Chapter 7 Analytic Trigonometry

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Chapter 7 Analytic Trigonometry"

Transcript

1 Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y False. The domain of. True. True.. y sin is. sin 0 We are finding the angle,, whose sine equals 0. 0, 0 sin 0 0 cos We are finding the angle, 0, whose cosine equals., 0 0 cos 0. sin ( ) We are finding the angle,, whose sine equals., sin ( ). cos ( ) 7. We are finding the angle, 0, whose cosine equals., 0 cos tan 0 We are finding the angle, < <, whose tangent equals 0. tan 0, < < 0 tan tan ( ) We are finding the angle, < <, whose tangent equals. tan, < < tan ( ) 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

2 Section 7.: The Inverse Sine, Cosine, and Tangent Functions 9. sin We are finding the angle,, whose sine equals. sin, sin. sin We are finding the angle,, whose sine equals. sin, sin 0. tan We are finding the angle, < <, whose tangent equals. tan, < < tan. cos We are finding the angle, 0, whose cosine equals cos. cos, 0. tan We are finding the angle, < <, whose tangent equals. tan, < < tan. sin We are finding the angle,, whose sine equals sin. sin, 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

3 Chapter 7: Analytic Trigonometry sin cos tan.7 tan cos sin 0. 8 tan ( 0.) 0.8 tan. sin ( 0.) 0. cos ( 0.).0 cos.08 sin 0. cos cos follows the form of the equation ( ) cos f f ( cos ). Since is in the interval 0,, we can apply the equation directly and get cos cos. sin sin 0 follows the form of the f f sin sin. Since equation ( ) is in the interval, 0 the equation directly and get sin sin 0. 0, we can apply tan tan 8 follows the form of the equation f ( f ) tan ( tan ). Since is in the interval, 8, we can apply the equation directly and get tan tan 8. 8 sin sin 7 follows the form of the equation f ( f ) sin ( sin ). Since is in the interval, 7, we can apply the equation directly and get sin sin sin sin 8 follows the form of the equation f ( f ) sin ( sin ), but we cannot use the formula directly since 9 is not 8 in the interval,. We need to find an angle in the interval, for which 9 sin. The angle 9 is in quadrant III 8 8 so sine is negative. The reference angle of 9 is 8 and we want to be in quadrant IV so sine 8 will still be negative. Thus, we have 9 sin sin 8 8. Since is in the interval 8,, we can apply the equation above and 9 get sin sin sin sin Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

4 Section 7.: The Inverse Sine, Cosine, and Tangent Functions.. cos cos follows the form of the equation ( ) cos f f ( cos ), but we cannot use the formula directly since is not in the interval 0,. We need to find an angle in the interval 0, for which cos. The angle is in quadrant I so the reference angle of is. Thus, we have cos cos. Since is in the interval 0,, we can apply the equation above and get cos cos cos cos. tan tan follows the form of the equation f ( f ) tan ( tan ), but we cannot use the formula directly since is not in the interval,. We need to find an angle in the interval, for which tan tan. The angle is in quadrant II so tangent is negative. The reference angle of is and we want to be in quadrant IV so tangent will still be negative. Thus, we have tan tan. Since is in the interval,, we can apply the equation above and get tan tan tan tan.... tan tan follows the form of the equation tan ( tan ) f f. but we cannot use the formula directly since is not in the interval,. We need to find an angle in the interval, for which tan tan. The angle is in quadrant III so tangent is positive. The reference angle of is and we want to be in quadrant I so tangent will still be positive. Thus, we have tan tan. Since is in the interval,, we can apply the equation above and get tan tan tan tan. sin sin follows the form of the equation ( ) sin sin f f. Since is in the interval,, we can apply the equation directly and get sin sin. cos cos follows the form of the equation cos( cos ) f f. Since is in the interval,, we can apply the equation directly and get cos cos. Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

5 Chapter 7: Analytic Trigonometry 7. tan ( tan ) ( ) tan ( tan ) follows the form of the equation f f. Since is a real number, we can apply the equation directly tan tan. and get ( ) tan ( tan ) 8. tan tan follows the form of the equation f f. Since is a real number, we can apply the equation directly tan tan. and get 9. Since there is no angle such that., the quantity cos. is not defined. Thus, cos cos. is not defined. 0. Since there is no angle such that, sin is not defined. Thus, the quantity sin sin is not defined.. tan ( tan ) ( ) tan ( tan ) follows the form of the equation f f. Since is a real number, we can apply the equation directly tan tan. and get. Since there is no angle such that., sin. is not defined. Thus, the quantity sin sin (.). f sin + y sin + is not defined. sin y+ sin y sin y y sin f The domain of f ( ) equals the range of f and is or, in f interval notation. To find the domain of we note that the argument of the inverse sine function is and that it must lie in the interval,. That is, 7 f 7, or The domain of is { }, 7 in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is also, 7.. f tan y tan tan y tany + + tan y + y tan f The domain of f equals the range of f and is < < or, in interval notation. To find the domain of f we note that the argument of the inverse tangent function can be any real number. Thus, the domain of f is all real numbers, or (, ) in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is (, ).. f cos y cos Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

6 Section 7.: The Inverse Sine, Cosine, and Tangent Functions ( y) cos cos ( y) y cos cos y f The domain of f ( ) equals the range of f and is 0, or 0, in interval notation. To find the domain of f we note that the argument of the inverse cosine function is and that it must lie in the interval,. That is, The domain of f is { }, or, in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is,.. f sin y sin sin( y) sin ( y) y sin sin y f The domain of f ( ) equals the range of f and is, or, in f we note that the argument of the inverse sine interval notation. To find the domain of function is and that it must lie in the interval,. That is, f The domain of is { }, or, in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is,. 7. f tan ( + ) y tan ( + ) tan ( y+ ) tan ( y+ ) y+ tan y + tan tan ( + ) f (note here we used the fact that odd function). y tan is an The domain of f ( ) equals the range of f and is, or, in interval notation. To find the domain of f we note that the argument of the inverse tangent function can be any real f is all real number. Thus, the domain of numbers, or (, ) in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is (, ). 8. f cos( + ) + y cos( + ) + ( y+ ) + cos( y+ ) y+ cos y ( ) cos cos Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

7 Chapter 7: Analytic Trigonometry The domain of f ( ) equals the range of f and is, or, in interval notation. To find the domain of f we note that the argument of the inverse cosine function is and that it must lie in the interval,. That is, 0 The domain of f is { 0 }, or 0, in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is 0,. 9. f sin( + ) y sin( + ) sin( y+ ) sin ( y + ) y + sin y sin y sin f The domain of f ( ) equals the range of f and is +, or, + in interval notation. To find f we note that the argument the domain of of the inverse sine function is and that it must domain of its inverse. Thus, the range of f is,. 0. f cos( + ) y cos( + ) cos( y+ ) cos( y + ) y + cos y cos y cos f The domain of f ( ) equals the range of f and is +, or, + in interval notation. To find the f we note that the argument of domain of the inverse cosine function is and that it must lie in the interval,. That is, The domain of f is { }, or, in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the domain of its inverse. Thus, the range of f is,. lie in the interval,. That is, f, or The domain of is { }, in interval notation. Recall that the domain of a function equals the range of its inverse and the range of a function equals the. sin sin sin The solution set is. Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

8 Section 7.: The Inverse Sine, Cosine, and Tangent Functions. cos cos cos 0 The solution set is {0}. cos cos cos The solution set is... sin.. sin sin The solution set is. tan tan tan The solution set is { }. tan tan tan The solution set is { } cos cos cos 0 cos cos cos The solution set is { }. sin sin sin sin sin The solution set is. 9. Note that cos tan. tan 9.7 a. D.9 hours or hours, minutes b. c. ( ( ) ) ( ( ) ( ) ) cos tan 0 tan 9.7 D hours ( ( ) ( ) ) cos tan.8 tan 9.7 D.8 hours or hours, minutes 70. Note that cos tan. tan 0.7 a. D.9 hours or hours, minutes b. c. ( ( ) ) ( ( ) ( ) ) cos tan 0 tan 0.7 D hours ( ( ) ( ) ) cos tan.8 tan 0.7 D.8 hours or hours, 0 minutes Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

9 Chapter 7: Analytic Trigonometry 7. Note that 8.. cos tan. tan. a. D.0 hours or hours, 8 minutes b. c. ( ( ) ) ( ( ) ( ) ) cos tan 0 tan. D hours ( ( ) ( ) ) cos tan.8 tan. D. hours or hours, minutes 7. Note that 0.7. cos tan. tan.7 a. D 8.9 hours or 8 hours, 7 minutes b. c. 7. a. b. c. ( ( ) ) ( ( ) ( ) ) cos tan 0 tan.7 D hours ( ( ) ( ) ) cos tan.8 tan.7 D 8. hours or 8 hours, 8 minutes ( ( ) ( ) ) cos tan. tan 0 D hours ( ( ) ( ) ) cos tan 0 tan 0 D hours ( ( ) ( ) ) cos tan.8 tan 0 D hours d. There are approimately hours of daylight every day at the equator. 7. Note that 0.. cos tan. tan. a. D hours ( ( ) ) b. c. ( ( ) ( ) ) cos tan 0 tan. D hours ( ( ) ( ) ) cos tan.8 tan. D.0 hours or hours, minute d. The amount of daylight at this location on the winter solstice is 0 hours. That is, on the winter solstice, there is no daylight. In general, for a location at 0' north latitude, it ranges from around-the-clock daylight to no daylight at all. 7. Let point C represent the point on the Earth s ais at the same latitude as Cadillac Mountain, and arrange the figure so that segment CQ lies along the -ais (see figure). y C P s 70 mi D (, y ) Q (70,0) At the latitude of Cadillac Mountain, the effective radius of the earth is 70 miles. If point D(, y) represents the peak of Cadillac Mountain, then the length of segment PD is mile 0 ft 0.9 mile. Therefore, the 80 feet point Dy (, ) (70, y) lies on a circle with radius r 70.9 miles. We now have 70 r cos 0.0 radians 70.9 Finally, s r 70(0.0) 9. miles, (70) 9. and, so t (9.) t hours. minutes (70) Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

10 Section 7.: The Inverse Sine, Cosine, and Tangent Functions Therefore, a person atop Cadillac Mountain will see the first rays of sunlight about. minutes sooner than a person standing below at sea level. 7. a. tan tan. 0 tan tan. 0 0 If you sit 0 feet from the screen, then the viewing angle is about.. tan tan. If you sit feet from the screen, then the viewing angle is about.. ( 0) tan tan If you sit 0 feet from the screen, then the viewing angle is about.8. b. Let r the row that result in the largest viewing angle. Looking ahead to part (c), we see that the maimum viewing angle occurs when the distance from the screen is about. feet. Thus, + ( r ). + r. r. r. Sitting in the th row should provide the largest viewing angle. c. Set the graphing calculator in degree mode and let Y tan tan : The maimum viewing angle will occur when. feet. 77. a. a 0 ; b ; The area is: tan b tan a tan tan 0 0 square units b. 78. a. a 0 ; a ; b ; The area is: tan b tan a tan tan square units b ; The area is: 0 square units sin b sin a sin sin Use MAXIMUM: 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

11 Chapter 7: Analytic Trigonometry b. a ; b ; The area is: sin b sin a sin sin square units 79. Here we have α 0', 87 7 ', α 8', and 7 0'. Converting minutes to degrees gives 7 α ( ), ( 87 0 ) ( 7 ), α., and. Substituting these values, and r 90, into our equation gives d 0 miles. The distance from Chicago to Honolulu is about 0 miles. (remember that S and W angles are negative) 80. Here we have α 8', 7 0', α 7 7 ', and 8'. Converting minutes to degrees gives α., 7 ( 7 ), ( 7 0 ) 9 ( 0 ) α, and. Substituting these values, and r 90, into our equation gives d 8 miles. The distance from Honolulu to Melbourne is about 8 miles. (remember that S and W angles are negative) Section 7.. Domain: odd integer multiples of, y y or y Range: { }. True.. sec y,, 0, 8. True cos sin Find the angle,, whose sine equals. sin, cos sin cos sin cos Find the angle, 0, whose cosine equals. cos, 0 sin cos sin tan cos Find the angle, 0, whose cosine equals. tan cos cos, 0 tan. cosine. False 7. True 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

12 Section 7.: The Inverse Trigonometric Functions [Continued]... tan sin Find the angle,, whose sine equals. sin, tan sin tan seccos Find the angle, 0, whose cosine equals. cos, 0 sec cos sec cot sin Find the angle,, whose sine equals. sin, cot sin cot 9. csc( tan ) Find the angle, < <, whose tangent equals. tan, < < csc( tan ) csc. sec( tan ) Find the angle, < <, whose tangent equals. tan, < < sec( tan ) sec Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall sin tan Find the angle, < <, whose tangent equals. tan, < < sin tan ( ) sin cos sin Find the angle,, whose sine equals. sin, cos sin cos

13 Chapter 7: Analytic Trigonometry sec sin Find the angle,, whose sine equals. sin, sec sin sec csc cos Find the angle, 0, whose cosine equals. 0 csc cos csc cos sin cos Find the angle, 0, whose cosine equals. cos, 0 cos sin.. tan cot tan Find the angle, < <, whose tangent equals. tan, < < tan cot 7 sin cos sin Find the angle,, whose sine equals sin. sin, 7 cos Find the angle, 0, whose cosine. cos tan cos equals. cos, 0 tan 0 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

14 Section 7.: The Inverse Trigonometric Functions [Continued].. 7. tan sin Let sin. Since and, is in quadrant I, and we let y and r. Solve for : ± 8 ± Since is in quadrant I,. y tan sin tan tan cos Let cos. Since and 0, is in quadrant I, and we let and r. Solve for y: + y 9 y 8 y ± 8 ± Since is in quadrant I, y. y tan cos tan sectan Let tan. Since tan and < <, is in quadrant I, and we let and y. Solve for r: + r r r is in quadrant I. r sectan sec cos sin Let sin. Since and, is in quadrant I, and we let y and r. Solve for : ± 7 Since is in quadrant I, 7. 7 cos sin r cot sin Let sin. Since and, is in quadrant IV, and we let y and r. Solve for : ± 7 Since is in quadrant IV, 7. 7 cot sin cot y csc tan ( ) Let tan ( ). Since tan and < <, is in quadrant IV, and we let and y. Solve for r: + r r r ± Since is in quadrant IV, r. r csc tan ( ) csc y Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

15 Chapter 7: Analytic Trigonometry... sin tan Let tan ( ). Since tan and < <, is in quadrant IV, and we let and y. Solve for r: + 9 r r 0 r ± 0 Since is in quadrant IV, r 0. y sin tan ( ) r cot cos Let cos. Since and 0, is in quadrant II, and we let and r. Solve for y: + y 9 y y ± Since is in quadrant II, y. cot cos cot y sec sin Let sin. Since and, is in quadrant I, and we let y and r. Solve for : ± Since is in quadrant I,. r sec sin sec csctan Let tan. Since tan and < <, is in quadrant I, and we let and y. Solve for r: + r r r is in quadrant I. r csctan csc y sin cos sin 7 cos sin cos cot We are finding the angle, 0 < <, whose cotangent equals. cot, 0 < < cot cot We are finding the angle, 0 < <, whose cotangent equals. cot, 0 < < cot Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

16 Section 7.: The Inverse Trigonometric Functions [Continued] csc ( ) We are finding the angle,, 0, whose cosecant equals. csc,, 0 csc ( ) csc We are finding the angle,, 0, whose cosecant equals. csc,, 0 csc sec We are finding the angle, 0,, whose secant equals. sec, 0, sec. sec ( ) We are finding the angle, 0 whose secant equals. sec sec, 0, ( ),,... cot We are finding the angle, 0 < <, whose cotangent equals cot. cot, 0 < < csc We are finding the angle, 0, whose cosecant equals csc,. csc,, 0 sec cos We seek the angle, 0, whose cosine equals. Now, so lies in quadrant I. The calculator yields cos., which is sec.. an angle in quadrant I, so Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

17 Chapter 7: Analytic Trigonometry. csc sin We seek the angle,, whose sine equals. Now, so lies in quadrant I. The calculator yields sin 0.0, which is an angle in quadrant I, so csc 0.0. csc sin We seek the angle,, whose sine equals. Now, so lies in quadrant IV. The calculator yields sin 0., which is an angle in 9. csc 0.. quadrant IV, so 7. cot tan We seek the angle, 0, whose tangent equals. Now tan, so lies in quadrant I. The calculator yields an 0., which is an angle in quadrant I, so cot cot tan We seek the angle, 0, whose tangent equals. Now tan, so lies in quadrant II. The calculator yields tan., which is an angle in quadrant IV. Since lies in quadrant II,.+.0. Therefore, cot sec ( ) cos We seek the angle, 0, whose cosine equals. Now, lies in quadrant II. The calculator yields cos.9, which is an angle in sec.9. quadrant II, so cot tan We seek the angle, 0, whose tangent. equals. Now tan, so lies in quadrant II. The calculator yields tan 0., which is an angle in quadrant IV. Since is in quadrant II, Therefore, cot.7. Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

18 Section 7.: The Inverse Trigonometric Functions [Continued] cot 8. tan 8. We seek the angle, 0, whose tangent. equals. Now tan, so lies in quadrant II. The calculator yields tan 0., which is an angle in 8. quadrant IV. Since is in quadrant II, Thus, cot ( 8.).0.. cot tan We are finding the angle, 0, whose tangent equals. Now tan, so lies in quadrant II. The calculator yields tan 0.9, which is an angle in quadrant IV. Since is in quadrant II, Thus, cot... csc sin We seek the angle,, 0, whose sine equals. Now, so lies in quadrant IV. The calculator yields sin 0.7, which is an angle in quadrant IV, so csc 0.7. cot 0 tan 0 We are finding the angle, 0, whose. tangent equals. Now tan, so 0 0 lies in quadrant II. The calculator yields tan 0.0, which is an angle in 0 quadrant IV. Since is in quadrant II, So, cot ( 0 ).8.. sec cos We are finding the angle, 0,, whose cosine equals. Now, so lies in quadrant II. The calculator yields cos., which is an angle in quadrant II, so sec.. 7. Let tan u so that tan u, < <, < u <. Then, cos ( tan u) sec sec + tan + u 8. Let cos u so that u, 0, u. Then, sin cos u sin cos u Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

19 Chapter 7: Analytic Trigonometry 9. Let sin u so that u,, u. Then, tan ( sin u) tan cos sin u u 0. Let cos u so that u, 0, u. Then, tan ( cos u) tan sin cos u u. Let sec u so that sec u, 0 and, u. Then, sin sec u sin cos sec sec sec u u. Let cot u so that cot u, 0 < <, < u <. Then, sin ( cot u) sin csc + cot + u. Let csc u so that csc u,, u. Then, ( u) cos csc cot cot cot csc csc csc csc u u. Let sec u so that sec u, 0 and, u. Then, cos( sec u) sec u. Let cot u so that cot u, 0 < <, < u <. Then, tan ( cot u) tan cot u. Let sec u so that sec u, 0 and, u. Then, tan sec u tan tan 7. sec u g f cos sin Let sin. Since and, is in quadrant I, and we let y and r. Solve for : ± ± Since is in quadrant I,. g f cossin r Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

20 Section 7.: The Inverse Trigonometric Functions [Continued] 8. f g sin cos Let cos. Since and 0, is in quadrant I, and we let and r. Solve for y: + y + y 9 y 7. h g tan cos Let cos. Since and 0, is in quadrant II, and we let and r. Solve for y: ( ) + y + y y y ± ± Since is in quadrant I, y. f g g f y sin cos r 7 7 f cos sin cos g sin cos sin 7. y ± 9 ± Since is in quadrant II, y. hg tan cos y tan g h cos tan Let tan. Since tan and, is in quadrant I, and we let and y. Solve for r: r + 7. h f tan sin Let sin. Since and, is in quadrant IV, and we let y and r. Solve for : + ( ) + 9 ± ± Since is in quadrant IV,. h f tan sin y tan 7. r + 9 r ± 9 ± Now, r must be positive, so r. gh costan r f h sin tan Let tan. Since tan and, is in quadrant I, and we let and y. Solve for r: r + r + 9 r ± 9 ± Now, r must be positive, so r. f h y sin tan r 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

21 Chapter 7: Analytic Trigonometry g g f cos sin cos f cos sin cos h g tan cos Let cos. Since and 0, is in quadrant II, and we let and r. Solve for y: ( ) + y + y y y ± Since is in quadrant II, y. hg tan cos y tan h f tan sin Let sin. Since and, is in quadrant IV, and we let y and r. Solve for : + ( ) + ± Since is in quadrant IV,. h f tan sin y tan 79. a. Since the diameter of the base is feet, we have r. feet. Thus,. cot.89. r b. cot h r cot r hcot h Here we have.89 and h 7 feet. Thus, r 7cot (.89 ) 7. feet and the diameter is ( 7.). feet. r c. From part (b), we get h. cot The radius is feet. r h 7.9 feet. cot. / Thus, the height is 7.9 feet. 80. a. Since the diameter of the base is.8 feet,.8 we have r. feet. Thus,. cot 0. r b. cot h r r cot h h cot Here we have 0. and r feet. Thus, h.79 feet. The cot ( 0. ) bunker will be.79 feet high.. c. TG cot.88 From part (a) we have USGA 0.. For steep bunkers, a larger angle of repose is required. Therefore, the Tour Grade 0/0 sand is better suited since it has a larger angle of repose. 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

22 Section 7.: Trigonometric Equations 8. a. b. cot y+ gt cot y+ gt The artillery shell begins at the origin and lands at the coordinates ( 7,0 ). Thus, 7 cot cot.788. The artilleryman used an angle of elevation of.. vt 0 sec sec v0 t 90. ft/sec 8. Let. y cot cos ( 7) sec(. ) y csc sin _ 0 0 _ 8 8. Answers will vary. Section The solution set is.., Note that the range of tan will not work. y sec cos y cot is 0,, so.. 0 ( )( ) or + 0 or The solution set is,. 0 ( ) () ± 0 ± + ± The solution set is +,. 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

23 Chapter 7: Analytic Trigonometry.. () () 0 [ ][ ] ( ) or 0 0 or The solution set is 0,. Let y and y. Use INTERSECT to find the solution(s): In this case, the graphs only intersect in one location, so the equation has only one solution. Rounding as directed, the solutions set is { 0.7 }... + k or + k, k is any integer On 0 <, the solution set is,. cos cos ± + k or + k, k is any integer On the interval 0 <, the solution set is,,, , + k, + k, k is any integer 9. False because of the circular nature of the functions. 0. False, is outside the range of the sin function k or + k, k is any integer 7 On 0 <, the solution set is,... tan tan ± ± + k or + k, k is any integer On the interval 0 <, the solution set is 7,,,. sin 0 sin sin ± ± + k or + k, k is any integer On the interval 0 <, the solution set is 7,,,. 70 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

24 Section 7.: Trigonometric Equations. cos 0 cos cos ± + k or + k, k is any integer On the interval 0 <, the solution set is 7,,,. sin + k k +, k is any integer On the interval 0 <, the solution set is 7,,. 7. ( ) 8. tan + k, k is any integer + k, k is any integer On 0 <, the solution set is. + k or + k + k or + k, k is any integer On the interval 0 <, the solution set is,,,. 9. cos ( ) 0. tan ( ) + k, k is any integer k +, k is any integer 8.. On the interval 0 <, the solution set is 7,,, sec + k or + k k 8 k + or +, 9 9 k is any integer On the interval 0 <, the solution set is 8,, cot + k, k is any integer k +, k is any integer On 0 <, the solution set is k or + k, k is any integer 7 On 0 <, the solution set is, k, k is any integer On the interval 0 <, the solution set is { }. tan + 0 tan + k, k is any integer 7 On 0 <, the solution set is,.. 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

25 Chapter 7: Analytic Trigonometry. cot + 0 cot cot + k, k is any integer On 0 <, the solution set is,. 7. sec + sec 8 sec + k or + k, k is any integer On 0 <, the solution set is,. 8. csc csc csc + k, k is any integer On 0 <, the solution set is k or + k, k is any integer On 0 <, the solution set is, k or + k, k is any integer On 0 <, the solution set is,.. + k + k + k, k is any integer 7 On 0 <, the solution set is,.. sin k 8 + k 9 k +, k is any integer 7 On the interval 0 <, the solution set is 0,, tan k + k + k, k is any integer On 0 <, the solution set is.. cos + k or + k 7 + k or + k 7 + k or + k, k is any integer. 7 On 0 <, the solution set is. 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

26 Section 7.: Trigonometric Equations. + kor + k, k is any integer. Si solutions are 7 9,,,,,.. tan k, k is any integer 9 7 Si solutions are,,,,,. tan + k, k is any integer Si solutions are 7 9,,,,,. 7 + k or + k, k is any integer. Si solutions are ,,,,, k or + k, k is any integer 7 9 Si solutions are,,,,,. + k or + k, k is any integer Si solutions are,,,,,. + k or + k, k is any integer. cos( ) + k or + k, k is any integer 7 8 Si solutions are,,,,,.. sin ( ). + k, k is any integer + k, k is any integer Si solutions are 7 9,,,,,. sin + k or + k, k is any integer k or + k, k is any integer. Si solutions are 8 0 0,,,,,.. tan + k, k is any integer + k, k is any integer Si solutions are 7 9,,,,,.. 0. sin ( 0.) or The solution set is { 0.,.7 }. 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

27 Chapter 7: Analytic Trigonometry cos ( 0.) or The solution set is { 0.9,. }. tan tan.7.7 or The solution set is {.7,. }.. tan tan 9 9 tan 9 tan or The solution set is {.08,. } cot tan tan or ,.. The solution set is { } 0.9 cos ( 0.9).9.9 or.9.9. The solution set is {.9,.9 }. 0. sin ,.08. or ( 0.0) The solution set is { } sec cos.8.8 or.8.. The solution set is {.8,. }. csc sin or ( 0.)..9.8 The solution set is {.8,.9 }..... cot cot tan tan or The solution set is {.7,. }. 0 sin or The solution set is { 0.7,. }. + 0 cos.. or..8. The solution set is {.,.8 }. 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

28 Section 7.: Trigonometric Equations cos + 0 cos ( + ) 0 0 or + 0,, The solution set is,,,. sin 0 ( + )( ) or 0 The solution set is,. sin 0 ( + )( ) or 0 7, 7 The solution set is,,.. (tan )(sec ) 0.. tan 0 or sec 0 tan sec, 0 The solution set is 0,,. (cot + ) csc 0 cot + 0 or csc 0 cot 7 csc, (not possible) 7 The solution set is,. sin cos + cos cos + cos + cos + 0 ( + ) 0 0 or + 0,, The solution set is,,,. 0. cos + 0 ( + )( ) or 0, The solution set is,,.. cos sin + 0 sin sin + 0 sin + 0 sin 0 ( + )( ) or 0 7, 7 The solution set is,,. 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

29 Chapter 7: Analytic Trigonometry. sin ( cos ( ) + ) sin ( cos + ) cos + cos ( )( ) cos + cos or + 0 (not possible) The solution set is { }.. sin ( cos ) sin ( ) ( ) cos cos cos cos cos + 0 ( )( ) cos cos 0 0 or 0 0, The solution set is 0,,. 7. sin tan, The solution set is,. 8. ( ) cos sin 0 cos sin tan 7, 7 The solution set is,. 9. tan 0 0 sin ( ) 0 or 0 0,, The solution set is 0,,,. 70. tan cot tan tan tan tan ± 7,,, 7 The solution set is,,,. 7 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

30 Section 7.: Trigonometric Equations cos + (sin ) + sin sin + 0 ( )(sin + ) 0 0 or + 0, The solution set is,,. sin + cos + cos ( ) cos The solution set is { } sin + 0 ( )( ) sin sin or 0 sin (not possible) The solution set is. cos 7 0 ( + )( ) or 0 (not possible), The solution set is, ( cos ) sin cos cos + 0 ( )( ) cos cos 0 0 or 0 0 (not possible) The solution set is { 0 }. ( + sin ) cos + sin sin ( )( ) sin + sin or + 0 (not possible) The solution set is. tan sec sec sec sec sec sec sec 0 (sec + )(sec ) 0 sec + 0 or sec 0 sec sec, (not possible) The solution set is,. csc cot + + cot cot + cot cot 0 cot (cot ) 0 cot 0 or cot,, The solution set is,,,. 77 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

31 Chapter 7: Analytic Trigonometry 79. sec + tan 0 tan + + tan 0 This equation is quadratic in tan. ` The discriminant is b ac < 0. The equation has no real solutions. 80. sec tan + cot + sin + cos Since sec and tan do not eist, the equation has no real solutions cos 0 Find the zeros (-intercepts) of Y + cos: , 0, sin Find the intersection of Y 7sin and Y : cos Find the intersection of Y 9+ 8cos and Y : ,.98,.8 8. sin 0 Find the zeros (-intercepts) of Y sin : sin + cos Find the intersection of Y sin + cos and Y :. 78 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

32 Section 7.: Trigonometric Equations 8. sin cos Find the intersection of Y sin cos and Y : cos Find the intersection of Y + cos : 0 Y and cos 0 Find the zeros (-intercepts) of Y cos:.0,.0 + sin 0 Find the zeros (-intercepts) of Y + sin : 0., sin e, > 0 Find the intersection of Y sin e and Y : 0 0.7, cos e, > 0 Find the intersection of Y cos e and Y :.7, sin Find the intersection of Y Y : 0,. sin and f 0 sin 0 sin sin sin ± ± + k or + k, k is any integer 79 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

33 Chapter 7: Analytic Trigonometry On the interval [ 0, ], the zeros of f are,,,. 9. f 0 cos + 0 cos cos + k or + k k k + or +, 9 9 k is any integer On the interval [ 0, ], the zeros of f are 8,, f sin 0 sin 0 0+ k or + k, k is any integer,, the zeros of f are 9. a. 0 On the interval [ ],,0,,,,. On the interval [, ], the solution set is 7 7,,,,,. d. From the graph in part (b) and the results of part (c), the solutions of f ( ) > on the 7 interval [,] is < < 7 or < < or < <. f cos 0 cos 0 + k or + k, k is any integer,, the zeros of f are 9. a. 0 On the interval [ ] 7,,,,,. b. f cos b. f sin c. f sin sin + k or + k, k is any integer f c. cos cos 7 + k or + k, k is any integer On the interval [,], the solution set is ,,,,,. d. From the graph in part (b) and the results of part (c), the solutions of f ( ) < on the 80 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

34 Section 7.: Trigonometric Equations 7 is < < or < < or < <. interval [, ] 97. f tan f tan tan + k, kis any integer a. f tan < tan < Graphing y tan and y on the interval,, we see that y < y for < < or,. b. < _ 98. f cot a. _ f cot + k, kis any integer f > cot > Graphing y tan and y on the interval ( 0, ), we see that y > y for 0 < < or 0,. b a, d. f sin + ; b. f g g 7 7 sin + sin sin + k or + k + k or + k, k is any integer On [ 0, ], the solution set is,. c. From the graph in part (a) and the results of f > g on part (b), the solution of [ 0, ] is < < or,. g 00. a, d. f ( ) cos + ; 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

35 Chapter 7: Analytic Trigonometry b. f g cos + cos cos + k or + k 0 + k or + k, k is any integer 0 On [ 0, ], the solution set is,. c. From the graph in part (a) and the results of f < g on part (b), the solution of [ 0, ] is 0 < < or 0,. 0. a, d. f cos ; g cos+ b. f g cos cos+ cos cos + k or + k, k is any integer On [ 0, ], the solution set is,. c. From the graph in part (a) and the results of f > g on part (b), the solution of [ 0, ] is < < or,. 0. a, d. f sin ; g sin + b. f g sin sin+ sin sin + k or + k, k is any integer On [ 0, ], the solution set is,. c. From the graph in part (a) and the results of f > g on part (b), the solution of [ 0, ] is < < or, P() t sin t a. Solve () sin t sin t 0 7 sin t 0 7 t k, k is any integer t k, k is any integer 7 P t on the interval [ ] We need 0 7 k, or 0 k 7. 0,. 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

36 Section 7.: Trigonometric Equations For k 0, t 0 sec. For k, t 0. sec. 7 For k, t 0.8 sec. 7 The blood pressure will be 00 mmhg after 0 seconds, 0. seconds, and 0.8 seconds. b. Solve P() t 0 on the interval [ 0, ] sin t 0 7 0sin t 0 7 sin t 7 t k +, k is any integer ( k + ) t, k is any integer 7 We need ( k + ) k + 7 k k For k 0, t 0. sec The blood pressure will be 0mmHg after 0. sec. c. Solve P() t 0 on the interval [ 0, ] sin t 0 7 0sin t 7 sin t 7 t sin t sin 7 On the interval [ 0, ], we get t 0.0 seconds, t 0.9 seconds, and t 0.89 seconds. Using this information, along with the results from part (a), the blood pressure will be between 00 mmhg and 0 mmhg for values of t (in seconds) in the interval 0, ,0. 0.8,0.89. [ ] [ ] [ ] 0. ht () sin 0.7t + a. Solve ht () sin 0.7t + on the interval [ 0, 0 ]. sin 0.7t + sin 0.7t 0 sin 0.7t t k, k is any integer 0.7 t k +, k is any integer k + t, k is any integer For k 0, t 0 seconds For k, t 0 seconds For k, t 0 seconds. 0.7 So during the first 0 seconds, an individual on the Ferris Wheel is eactly feet above the ground when t 0 seconds and again when t 0 seconds. b. Solve ht () sin 0.7t + 0 on the interval [ 0,80 ]. sin 0.7t + 0 sin 0.7t sin 0.7t 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

37 Chapter 7: Analytic Trigonometry 0.7t + k, k is any integer 0.7t + k, k is any integer + k t, k is any integer 0.7 For k 0, t 0 seconds For k, t 0 seconds For k, t 00 seconds. 0.7 So during the first 80 seconds, an individual on the Ferris Wheel is eactly 0 feet above the ground when t 0 seconds and again when t 0 seconds. c. Solve ht () sin 0.7t + > on the interval [ 0, 0 ]. sin 0.7t + > sin 0.7t > 0 sin 0.7t > 0 Graphing y sin 0.7 and y 0 on the interval [ 0, 0 ], we see that y > y for 0 < < So during the first 0 seconds, an individual on the Ferris Wheel is more than feet above the ground for times between about 0 and 0 seconds. That is, on the interval 0 < < 0, or ( 0,0 ). 70sin d a. ( ) 70sin ( 0) + 0 d 0 70sin miles 70sin on b. Solve d the interval [ 0, 0 ]. 70sin ( 0.) sin ( 0.) 0 sin ( 0.) 7 0. sin + k 7 sin + k k.9 + k or, k is any integer For k 0, or min 8. min For k, or min 8. min For k, or min 7.78 min So during the first 0 minutes in the holding pattern, the plane is eactly 00 miles from the airport when.0 minutes, 8. minutes,.7 minutes, and 8. minutes. 70sin > 00 on c. Solve d the interval [ 0, 0 ]. 70sin ( 0.) + 0 > 00 70sin ( 0.) >0 sin 0. > 7 and y on 7 Graphing y sin ( 0.) the interval [ ] 0, 0, we see that y > y for 0< <.0, 8. < <.7, and 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

38 Section 7.: Trigonometric Equations 8. < < So during the first 0 minutes in the holding pattern, the plane is more than 00 miles from the airport before.0 minutes, between 8. and.7 minutes, and after 8. minutes. d. No, the plane is never within 70 miles of the airport while in the holding pattern. The minimum value of sin ( 0. ) is. Thus, the least distance that the plane is from the miles. airport is 0 0. R 7sin a. Solve R 7sin 0 on the interval 0,. 7sin ( ) 0 0 sin ( ) 7 sin + k sin + k 0.77 k.08 k + or +, k is any integer For k 0, For k, or or So the golfer should hit the ball at an angle of either.0 or b. Solve R 7sin 0 on the interval 0,. 7sin ( ) 0 0 sin ( ) 7 8 sin + k 8 sin + k k.08 k + or +, k is any integer For k 0, or For k, or So the golfer should hit the ball at an angle of either.7 or.. c. Solve R 7sin 80 on the interval 0,. 7sin ( ) sin ( ) 7 ( ) sin 7 Graphing y sin and y on the 7 interval 0, and using INTERSECT, we see that y y when radians, or _ 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall.

39 Chapter 7: Analytic Trigonometry 0. _ c. Graph Y cos + sin and use the MINIMUM feature: 0. So, the golf ball will travel at least 80 feet if the angle is between about.79 and 7.. d. No; since the maimum value of the sine function is, the farthest the golfer can hit the ball is 7() 7 feet. 07. Find the first two positive intersection points of Y and Y tan. 0 0 The first two positive solutions are.0 and a. Let L be the length of the ladder with and y being the lengths of the two parts in each hallway. L + y y y L ( ) sec csc + + sec tan csccot 0 sec tan csccot sec tan csc cot tan tan º 09. a An angle of 7.7 minimizes the length at L 9.87 feet. d. For this problem, only one minimum length eists. This minimum length is 9.87 feet, and it occurs when 7.7. No matter if we find the minimum algebraically (using calculus) or graphically, the minimum will be the same. ( ) (.8) sin (9.8) sin ( ) 0.89 (.8) sin ( 0.89) 0º or 0º 0º or 0º b. Notice that the answers to part (a) add up to 90. The maimum distance will occur when the angle of elevation is 90 : ( ) (.8) sin R( ). 9.8 The maimum distance is. meters. (.8) sin c. Let Y 9.8 d L + cos 7.7º sin 7.7º b. ( 7.7º ) 9.87 feet 8 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

40 Section 7.: Trigonometric Equations 0. a. (0) sin( ) sin( ) sin ( 0.77).º or 7.º.º or 8.8º b. The maimum distance will occur when the angle of elevation is : (0) sin[ ( )] R( ). 9.8 The maimum distance is approimately. meter (0) sin c. Let Y : d sin 0.. sin 0 sin sin Calculate the inde of refraction for each: v v sin0º 0º 8º.77 sin 8º sin 0º 0º º 0'.º.798 sin.º sin 0º 0º º0'.º.0 sin.º sin 0º 0º 9º 0' 9º.9 sin 9º sin 0º 0º º 0' º. sin º sin 0º 0º 0º0' 0.º. sin 0.º sin 70º 70º º0'.º.7 sin.º sin80º 80º 0º 0' 0º.8 sin 0º. Yes, these data values agree with Snell s Law. The results vary from about. to.. 8 v v.9 0 The inde of refraction for this liquid is about... Calculate the inde of refraction: sin 0º 0º, º;.7 sin º. sin 0.. sin 0 sin sin The inde of refraction of crown glass is.. sin 0º.. sin 0 sin sin The angle of refraction is about Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

41 Chapter 7: Analytic Trigonometry 7. If is the original angle of incidence and φ is the angle of refraction, then n sinφ. The angle of incidence of the emerging beam is also φ, and the inde of refraction is. Thus, is n the angle of refraction of the emerging beam. The two beams are parallel since the original angle of incidence and the angle of refraction of the emerging beam are equal. 8. Here we have n. and n.. nb ncos B B n B n n tanb n n. B tan tan 8.8 n. 9. Answers will vary. 0. Since the range of y sin is y, then y sin + cannot be equal to when > or < since you are multiplying the result by and adding. Section 7.. True. True. identity; conditional 7. False, you need to work with one side only. 8. True tan csc cot sec ( + ) + sin sin + sin sin sin cos + ( + ) ( ) cos + cos cos cos cos sin ( ) + + sin + + ( ) sin + + cos sin + cos + + cosv+ cosv + cosv + cosv cosv + cosv cos v sin v.. 0. True 88 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

42 Section 7.: Trigonometric Identities ( )( ) sin + cos sin + cos sin + + cos sin + cos tan tan sec tan tan + tan + sec tan tan + + tan sec tan sec + tan sec tan tan tan sin sin + + cos ( + )( + ) ( )( ) cos + + ( + )( ) ( ) cos (tan + cot ) + sin + cos csc sin (cot + tan ) + cos + sin sec tan cot cos tan cos tan u cos u u u u u u sin u sin csc cos sin cos sin u cos u u u u u u sin u (sec )(sec ) sec tan + (csc )(csc ) csc cot + 9. csc cot 9. (sec + tan )(sec tan ) sec tan 0... sec tan + tan ( ) + ( tan ) + tan sec + cot ( ) + ( cot ) + cot csc 0.. (csc + cot )(csc cot ) csc cot cos ( + tan ) cos sec cos cos 89 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

43 Chapter 7: Analytic Trigonometry.. ( cos )( + cot ) sin csc sin sin ( + cos ) + ( cos ) sin + + cos + sin + cos sin + cos (sin + cos ) cosu cscu cot u sin u sin u cosu + cosu sin u + cosu cos u sin u( + cos u) sin u sin u( + cos u) sin u + cosu sin + cos sin + cos + cos (sin + cos ) + cos tan cos + cot sin sin cos + cos sin sin + cos cos sin sec sec sec (sec ) (tan + ) tan tan + tan csc csc csc (csc ) (cot + )cot cot + cot sinu secu tan u cosu cosu sin u + sin u cosu + sin u sin u cos u( + sin u) cos u cos u( + sin u) cosu + sinu cos + cos 9sec tan sec + sec tan sec + (sec tan ) sec + + sec cos sin + + ( sin )(+ sin ) + ( ) + sin cos ( cos )( + cos ) (+ cos ) + + tanv cot v tanv cot v + cotv cot v cotv cot v cot v + cot v 90 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

44 Section 7.: Trigonometric Identities. cscv sin v cscv + + sin v sinv sin v + sinv sin v sinv + sinv sec sec + sec sec sec sec + sec sec.. 7. sec cos + + csc + tan + tan tan csc csc csc + cot cot csc + csc cot (csc + ) cot cot (csc + ) cot csc csc csc csc + csc csc csc csc + csc csc csc csc + csc sin cos ( sin ) + cos + cos v sin v cos v( sin v) v v v v sin + sin + cos cos v( sin v) v v v sinv + cos v( sin v) sinv cos v( sin v) ( sin v) cos v( sin v) cos v secv cosv + sin v cos v+ ( + sin v) + + sinv cosv cos v(+ sin v) cos v+ + sin v+ sin v cos v( + sin v) + sinv cos v( + sin v) ( + sin v) cos v( + sin v) cos v secv sin cot 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

45 Chapter 7: Analytic Trigonometry... sin cos + + (sec tan ) ( )( + ) + cos ( ) sec sec tan + tan sin + cos cos cos cos + sin cos ( sin )( sin ) sin (sin )(sin ) ( sin )( + sin ) + (csc cot ) csc csc cot + cot cos + sin sin sin sin + cos sin ( cos )(cos ) cos (cos )( cos ) ( cos )(+ cos ) tan cot + + cos sin + cos sin ( sin )( + sin ) + cot tan + tan cot + + cos sin + sin ( sin ) cos ( cos ) cos cos sin sin + cos ( cos ) sin cos cos ( cos ) ( cos )(sin cos ) + + cos ( cos ) sin + + cos sin cos tan + cot 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

46 Section 7.: Trigonometric Identities tan sin ( + sin ) + cos cos ( + sin ) sin + sin + cos cos ( + sin ) + cos ( + sin ) sec (cos ) cos cos sin (cos sin ) cos sin cos tan tan tan + sec tan sec + tan + (sec ) tan + (sec ) tan (sec ) tan + (sec ) tan + tan (sec ) + sec sec + + tan (sec sec ) sec sec + sec sec sec + tan (sec ) sec sec (sec ) + tan (sec ) sec (sec )(sec + tan ) (sec ) sec tan (sec ) sec sec tan + sec ( cos ) + ( + cos ) + ( + cos ) ( + cos ) + sin cos ( + cos ) sin cos sin cos sin ( sin ) sin + sin ( + ) + tan cot tan + cot + sin cos sin + cos sin cos sin cos cos sec sec + cos cos + cos + cos cos + cos sin + cos 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

47 Chapter 7: Analytic Trigonometry... sin u cosu tan u cot u + cosu sin u + tan u+ cot u sin u cosu + cosu sin u sin u cos u cosusin u + sin u+ cos u cosusin u sin u cos u + sin u cos u+ u+ u sin ( cos ) sin u+ sin u sin u sin u cosu tan u cot u cos sin + cos u u u + cos u tan u+ cot u sin u cosu + cosu sin u sin u cos u cosusin u + cos u sin u+ cos u cosusin u sin u cos u + cos u sin u+ cos u + sec + tan cot cos ( + sin ) tansec sec + sec + cos + + cos sin tan tan + tan tan + tan + tan tan + + tan + tan + tan sec sec cos cot cot + cos + cos + cot csc cot + cos csc csc cos sin sin + cos sin sin cos + cos sin + cos sec csc sec csc seccsc seccsc seccsc csc sec 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

48 Section 7.: Trigonometric Identities sin tan cos cot sin cos sin cos sin cos sin cos ( ) sin cos tan sec cos sin tan tan + cot + sin + cos seccsc ( + sin ) ( sin ) ( sin )(+ sin ) + + sin ( + sin ) sin cos cos cos tansec sec sec + + sec ( + sin ) sin sec ( + sin ) cos + cos + cos + sin (+ sin )(+ sin ) sin ( sin )(+ sin ) ( + sin ) sin ( + sin ) cos + + (sec + tan ) sin ( sin )( + sin ) sin cos sec 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

49 Chapter 7: Analytic Trigonometry (secv tan v) + csc v(sec v tan v) sec v secvtan v+ tan v+ csc v(secv tan v) sec v sec vtan v+ sec v csc v(secv tan v) sec v secvtanv csc v(sec v tan v) sec v(sec v tan v) csc v(sec v tan v) secv cscv cos v sin v sinv cos v sin v cos v tanv v v+ v + v secv secv sin v + cos v cos v cos v+ sin v cos v cos v sec tan tan tan cos v+ sin v sin + cos seccsc cos + sin seccsc sin + cos + + sin + cos (sin + cos )(sin sin cos + cos ) sin + cos cos ( + cos )(sin + cos ) cos cos ( + cos )(sin + cos cos ) sin cos ( + cos )( cos ) ( + cos )( cos ) sec tan cos sin cos sin tan sin cos cos sin cos sin cos ( ) cos cos sin cos sin cos 9 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

50 Section 7.: Trigonometric Identities cos sin sin cos sin sin + cot + sin + cot + cos (cos ) cos (sin + cos ) + cos sin (cos sin )(cos sin ) (cos sin ) (cos sin )(cos sin ) + cos sin cos + sin cos sin sin sin sin cos cos cos sin cos sin cos tan cot ( + sin ) + cos ( + sin ) + (+ sin ) cos ( + sin ) sin + cos ( + sin ) + cos + + sin cos + + sin + cos ( + sin ) + ( sin ) sin ( sin ) cos (+ sin ) + sin ( + sin ) + cos ( + sin ) sin ( + sin ) ( + sin )( + cos ) sin (+ sin ) ( + cos ) + sin ( + cos ) + (+ cos ) sin ( + cos ) + + cos + cos + sin (+ cos ) + sin + + cos sin + + cos (cos ) + cos + cos + sin (+ cos ) + cos + + sin (+ cos ) + cos ( + cos ) + sin ( + cos ) cos (+ cos ) ( + cos )( + sin ) cos (+ cos ) + + sec + tan ( a + bcos ) + ( a bsin ) a sin + ab + b cos + a cos ab + b sin a (sin + cos ) + b (sin + cos ) a + b (acos ) + a (cos sin ) a sin cos + a ( cos cos sin + sin ) ( sin cos cos cos sin sin ) ( cos cos sin sin ) ( cos sin ) a + + a + + a + a a () 97 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

51 Chapter 7: Analytic Trigonometry tanα + tan tanα + tan 9. cotα + cot + tanα tan tanα + tan tan + tanα tanα tan tanα tan (tanα + tan ) tanα + tan tanα tan 9. (tanα + tan )( cotαcot ) + (cotα + cot )( tanα tan ) tanα + tan tanαcotαcot tan cotαcot + cotα + cot cotα tanα tan cot tanα tan tanα + tan cot cotα + cotα + cot tan tanα (sinα + cos ) + (cos + sin α)(cos sin α ) sin α + sinαcos + cos + cos sin α sin cos + cos α cos (sinα + cos ) (sinα cos ) + (cos + sin α)(cos sin α) sin α sinαcos + cos + cos sin α α + α sin cos cos cos (sin cos ) ln sec ln ln ln ln tan ln ln ln 98. ln sec + tan + ln sec tan ln sec + tan sec tan ln 0 ( ) ln sec tan ln tan + tan 99. f sin tan sin sin cos sin cos cos cos cos cos cos sec cos g 00. f cos cot cos cos sin cos sin sin sin sin sin sin csc sin g 97. ln + + ln ( ) ln + cos cos ln cos ln sin ln 98 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

52 Section 7.: Sum and Difference Formulas 0. f ( ) + ( )( + ) ( + ) ( + ) sin cos ( + ) ( sin + cos ) ( + ) ( + ) 0 ( + ) 0 g 0. f tan + sec sin ( ) cos ( ) g ( ) 00sec sec 00 cos cos 00 cos cos cos 00 cos cos cos 00( + cos ) cos 00( + sin ) cos 0. ( ) 0. It ( csc )( sec + tan) A cscsec csc sec + tan A csc sec tan A + csc sec A + ( ) A sin ( A ) A cos cos 0. Answers will vary. 0. sin + cos tan + sec + cot csc Answers will vary. Section 7.. ( ) + ( ).. a. + + b. 9. y, r, (Quadrant ) cosα r.. 7. False 8. False 9. False 0. True 99 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

53 Chapter 7: Analytic Trigonometry.... sin sin + sin cos + cos sin + ( + ) sin sin sin cos cos sin ( ) 7 cos cos + cos cos sin sin ( ) 7 tan tan + tan + tan tan tan cosº cos( 0º + º ) cos0º cos º sin0º sin º ( + ). sin0º sin ( 0º + º ) sin 0º cos º + cos0º sin º + ( + ) 7. tanº tan(º 0º ) tan º tan 0º + tan º tan 0º tan9º tan(º + 0º ) tanº + tan 0º tanº tan 0º + ( ) Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

54 Section 7.: Sum and Difference Formulas sin sin + sin cos + cos sin + ( + ) 9 tan tan + tan + tan tan tan cot cot tan tan + tan + tan tan tan tan tan tan + tan sec cos cos cos cos + sin sin sin 0º cos0º + cos0º sin0º sin(0º + 0º ) sin 0º. sin 0º cos80º cos0º sin80º sin(0º 80º ) sin( 0º ) sin 0º. cos70º cos 0º sin 70º sin 0º cos(70º + 0º) cos 90º 0. cos0º cos0º + sin 0º sin0º cos(0º 0º ) cos 0º 70 Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

55 Chapter 7: Analytic Trigonometry tan0º + tanº tan0ºtanº tan º 7. tan ( 0º + º ) tan 0º tan0º + tan 0º tan0º tan 0º 8. tan ( 0º 0º ). sin α, 0 < α < cos, < < 0 y α (, ) y y (, y) sin cos cos sin sin sin sin cos cos sin sin cos + cos cos cos cos + sin sin cos cos cos cos sin cos + cos sin sin sin 8 sin +, > 0 9, > 0 cos α, tanα y +, y < 0 y 0, y < 0 y sin, tan a. sin( α + ) sinα cos + cosα sin + b. cos( α + ) cosα cos sinα sin Copyright 0 Pearson Education, Inc. Publishing as Prentice Hall

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Principles of Mathematics 12 Answer Key, Contents 185

Principles of Mathematics 12 Answer Key, Contents 185 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB = Chapter 5 Chapter 5 Exercise 5. minor arc = 50 60.4 0.8cm. major arc = 5 60 4.7 60.cm. minor arc = 60 90 60 6.7 8.cm 4. major arc = 60 0 60 8 = 6 = cm 5. minor arc = 50 5 60 0 = cm 6. major arc = 80 8

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION Complete Solutions Manual for Calculus of a Single Variable, Volume Calculus ELEVENTH EDITION Cengage Learning. All rights reserved. No distribution allowed without epress authorization. Ron Larson The

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα