΒΙΟΛΟΓΙΑ. Γεωργάτου Μάνια ΣχολικήΣύμβουλοςΠΕ04
Στοιχείαδιδακτικής Στόχοι μαθήματος φύλλα εργασίας ΒΙΟΛΟΓΙΑ Γεωργάτου Μάνια ΣχολικήΣύμβουλοςΠΕ04 Βασικά χαρακτηριστικά ενός μαθήματος: Να έχει συγκεκριμένους και ξεκάθαρους στόχους. Ερώτηση: Τιδιδάσκω;
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ. Ρόδος, 07/05/2018. Αρ. Πρωτ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ
Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει
Α1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν. ΑΙΓΑΙΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Ν.ΔΩΔΕΚΑΝΗΣΟΥ Γ.ΜΑΥΡΟΥ 2, Τ.Κ. 85100 ΡΟΔΟΣ Τηλ. 2241364848 ΣΧΟΛΙΚΟΣ
Επιμόρφωση στους Δείκτες Επιτυχίας και Δείκτες Επάρκειας
Αναλυτικό Πρόγραμμα Πληροφορικής και Επιστήμης Ηλεκτρονικών Υπολογιστών Επιμόρφωση στους Δείκτες Επιτυχίας και Δείκτες Επάρκειας Νοέμβριος, 2015 1 Τι είναι Δείκτες Επιτυχίας Αναφέρονται στα Μαθησιακά Αποτελέσματα,
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
ΕΤΗΣΙΟ ΠΡΟΓΡΑΜΜΑ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ
ΕΤΗΣΙΟΠΡΟΓΡΑΜΜΑ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ (Ε.Π.ΠΑΙ.Κ.) Α.Σ.ΠΑΙ.Τ.Ε.ΒΟΛΟΥ 2012-2013 ΠΑΝΑΓΙΩΤΗΣ ΣΑΡΑΝΤΟΠΟΥΛΟΣ Σχολικός Σύµβουλος ΠΕ 04 ΗΑΞΙΟΛΟΓΗΣΗΤΗΣΕΚΠΑΙ ΕΥΣΗΣ καιτουεκπαι ΕΥΤΙΚΟΥΕΡΓΟΥ Αντικείµενα Σκοποί
4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:
4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις
Σχολή Πολιτικών Μηχανικών
Μάθημα ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι στόχοι του μαθήματος είναι σαφείς 492 4 3,81 1,8 1 5 Η ύλη που καλύφθηκε ανταποκρίνεται στους στόχους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Τάξη Τμήμα Διάρκεια: δ. ώρα/ες. Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών. Ποιοι τετράγωνοι αριθμοί υπάρχουν μέχρι το 100;
Φύλλο εργασίας Τάξη Τμήμα Διάρκεια: δ. ώρα/ες Ημερομηνία / / Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών Ομάδα 1 η Δραστηριότητα 1.1 Θυμάστε τους τετράγωνους αριθμούς; Ποιοι τετράγωνοι αριθμοί
Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει
Σ Χ Ε Ι Α Σ Μ Ο Σ Ι Α Κ Τ Ι Κ Ω Ν Π Α Ρ Ε Μ ΒΑ Σ Ε Ω Ν
1 Σ Χ Ε Ι Α Σ Μ Ο Σ Ι Α Κ Τ Ι Κ Ω Ν Π Α Ρ Ε Μ ΒΑ Σ Ε Ω Ν Σχεδιασµός διδασκαλίας Σχέδιο µαθήµατος Η επιστηµονική κατάρτιση είναι αναγκαία, αλλά όχι ικανή συνθήκη για αποτελεσµατική διδασκαλία, επειδή ο
e-mail@p-theodoropoulos.gr
Γραπτές ανακεφαλαιωτικές προαγωγικές και απολυτήριες εξετάσεις στα Μαθηµατικά Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος, ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Για τον υπολογισµό του βαθµού της
1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ
ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
ΑΞΙΟΛΟΓΗΣΗ. PDF created with pdffactory Pro trial version www.pdffactory.com
ΑΞΙΟΛΟΓΗΣΗ Στο τομέα της εκπαίδευσης η αξιολόγηση μπορεί να αναφέρεται στην επίδοση των μαθητών, στην αποτελεσματικότητα της διδασκαλίας ή της μαθησιακής διαδικασίας, στο αναλυτικό πρόγραμμα, στα διδακτικά
2ο video (επίλυση ανίσωσης 1 ου βαθμού)
2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα
ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή
Έκθεση σχετικά με τη λειτουργία του προγράμματος Ενισχυτικής Διδασκαλίας (Ε.Δ.)
Έκθεση σχετικά με τη λειτουργία του προγράμματος Ενισχυτικής Διδασκαλίας (Ε.Δ.) Σχολείο:. Ημερομηνία:. 1. Ποσοτικά δεδομένα Πρόκειται για τον αριθμό των διδακτικών που πραγματοποιήθηκαν ανά τμήμα και ανά
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Αξιολόγηση. Φ. Κ. Βώροs, «Αξιολόγηση του Μαθητή, και Παιδαγωγική Ευαισθησία (ή Αναλγησία)» 2. (www.voros.gr/paid/axiol.doc)
1 Αξιολόγηση Αξιολόγηση είναι η αποτίμηση του αποτελέσματος μιας προσπάθειας. Στην περίπτωση των μαθητών/τριών το εκτιμώμενο αποτέλεσμα αναφέρεται στις γνώσεις και δεξιότητες, που φέρεται να έχει κατακτήσει
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια, φίλε μαθητή, Το βιβλίο αυτό απευθύνεται στους μαθητές της Α Λυκείου που θέλουν ένα μεθοδικό και πλήρες βοήθημα στην Άλγεβρα. Το μάθημα αυτό αποτελεί τη γέφυρα ανάμεσα στο γυμνάσιο και το
a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:
Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
Θέμα: «Χαιρετισμός Σχολικής Συμβούλου Μαθηματικών» Αγαπητοί συνάδελφοι,
Πολύγυρος, 11/05/2016 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΧΑΛΚΙΔΙΚΗΣ Ταχ. Διεύθυνση
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ. ΕΙΔΙΚΗ ΔΙΔΑΚΤΙΚΗ (συντελεστής βαρύτητας 60%)
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2006 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 70 ΔΑΣΚΑΛΩΝ ΕΞΕΤΑΣΗ ΣΤΗ ΔΕΥΤΕΡΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Ειδική Διδακτική και Παιδαγωγικά Γενική
ΑΣΤΙΚΑ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΚΟΥΤΣΟΓΙΑΝΝΗΣ ΔΗΜΗΤΡΙΟΣ, ΝΙΚΟΛΑΟΣ
Ακ. έτος 212-213 Εαρινό εξάμηνο Page 1 of 16 Ακ. έτος 212-213 Εαρινό εξάμηνο ΕΝΟΤΗΤΑ: Χαρακτηριστικά φοιτητή Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Παρακολουθώ τακτικά
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Το ερωτηματολόγιο...
1 Η έρευνά μας... Έλαβε μέρος στο ΤΕΙ ΠΕΙΡΑΙΑ κατά το χειμερινό εξάμηνο 2012-2013 στο τμήμα Αυτοματισμού Έγινε σε εθελοντική - ανώνυμη βάση από τους φοιτητές. Το ερωτηματολόγιο μοιράστηκε κατά την 8 η
Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΧΑΡΑΛΑΜΠΟΠΟΥΛΟΣ ΑΝΤΩΝΙΟΣ, ΓΡΗΓΟΡΙΟΣ. Ακ. έτος Χειμερινό εξάμηνο
Ακ. έτος 214-215 Χειμερινό εξάμηνο Page 1 of 17 Ακ. έτος 214-215 Χειμερινό εξάμηνο ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι στόχοι του μαθήματος
ΠΑΡΑΡΤΗΜΑ 1: Έκθεση εκπαιδευτικού έργου Α μέρος: Μαθησιακή Εξέλιξη των Μαθητών (κοινό για όλα τα μαθήματα) ΕΚΘΕΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ Μάθημα:..
Α μέρος: Μαθησιακή Εξέλιξη των Μαθητών (κοινό για όλα τα μαθήματα) ΕΚΘΕΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ Μάθημα:.. Όνομα καθηγητή/ριας : Σχολείο &Τμήμα: Ημερομηνία: Ι. Μαθησιακή Εξέλιξη των Μαθητών/Ενισχυτική Διδασκαλία
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόμενος να επιλέξει την ορθή απάντηση από περιορισμένο αριθμό προτεινόμενων απαντήσεων ή να συσχετίσει μεταξύ
Σχολή Πολιτικών Μηχανικών. Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Χειμερινό εξαμήνο του ακ. έτους
Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Χειμερινό εξαμήνο του ακ. έτους 214-215 Μάθημα ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
Πρακτική Εφαρμογή του Ευρωπαϊκού Συστήματος Πιστωτικών Μονάδων στην Επαγγελματική Εκπαίδευση και Κατάρτιση (ECVET)
Πρακτική Εφαρμογή του Ευρωπαϊκού Συστήματος Περιγραφή ενός συγκεκριμένου μαθήματος (course) με τη μορφή Μαθησιακών Αποτελεσμάτων Μέρος 1 Ανδρέας Έλληνας 1 Πρακτική Εφαρμογή του Ευρωπαϊκού Συστήματος Πιστωτικών
Διδάσκων / Διδάσκουσα του μαθήματος
Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Εαρινό εξαμήνο του ακ. έτους 12-13 ΕΝΟΤΗΤΑ: Διδάσκων / Διδάσκουσα του μαθήματος Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη
Θεσσαλονίκη: 8-11-2013 Αριθµ. Πρωτ.: 1492 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΙΕΥΘΥΝΣΗ Α/ΘΜΙΑΣ & Β/ΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ ΕΥΤΕΡΟΒΑΘΜΙΑΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...