Σταυρούλα Πατσιομίτου Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr. Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων"

Transcript

1 Σταυρούλα Πατσιομίτου Τάξη: Γ Γυμνασίου A Λυκείου Μάθημα : Άλγεβρα Διδακτική ενότητα: Αξιοσημείωτες Ταυτότητες, Παραγοντοποίηση αλγεβρικών παραστάσεων Εισαγωγή Σενάριο : Μοντελοποίηση ταυτοτήτων σε στατικά και δυναμικά μέσα παραγοντοποίηση πολυωνύμων (When I listen, I hear. When I see, I remember. But when I do, then I understand.) Οι γεωμετρικές αναπαραστάσεις των ταυτοτήτων είναι μια μέθοδος που χρησιμοποιείται από την αρχαιότητα για την επεξεργασία και κατανόηση των σχετικών αλγεβρικών εννοιών. Όπως αναφέρει ο Ε. Σταμάτης «Το ΙΙ βιβλίο των Στοιχείων του Ευκλείδη.περιέχει την εφαρμογή της γεωμετρίας στην Άλγεβρα και αποδίδεται κατά το μέγιστο στους Πυθαγορείους. Τα πρώτα 10 θεωρήματα αφορούν εις αλγεβρικάς ταυτότητας, τας οποίας δυνάμεθα να παραστήσωμεν ως ακολούθως αν δια των γραμμάτων α,β,γ, νοήσωμεν τμήματα ευθειών γραμμών»

2 Πολλές έρευνες έχουν αποδείξει ότι η χρήση υλικών για τη κατανόηση των εννοιών έχει σημαντική επίδραση στην κατανόηση τους από τους μαθητές (π.χ, Η Dina van Hiele Gelfolf σύμφωνα με τις περιγραφές που αναφέρονται με ακρίβεια από τους Fuys,Geddes &Tischler (1988), χρησιμοποίησε tiles (manipulatives) κατά τις έρευνες που διεξήγαγε στην διάρκεια του διδακτορικού της). Η σύγχρονη μοντελοποίηση με χρήση των αλγεβρικών δομικών μονάδων (algebra tiles) έχει διευκολύνει την κατανόηση των εννοιών της πρόσθεσης ομοσήμων, ετεροσήμων αριθμών, την αναγωγή ομοίων όρων σε πολυώνυμα, αλλά και την παραγοντοποίηση πολυωνύμων. ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Θέμα: Η μοντελοποίηση της ταυτότητας (α+β) 2, α 2 -β 2,(α+β) 3 Το σενάριο επιχειρεί να συνδέσει το γνωστικό πεδίο της γεωμετρίας και της άλγεβρας. Οι μαθητές θα ανασχηματίσουν τα ψηφιακά τεχνουργήματα στην οθόνη του υπολογιστή αξιοποιώντας τις δυνατότητες που παρέχει το λογισμικό δυναμικής γεωμετρίας και θα μοντελοποιήσουν στην οθόνη γεωμετρικά, την αλγεβρική ταυτότητα. Ευρύτερος στόχος είναι η σύνδεση της εννοιολογικής γνώσης με την διαδικαστική. Δηλαδή, πως οι μαθητές από τον διαδικαστικό χειρισμό των τεχνουργημάτων (στατικών ή ψηφιακών) θα οδηγηθούν στην εννοιολογική κατανόηση. Ακόμα, στην ανάπτυξη της ικανότητας μετάφρασης της οπτικής εικονικής αναπαράστασης της έννοιας, στην λεκτική και συμβολική μορφή της έννοιας. Δηλαδή, οι μαθητές θα αναγνωρίσουν οπτικά τη γεωμετρική μορφή της ταυτότητας και θα μεταφράσουν την εικονική αναπαράσταση σε λεκτική και συμβολική, εφαρμόζοντας διαδικαστικά το κατάλληλο θεώρημα για τη λύση του προβλήματος. Η κατανόηση των εννοιών θα επιτευχθεί σε αλληλεπίδραση με στατικά (π.χ. κατασκευή ταυτοτήτων από τους μαθητές με χαρτόνι) και δυναμικά μέσα (π.χ περιβάλλον λογισμικού δυναμικής γεωμετρίας)

3 Διδακτικοί στόχοι: Οι στόχοι της διδασκαλίας με την προαναφερόμενη διδακτική προσέγγιση καθορίστηκαν ως ακολούθως: Μέσα από τις διαφορετικές σελίδες του λογισμικού οι μαθητές θα διερευνήσουν την ισότητα των δυο μελών στην ταυτότητα, ως αποτέλεσμα του αθροίσματος των εμβαδών των σχημάτων θα υπερβούν σημαντικά διδακτικά επιστημολογικά εμπόδια τα οποία εκδηλώνονται ως λάθη που συνήθως παρατηρούνται κατά την εισαγωγή των εννοιών μέσω φορμαλιστικών διαδικασιών: για παράδειγμα ότι (α+β) 2 = α 2 +β 2 θα τους δοθεί η δυνατότητα να σχηματίσουν γεωμετρικά την αλγεβρική ταυτότητα και να συνδέσουν την άλγεβρα με την γεωμετρία. Έτσι, θα κατανοήσουν ότι τα μαθηματικά έχουν νόημα στον πραγματικό κόσμο. θα παίξουν και οδηγηθούν μέσα από το παιχνίδι, στην κατανόηση των εννοιών. Διδακτική προσέγγιση Προτείνεται ιστορική πλαισίωση από το αρχαίο κείμενο των Στοιχείων του Ευκλείδη παρουσίαση του μεταγλωττισμένου από τη διδάσκουσα ppt a_tiles.ppt παρουσίαση και επεξεργασία έτοιμων υλικών σχετικών με αυτά που προτείνονται στο λογισμικό The Geometer s Sketchpad (Jackiw,1988) (για παράδειγμα χάρτινων τετραγώνων με διαφορετικά χρώματα), προκειμένου οι μαθητές να χειριστούν τα υλικά και να κατασκευάσουν με αυτά τις δικές τους κατασκευές, εικόνες και σύμβολα στη συνέχεια. διδασκαλία των ταυτοτήτων στη τάξη - 3 -

4 Ως δραστηριότητα προτείνεται η κατασκευή σχημάτων που αναπαριστάνουν ταυτότητες, τριώνυμα, η κατασκευή της ταυτότητας ( α+β) 3 με κατασκευή κύβου ακμών α+β (συναρμολογούμενης), έτσι ώστε το κατασκευαστικό αποτέλεσμα να προκύπτει ως άθροισμα των επιμέρους σχημάτων παραλληλεπιπέδων και κύβων. Οργάνωση της διδασκαλίας Η διδασκαλία με χρήση του λογισμικού δυναμικής γεωμετρίας πραγματοποιήθηκε με το τμήμα Γ3 της Γ τάξης του 1 ου Πρότυπου Πειραματικού Γυμνασίου Αθηνών στη βιβλιοθήκη του σχολείου και είχε διάρκεια μιας ώρας, καθώς και στο περιβάλλον της τάξης κατά τις ημερομηνίες που αναφέρονται στο βιβλίο ύλης του τμήματος. Η διδάσκουσα κατασκεύασε και στη συνέχεια χρησιμοποίησε σε συνεργασία με τους μαθητές ένα ημιπροσχεδιασμένο αρχείο πολλαπλών σελίδων λογισμικού δυναμικής γεωμετρίας, εννοιολογικά και διαδικαστικά συνδεδεμένων μεταξύ τους. Οι μαθητές και η διδάσκουσα χρησιμοποίησαν τον διαδραστικό πίνακα της αίθουσας και οι πρώτοι απάντησαν σε φύλλο εργασίας τα ερωτήματα που τέθηκαν παράλληλα με την αλληλεπίδραση με το αρχείο του λογισμικού. Περιγραφή του αρχείου του λογισμικού δυναμικής γεωμετρίας Geometer s Sketchpad 1η σελίδα του λογισμικού Τα σχήματα των τετραγώνων και ορθογωνίων παρέχονται σε τυχαία θέση στην οθόνη και οι μαθητές θα ανακαλύψουν μέσω του συρσίματος το σωστό προσανατολισμό τους, ώστε να κατασκευάσουν την μορφή της ταυτότητας. Για το λόγο αυτό η διδάσκουσα είχε σχεδιάσει τις δραστηριότητες, προβλέποντας την δυνατότητα αλλαγής του προσανατολισμού τους, όταν σύρονται από σημείο - κορυφή του κάθε σχήματος

5 Σχήμα 1 Σχήμα 2 2η σελίδα Περιλαμβάνει την κατασκευή δυο τετραγώνων των οποίων οι διαστάσεις α, β είναι αλληλοεξαρτώμενες, αφού έχει προβλεφθεί το σύρσιμο του τμήματος β να μην υπερβαίνει το τμήμα α

6 Σχήμα 3 Σχήμα 4 Σχήμα 5 3η σελίδα Η τοποθέτηση του τετραγώνου με πλευρά β επί του τετραγώνου με πλευρά α (β α), οδηγεί τους μαθητές στην οπτική αντίληψη της διαφοράς των δυο τετραγώνων. Σχήμα 6 Στη συνέχεια οι μαθητές θα υπολογίσουν το εμβαδόν του σχήματος που υπολείπεται με διαχωρισμό των εμβαδών των δυο ορθογωνίων που σχηματίζονται. Η απόκρυψη του ορθογωνίου με διαστάσεις α-β, β και η εμφάνιση του με περιστροφή σε κατακόρυφη θέση, και στη θέση από ανάκλαση του κατακόρυφου ορθογωνίου, καθοδηγεί τους μαθητές να μετασχηματίσουν οπτικά το εμβαδόν του υπολοίπου σχήματος και να οδηγηθούν στην οπτική αποδεικτική διαδικασία

7 Σχήμα 7 4η σελίδα Η διαδικασία επαναλαμβάνεται στην επόμενη σελίδα στην οποία οι μαθητές έχουν την δυνατότητα να προσθέσουν κίνηση στο σημείο Ρ και να παρατηρήσουν τον μετασχηματισμό των σχημάτων, αλλά και πως μεταβάλλεται το εμβαδόν του υπολοίπου σχήματος (αφαιρουμένων των εμβαδών των δυο τετραγώνων). 5η σελίδα Στη συνέχεια οι μαθητές θα παραγοντοποιήσουν ένα τριώνυμο (π.χ το x 2 + 8x + 15), σύροντας και ανατοποθετώντας τα ψηφιακά τεχνουργήματα στην οθόνη, όπως φαίνεται στο σχήμα 9 κάτω. Σχήμα 8 Σχήμα 9-7 -

8 Για πιο σύνθετες μοντελοποιήσεις αλγεβρικών παραστάσεων οι μαθητές θα αλληλεπιδράσουν με τις «αλγεβρικές δομικές μονάδες» του λογισμικού μέσω των οποίων δίνεται η δυνατότητα γεωμετρικών αναπαραστάσεων μαθηματικών αντικειμένων με μορφή custom tools (εργαλείων προκατασκευασμένων στη βιβλιοθήκη του λογισμικού). Κατασκευές αλγεβρικές μονάδες με δομικές Σχήμα 10 6 η -8 η σελίδα Οι μαθητές θα πειραματιστούν με τα προκατασκευασμένα ψηφιακά τεχνουργήματα της οθόνης στις συνδεόμενες σελίδες του λογισμικού, προκειμένου να κατανοήσουν την γεωμετρική μοντελοποίηση της διαφοράς δυο τετραγώνων διαφορετικών διαστάσεων, καθώς και να τη συσχετίσουν με την αλγεβρική έννοια της διαφοράς τετραγώνων. Αυτή θα προκύψει με την αναδιάταξη και αλλαγή προσανατολισμού των γεωμετρικών αναπαραστάσεων

9 Φύλλο εργασίας Σελίδα 1 1. Τοποθετήστε κατάλληλα τα σχήματα, ώστε με αυτά να κατασκευάσετε ένα νέο μεγαλύτερο τετράπλευρο; Τι τετράπλευρο είναι αυτό και γιατί ; 2. Ποιο είναι το μήκος της πλευράς του σχήματος που κατασκευάσατε ; 3. Ποιο είναι το εμβαδόν του συναρτήσει της πλευράς του; 4. Από τα εμβαδά ποιών σχημάτων αποτελείται; 5. Μπορείτε να διατυπώσετε την ισότητα των εμβαδών με αλγεβρικό τρόπο; - 9 -

10 Η ισότητα που μόλις κατασκευάσατε είναι η γνωστή μας ταυτότητα ανάπτυγμα τετραγώνου αθροίσματος. Συσχέτισε την ταυτότητα αυτή με την πρόταση 4 του ΙΙ βιβλίου των Στοιχείων του Ευκλείδη. Σελίδα 2 6. Στην εικόνα στην οθόνη παρατηρείτε δυο τετράγωνα με εμβαδά Ε 1 =.. και εμβαδόν Ε 2 =.. 7. Τοποθετήστε το τετράγωνο με εμβαδόν Ε2 στο τετράγωνο με εμβαδόν Ε1. Πως συμβολίζεται αυτό με αλγεβρικό τρόπο; Μπορείτε να γράψετε την αλγεβρική έκφραση; υπόδειξη: Υπολόγισε το εμβαδόν του τετραγώνου με πλευρά α Υπολόγισε το εμβαδόν του τετραγώνου με πλευρά β Υπολόγισε τη διαφορά των δυο εμβαδών, δηλαδή τη διαφορά τετραγώνων. 8. Ποιες είναι οι διαστάσεις των ορθογωνίων παραλληλογράμμων που σχηματίζονται (ΝΖΗΕ και ΚΗΒΑ);.. 9. Γράψτε την αλγεβρική έκφραση του εμβαδού ως αποτέλεσμα του αθροίσματος των ΝΖΗΕ και ΚΗΒΑ

11 Η ισότητα που μόλις κατασκευάσατε είναι η γνωστή μας ταυτότητα διαφορά τετραγώνων. Ποια πρόταση του ΙΙ βιβλίου των Στοιχείων του Ευκλείδη είναι αυτή; Σελίδα 3 9. Σύρετε το αυθαίρετο τμήμα ΒΑ από τα άκρα του. Τι παρατηρείτε; Πως μετασχηματίζεται το εμβαδόν της διαφοράς των τετραγώνων; Γράψτε την αλγεβρική έκφραση Εκφράστε τη διαφορά των δυο τετραγώνων ως γινόμενο συναρτήσει των τμημάτων α, β... Σελίδα Αν τροποποιήσουμε το μήκος του τμήματος β, η ταυτότητα θα ισχύει ; Πατήστε το κουμπί προσθήκης κίνησης (animation) του σημείου. Τι μεταβάλλεται τώρα στο σχήμα ;

12 .. Σελίδα Ποιο το εμβαδόν του τετραγώνου με πλευρά x 13. Ποιο το εμβαδόν του ορθογώνιου με πλευρές x, Σχηματίστε ένα μεγαλύτερο ορθογώνιο ή τετράγωνο με σχήματα που υπάρχουν στην οθόνη. Γράψτε το εμβαδόν του σχήματος (ορθογωνίου) που σχηματίζεται. 18. Στο αρχείο algebra tiles σχεδιάστε την ταυτότητα 5x 2 + 3x + 1. Βιβλιογραφία : Σταμάτης, Ε. (1975) Ευκλείδου Γεωμετρία. Στοιχεία βιβλία 1-4 Fuys, D., Geddes, D. & Tischler, R. (1988). The Van Hiele Model of Thinking in Geometry among Adolescents. Monograph No. 3, NCTM. Διευθύνσεις Διαδικτύου bra%20tiles.ppt ng_algebra_tiles.pdf

13 Σημείωση: Η παρούσα εργασία είναι αναδιαμόρφωση της δειγματικής διδακτικής πρότασης που παρουσιάστηκε από τους μαθητές του 15 ου Γυμνασίου Αθηνών, στην επιμορφωτική συνάντηση που συνδιοργανώθηκε από τους Σχολικούς Συμβούλους των Μαθηματικών κο Μιχ. Μανωλόπουλο και κο Μιχ. Χρυσοβέργη κατά την σχολική χρονιά ( ). Το ίδιο σενάριο έχει δεχθεί τις κρίσεις και βελτιώσεις Ελλήνων και διεθνών κριτών, αφού έχει παρουσιαστεί στο Πανελλήνιο συνέδριο της «Αξιοποίησης των Τεχνολογιών της Πληροφορίας και της Επικοινωνίας στη διδακτική πράξη των ΤΠΕ» (Σύρος, 2007), στο Πανελλήνιο συνέδριο «Ψηφιακό Υλικό για την υποστήριξη του παιδαγωγικού έργου των εκπαιδευτικών» (Νάουσα, 2008) καθώς και ως άρθρο για το περιοδικό «Ευκλείδης Γ» της Ελληνικής Μαθηματικής Εταιρείας (ΕΜΕ). Το ερευνητικό μέρος με προσαρμοσμένο θεωρητικό υπόβαθρο έχει δημοσιευτεί στο 13 ο Διεθνές συνέδριο «13 th Asian Conference in Technology in Mathematics» (ATCM, 2008) και στη συνέχεια στο Διεθνές περιοδικό «Electronic Journal of Mathematics and Technology (ejmt)» (ejmt, 2009). Patsiomitou, S., (2008c) Do geometrical constructions affect students algebraic expressions? In Yang, W., Majewski, M., Alwis T. and Klairiree, K. (Eds.) Enhancing Understanding and Constructing Knowledge in Mathematics with Technology. Proceedings of the 13 th Asian Conference in Technology in Mathematics. pp Bangkok, Thailand: Suan Shunanda Rajabhat University.Available on line Patsiomitou, S. (2009). The Impact of Structural Algebraic Units on Students Algebraic Thinking in a DGS Environment at the Electronic Journal of Mathematics and Technology (ejmt), 3(3),

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε.

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε. Ζαφειρόπουλος Χρήστος Μαθηματικός Γυμνασίου & Λυκείου Καράτουλα zafeiropouloschristos@yahoo.gr ΠΕΡΙΛΗΨΗ Το Πυθαγόρειο Θεώρημα ξεκινώντας την ιστορική

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΔΥΣΚΟΛΙΕΣ ΚΑΙ ΑΝΤΙΛΗΨΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΑΤΑ ΤΟ ΠΕΡΑΣΜΑ ΑΠΟ ΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ

ΔΥΣΚΟΛΙΕΣ ΚΑΙ ΑΝΤΙΛΗΨΕΙΣ ΤΩΝ ΜΑΘΗΤΩΝ ΚΑΤΑ ΤΟ ΠΕΡΑΣΜΑ ΑΠΟ ΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΣΤΗΝ ΑΛΓΕΒΡΑ Το παρακάτω άρθρο δημοσιεύτηκε στο περιοδικό ΕΥΚΛΕΙΔΗΣ Γ το 1996. Η πλήρης αναφορά είναι η εξής: Χ. Λεμονίδης (1996). Δυσκολίες και αντιλήψεις των μαθητών κατά το πέρασμα από την αριθμητική στην άλγεβρα.

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

Δρ Μιχάλης Τζούμας Σχολικός Σύμβουλος Μαθηματικών. Διδάσκοντας στην τάξη με το Geogebra

Δρ Μιχάλης Τζούμας Σχολικός Σύμβουλος Μαθηματικών. Διδάσκοντας στην τάξη με το Geogebra Δρ Μιχάλης Τζούμας Σχολικός Σύμβουλος Μαθηματικών Διδάσκοντας στην τάξη με το Geogebra Αγρίνιο, 2015 Διδάσκοντας στην τάξη με το Geogebra 3 Μιχάλης Τζούμας Αγρίνιο 2015 ISBN: 978-960-85583-7-3 Εκδόσεις:

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας

Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 3ο, 20-30, 2014 Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας Ανδρέας Κουλούρης akoulouris13@gmail.com

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Εναλλακτικά µπoρεί να χρησιµοποιηθεί και το MaLT, η τρισδιάστατη έκδοση του Χελωνόκοσµου.

Εναλλακτικά µπoρεί να χρησιµοποιηθεί και το MaLT, η τρισδιάστατη έκδοση του Χελωνόκοσµου. 2. Εκπαιδευτικό λογισµικό για τα µαθηµατικά Το σκεπτικό της επιλογής του εκπαιδευτικού λογισµικού για την ευρεία επιµόρφωση για τους συναδέλφους µαθηµατικούς είναι άµεσα συνδεδεµένο µε την προβληµατική

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία.

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία. Το πιλοτικό πρόγραμμα σπουδών στο γυμνάσιο: Μετασχηματισμοί Δημήτρης Διαμαντίδης 2 ο Πρότυπο Πειραματικό Γυμνάσιο Φιλήμονος 38 & Τσόχα, Αθήνα dimdiam@sch.gr Περίληψη Στο κείμενο περιγράφεται μια διδακτική

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

Η κατασκευή με τις δύο πινέζες και το νήμα

Η κατασκευή με τις δύο πινέζες και το νήμα Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 2015-2016 1 ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Μαθηματικά Μέση Γενική Εκπαίδευση

Μαθηματικά Μέση Γενική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Μέση ενική Εκπαίδευση Εργαλείο Derive - Crocodile Mathematics Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής

Διαβάστε περισσότερα

Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD

Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD 422 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD Λυκοσκούφη Ειρήνη Καθηγήτρια

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Μαθηματικά Δημοτική Εκπαίδευση

Μαθηματικά Δημοτική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Δημοτική Εκπαίδευση Εργαλείο EucliDraw Sketchpad Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση. «ΜΑΘΗΣΙΣ: Μία Ευφυής Διαδικτυακή Τάξη Άλγεβρας»

Εργαστηριακή εισήγηση. «ΜΑΘΗΣΙΣ: Μία Ευφυής Διαδικτυακή Τάξη Άλγεβρας» o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ Εργαστηριακή εισήγηση «ΜΑΘΗΣΙΣ: Μία Ευφυής Διαδικτυακή Τάξη Άλγεβρας» Δημήτριος Σκλαβάκης 1, Ιωάννης Ρεφανίδης 1 Μαθηματικός Υποψήφιος Διδάκτωρ, Τμήμα

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Γνωστικές αλληλεπιδράσεις στις κατασκευές μέσω του λογισμικού δυναμικής γεωμετρίας geometer s sketchpad

Γνωστικές αλληλεπιδράσεις στις κατασκευές μέσω του λογισμικού δυναμικής γεωμετρίας geometer s sketchpad Γνωστικές αλληλεπιδράσεις στις κατασκευές μέσω του λογισμικού δυναμικής γεωμετρίας geometer s sketchpad Σ.Πατσιομίτου Εκπ/κός Δ/θμιας Εκπ/σης, Med Διδακτικής και Μεθοδολογίας Μαθηματικών ΕΚΠΑ, Υπ. Διδάκτωρ

Διαβάστε περισσότερα

Μαθηματικά Μέση Γενική Εκπαίδευση

Μαθηματικά Μέση Γενική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Μέση ενική Εκπαίδευση Εργαλείο SKETCHPAD / CABRI Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Μαθηματικά Μέση Γενική Εκπαίδευση

Μαθηματικά Μέση Γενική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Μέση ενική Εκπαίδευση Εργαλείο Διαδίκτυο Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής Τεχνολογίας

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 176 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Σωτηρόπουλος Παναγιώτης 1 -

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

Το παιχνίδι tangram. PIERCE Αμερικανικό Κολλέγιο Ελλάδος Μαθητε ς/τριες Γ, Β και Α Γυμνασι ου3, 2, 1. sdoukakis@acg.edu

Το παιχνίδι tangram. PIERCE Αμερικανικό Κολλέγιο Ελλάδος Μαθητε ς/τριες Γ, Β και Α Γυμνασι ου3, 2, 1. sdoukakis@acg.edu Το παιχνίδι tangram Ανδριανού Αφροδίτη 3, Γεωργιάδης Μάρκος 2, Γεωργιάδης Μάριος 1, Δεσποτάκης Γεράσιμος 2, Καραμπάσης Κλείτος 2, Κουτσιούμπας Ευριπίδης 1, Μελένιου Μιράντα 2, Ξενάκης Αριστοτέλης 1, Παπαβασιλόπουλος

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ ----- Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Τι

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) 1. 9 Εκπαιδευτική χρήση βασικών εργαλείων πληροφορικής, πολυµεσικών εργαλείων και του διαδικτύου

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αναπνευστικό σύστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα