Elektronske komponente

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Elektronske komponente"

Transcript

1 Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014.

2 Sadržaj 1 Kalem

3 Sadržaj Kalem 1 Kalem

4 - definicije Kalem Kalem je pasivna elektronska komponenta koja se tipično sastoji od većeg broja navojaka provodne žice. Prolazak struje kroz kalem uspostavlja magnetno polje 1. i i Magnetno polje se predstavlja koncentričnim linijama magnetnog fluksa Φ. Jedinica je Veber (Wb). 1 Detaljnije o magnetizmu u materijalu iz predmeta Elektrotehnika II.

5 - definicije Gustina fluksa i induktivnost Kalem Gustina magnetnog fluksa B predstavlja broj linija fluksa Φ koje prolaze kroz površinu A: B = Φ A (T = Wb m 2 ) (1) Jedinica je Tesla. Induktivnost kalema L predstavlja meru promene magnentog fluksa dφ usled promene struje kroz kalem di L : L = N dφ di L (H), (2) pri čemu je N broj navojaka kalema. Jedinica za induktivnost je Henri.

6 - definicije Indukovani napon Kalem Promena magnetnog fluksa dφ u vremenu t indukuje na krajevima kalema napon (Faradejev zakon): v L = N dφ dt. (3) Kada promenu magnetnog fluksa izaziva struja koja protiče kroz kalem, polaritet indukovanog napona je takav da se suprotstavlja protoku struje (Lencov zakon). Iz (2) i (3) je: v L = L di L dt. (4)

7 - definicije Konstantna struja Kalem I I Za konstantnu struju kroz kalem, magnento polje je konstantno.

8 Sadržaj Kalem 1 Kalem

9 Impulsna pobuda Povorka naponskih impulsa Kalem v in 0 0 t Amplituda impulsa je V IN. Učestanost impulsa je f = 1/T, pri čemu je T perioda impulsa. Faktor iskorišćenja periode (Duty Cycle) je: D = t W 100 (%) T Impulsi se kontinualno ponavljaju sa periodom T.

10 Osnovno kolo Na kalem L 1 = 100 µh se, preko otpornika R 1 = 100 Ω, dovodi povorka impulsa v in. R 1 100R v L L 1 v in 100uH Neka je amplituda impulsa V IN = 1 V, perioda T = 10 µs, a faktor iskorišćenja periode D = 50%.

11 Pobudni napon v in, napon na kalemu v L i struja kroz kalem i L 1.0V 0.9V 0.8V 0.7V 0.6V v 0.5V in 0.4V 0.3V 0.2V 0.1V 0.0V 1.0V 0.8V 0.6V 0.4V 0.2V v L 0.0V -0.2V -0.4V -0.6V -0.8V -1.0V 10mA 9mA 8mA 7mA i L 5mA 6mA 4mA 3mA 2mA 1mA 0mA 0µs 1µs 2µs 3µs 4µs 5µs 6µs 7µs 8µs 9µs t

12 Mehanizam Neposredno po dovo denju impulsa, na krajevima kalema se indukuje napon V L = V IN, koji teži da se suprotstavi protoku struje kroz kalem - u prvom trenutku struja kroz kalem je jednaka nuli. Zbog kontinualnog prisustva impulsa, struja kroz kalem počinje da raste, a indukovani napon opada, sve dok ne postane jednak nuli. Struja kroz kalem postaje konstantna i njenu vrednost ograničava otpornik R 1. Kalem se električno pojavljuje kao kratak spoj i kolo ulazi u stacionarno stanje. Da bi kroz kalem protekla struja, na njegovim krajevima se prvo uspostavlja napon!

13 Po dovo denju impulsa i i Magnetno polje se širi.

14 Vremenska konstanta Struja raste eksponencijalno, tako da je: i L = V t IN 1 e τ, (5) R 1 pri čemu je τ vremenska konstanta kalema: τ = L 1 R 1 (s) (6) Kolo ulazi u stacionarno stanje nakon vremena t 5τ. Tada je struja kroz kalem konstantna i iznosi I L = V IN /R 1 (u primeru 1 V/100 Ω = 10 ma).

15 Energija U stacionarnom stanju kalem je akumulirao energiju W L u magnetnom polju: W L = 1 2 L 1I 2 L (J). (7) Akumulirana energija je posledica rada koji je uložio izvor da bi uspostavio konstantnu struju kroz kalem.

16 Mehanizam Neposredno po prestanku dejstva impulsa, na krajevima kalema se indukuje napon V L = V IN, koji teži da održi prethodno uspostavljeno stacionarno stanje - zbog toga je negativan! Zbog odsustva impulsa, struja kroz kalem počinje da opada, a indukovani napon raste 2, sve dok ne postane jednak nuli. Struja kroz kalem postaje jednaka nuli i kolo ulazi u stacionarno stanje. Napomena: indukcija negativnog napona na kalemu je posebno opasna jer može oštetiti izvor! 2 Raste od vrednosti V IN do nule.

17 Po prestanku impulsa i i Magnetno polje kolabira.

18 Mehanizam Struja opada eksponencijalno, tako da je: i L = V t IN e τ, (8) R 1 Kolo ulazi u stacionarno stanje nakon vremena t 5τ. Tada je struja kroz kalem jednaka nuli. Napon na kalemu je tako de jednak nuli.

19 Primer Za razmatrano kolo: τ = L = = 1 µs R Kalem će biti u stacionarnom stanju za vreme: t 5τ = 5 µs Ako je vreme trajanja impulsa t W kraće od 5τ, kalem neće biti u stacionarnom stanju, već će struja kroz njega varirati.

20 Opšta formula U opštem slučaju se trenutna vrednost struje kroz kalem može opisati pomoću izraza: i L = I 2 + (I 1 I 2 ) e t τ (9) gde su I 1 i I 2 početna i krajnja vrednost struje kroz kalem, respektivno.

21 Nazivna struja (Rated Current) Maksimalna struja koja može da pro de kroz kalem naziva se nazivna ili nominalna struja. Njena vrednost pre svega zavisi od vrste materijala od koje je napravljen kalem, kao i od geometrijskih parametara. Ako kroz kalem pro de struja veća od nominalne, na kalemu će doći do značajne disipacije snage, odnosno pregrevanja. Posledica po električno kolo može biti prekid.

22 Izvor i prekidač S 1 L V S0 R Nakon zatvaranja prekidača uspostavlja se stacionarno stanje, na isti način kao i u kolu sa impulsnom pobudom.

23 Izvor i prekidač - princip svećice Prilikom otvaranja prekidača dolazi do nagle promene vrednosti struje u kolu od V S0 /R do nule. Na prekidaču se, usled velike razlike potencijala na njegovim krajevima, može pojaviti varničenje! S 1 L V L V S0 R

24 Sadržaj Kalem 1 Kalem

25 Odziv kondenzatora na naizmenični signal Prostoperiodični naizmenični signal (sin) - AC i in I IN 0 amplituda vreme t -I IN perioda T Signal se ponavlja sa periodom T. Učestanost signala je: f = 1 T

26 Idealni kalem sa naizmeničnom pobudom Neka je, u idealnom slučaju, R 1 = 0. Na kalem se dovodi prostoperiodični naizmenični signal i in : i in = I IN sin(ωt) i in L 1 Kružna učestanost ω je: ω = 2πf = 2π T

27 Trenutna vrednost struje Prema definiciji je trenutna vrednost napona na kalemu: v L = L di L dt (10) napon na kalemu će biti maksimalan kada je promena struje u vremenu maksimalna napon na kalemu će biti jednak nuli kada je promena struje u vremenu jednaka nuli

28 Da bi kroz kalem protekla struja, na njegovim krajevima najpre mora da se pojavi napon!

29 Reaktansa kalema (Inductive Reactance) Ako se poveća učestanost, struja kroz kalem će se brže menjati u vremenu. Zbog toga će napon da poraste: f ω di L /dt v L Ako se poveća induktivnost, porašće i napon: L v L Može se definisati mera otpora koji kalem pruža promeni struje kroz njega. Ona je, na osnovu prethodnih zaključaka, direktno proporcionalna učestanosti i induktivnosti. Naziva se reaktansa kalema: X L = ωl = 2πfL (Ω) (11)

30 Reaktansa kalema - granični slučajevi Kada je induktivnost fiksna: Za niske učestanosti reaktansa ima malu vrednost. Za jednosmerni signal ω = 0 X L = 0, pa se kalem u kolu pojavljuje kao kratak spoj. Za visoke učestanosti reaktansa ima veliku vrednost. Za naizmenični signal visoke učestanosti ω X L, pa se kalem u kolu pojavljuje kao prekid!

31 Reaktansa kalema - primer Neka je L = 10 µh. Za f = 10 Hz je: X L = 2πfL 62.8 mω Za f = 100 MHz je: X L = 2πfL 6.28 kω

32 Snaga Idealni kalem ne disipira energiju. Tokom jedne poluperiode naizmeničnog signala energija se akumulira u kalemu u obliku magnetnog polja. Tokom druge poluperiode se akumulirana energija vraća izvoru. Teorijski gledano, nema gubitka energije na kalemu. Trenutna snaga je: p L = v L i L Kada je trenutna snaga pozitivna, kalem akumulira energiju. Kada je trenutna snaga negativna, kalem vraća energiju.

33 Efektivna vrednost naizmeničnog signala (Root Mean Square rms) Efektivna vrednost naizmeničnog napona jednaka je vrednosti jednosmernog napona koji na istom opterećenju disipira istu snagu kao i taj naizmenični napon. Slično važi i za struju. Efektivna vrednost sinusnog signala predstavlja njegovu amplitudu podeljenu sa 2: V eff = V IN 2 I eff = I IN 2

34 Reaktivna snaga (Reactive Power) Kod kalema se definiše reaktivna snaga: P Lr = V Leff I Leff (VAR) (12) Jedinica je VAR - Volt-Amper-Reaktivni. Za reaktivnu snagu važe relacije: P Lr = V 2 Leff X L P Lr = I 2 Leff X L

35 Impedansa (Impedance) Oblik Omovog zakona za naizmenične signale: Z = V I (13) Veličine I i V su fazori 3. Veličina Z se naziva impedansa. Formalno gledano, impedansa nije fazor, jer se u opštem slučaju ne menja prostoperiodično u vremenu. Kod otpornika su struja i napon u fazi, pa je: Z R = V R I R = V R 0 I R 0 = V R I R = R (14) 3 Detaljnije o fazorima u delu o kondenzatorima.

36 Fazni pomeraj kod kalema Kod kalema napon ne prati struju u vremenu, već u odnosu na nju ide ispred (prednjači). Drugim rečima, napon i struja su me dusobno fazno pomereni i to tako da napon prednjači u odnosu na struju za 90.

37 Impedansa kalema Pošto napon prednjači u odnosu na struju za 90, impedansa kalema je: Z L = V L I L = V L 90 I L 0 = V L I L (90 0 ) = X L 90 (15) U kompleksnom obliku je: Z L = jx L (16) pri čemu je X L reaktansa kalema definisana izrazom (11).

38 Ekvivalentna serijska otpornost (Equivalent Series Resistance) Žica u namotajima realnog kalema reaguje na promenu struje, tako što disipira energiju u vidu toplote. To znači da, za razliku od idealnog, kod realnog kalema postoji gubitak energije. Ovaj gubitak se može električno opisati uvo denjem otpornika na red sa idealnim kalemom. L Imaginarna osa R S jx L R S Realna osa Otpornost R S se naziva ekvivalentna serijska otpornost (ESR).

39 Gubici u namotajima Gubici u namotajima se mogu opisati preko tangensa ugla gubitaka δ: Imaginarna osa jx L R S Realna osa tan δ = R S X L = R S ωl Tangens ugla gubitaka naziva se još i faktor disipacije (Dissipation factor) i označava sa DF. (17)

40 Faktor dobrote (Quality Factor) Recipročna vrednost tangensa ugla gubitaka naziva se faktor dobrote kalema Q: Q = 1 tan δ = ωl (18) R S Faktor dobrote je u stvari odnos reaktivne snage idealnog kalema i snage disipirane na njegovim namotajima: Q = P I 2 Lr Leff X L = P RS I 2 Leff R = X L = ωl (19) S R S R S

41 Faktor dobrote Šta pokazuje faktor dobrote? Da bi kalem mogao da radi na višim učestanostima, potrebno je da ima što manju ekvivalentnu serijsku otpornost. Proizvo dači u tehničkim specifikacijama obično daju minimalnu i tipičnu vrednost faktora dobrote, pri odre denim učestanostima (npr. za 100 MHz).

42 Sadržaj Kalem 1 Kalem

43 Parazitna kapacitivnost Zbog postojanja navojaka, realni kalem poseduje i parazitnu kapacitivnost.

44 Parazitna kapacitivnost (Stray Capacitance) Ova kapacitivnost se može električno opisati uvo denjem kondenzatora paralelno sa idealnim kalemom i njegovom ekvivalentnom serijskom otpornošću. L C P R S

45 Impedansa kola Reaktansa i impedansa 4 kondenzatora su: X C = 1 ωc = 1 2πfC (Ω) (20) pri čemu je C kapacitivnost kondenzatora. Impedansa kola je: Z C = jx C (21) Z = (Z RS + Z L ) Z CP (22) 4 Detaljnije u delu o kondenzatorima.

46 Impedansa kola Ekvivalentna serijska otpornost ima značajan uticaj na impedansu samo na niskim učestanostima. Već na srednjim učestanostima se može smatrati da je Z L Z RS, pa se kolo svodi na paralelnu vezu kalema i kondenzatora: Z Z L Z CP (23) Reaktansa kondenzatora opada sa porastom učestanosti: X C 1 f Reaktansa kalema raste sa porastom učestanosti: X L f

47 Rezonantna učestanost Na rezonantnoj učestanosti f r će reaktanse kondenzatora i kalema biti jednake.

48 Rezonantna učestanost Rezonantna učestanost se odre duje iz uslova: X L = X CP = 2πf r L = 1 2πf r C P, odakle je: 1 f r = 2π (24) LC P

49 Impedansa Do rezonantne učestanosti dominira induktivna priroda impedanse. Iznad rezonantne učestanosti dominira kapacitivna priroda impedanse. Kod kalema sa jezgrom, ekvivalentno kolo uključuje i otpornost koja predstavlja gubitke u jezgru. U zavisnosti od jezgra, ova otpornost se može pojaviti redno ili paralelno.

50 Zavisnost impedanse realnog kalema od učestanosti

51 Eksperimentalne karakteristike realnog kalema

52 Iznad rezonantne učestanosti kalem počinje da se ponaša kao kondenzator! Rezonantna učestanost implicitno zavisi od konstrukcije kalema. Područje primene odre denog tipa kalema ograničeno je rezonantnom učestanošću.

53 Završne napomene Dodatna literatura Kalem Radi konciznosti, u ovoj prezentaciji nisu dati detalji vezani za izvo denje pojedinih izraza. Te informacije se mogu naći u dodatnom materijalu za predmet Elektronske komponente, kao i u materijalima iz predmeta Elektrotehnika I i II. Zainteresovani studenti se mogu osloniti i na slobodno dostupnu inostranu literaturu, npr. Lessons in Electric Circuits. Tako de, predstavljanje kompleksnih brojeva je uprošćeno u odnosu na formalne definicije, koje se mogu pronaći u literaturi iz premeta Matematika I.

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Snaga naizmenicne i struje

Snaga naizmenicne i struje Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču

Διαβάστε περισσότερα

Snage u ustaljenom prostoperiodičnom režimu

Snage u ustaljenom prostoperiodičnom režimu Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem. 4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam (AP301-302) Magnetno polje dva pravolinijska provodnika (AP312-314) Magnetna indukcija (AP329-331) i samoindukcija (AP331-337) Prvi zapisi o magentizmu se nalaze još u starom veku: pronalazak rude gvožđa

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Sinhrone mašine

ELEKTRIČNE MAŠINE Sinhrone mašine ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE. Osnovni pojmovi

NAIZMENIČNE STRUJE. Osnovni pojmovi NAZMENČNE STRUJE Osnovni pojovi Naizenične struje i naponi su električne veličine koje toko vreena enjaju ser. Prea vreenskoj zavisnosti jačine struje, naizenične struje se ogu podeliti na sledeći način:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Odredivanje odziva u električnim kolima

Odredivanje odziva u električnim kolima Odredivanje odziva u električnim kolima 28. oktobar 2015 Kada se u električno kolo uključe naponski ili strujni generatori dolazi do promjene stanja kola. Na elementima kola se javljaju naponi, a kroz

Διαβάστε περισσότερα

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 Predavanje VI II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs ? Kalemovi Kalem je elektronska komponenta koja poseduje reaktivnu otpornost direktno proporcionalnu

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ

ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ 1. Napisati vektorski izraz za Kulonov zakon i objasni značenje pojedinih članova izraza. Kada važi Kulonov zakon? 2. Šta je Faradejev kavez? 3. Kako se može detektovati

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ELEKTROMAGNETNA INDUKCIJA

ELEKTROMAGNETNA INDUKCIJA ELEKTROMAGNETNA INDUKCIJA Nakon Erstedovog otkrića elektromagnetizma, Faradej je 1821. god. konstruisao eksperimentalni uređaj - prvi elektromotor Električni provodnik rotirao je oko fiksiranog magneta

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Kratak uvod. EM projekti i komponente mogu se uvesti (importovati) u MW Circuit Solver na tri načina: 1. Iz biblioteke gotovih EM komponenti.

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003.

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003. PVI DO ISPIT I OSNOV KTOTHNIK 8 jun 003 Napomene Ispit traje 0 minuta Nije ozvoqeno napu{tawe sale 90 minuta o po~etka ispita Dozvoqena je upotreba iskqu~ivo pisaqke i ovog lista papira Kona~ne ogovore

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Laboratorijski praktikum Z. Prijic Univerzitet u Nišu Elektronski fakultet u Nišu Katedra za mikroelektroniku Predavanja 2015. Sadržaj 1 Mere bezbednosti Uvodne napomene Referentni

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Aneta Prijić Poluprovodničke komponente

Aneta Prijić Poluprovodničke komponente Aneta Prijić Poluprovodničke komponente Modul Elektronske komponente i mikrosistemi (IV semestar) Studijski program: Elektrotehnika i računarstvo Broj ESPB: 6 JFET (Junction Field Effect Transistor) -

Διαβάστε περισσότερα

Diode. Z. Prijić predavanja Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku. Elektronske komponente. Diode.

Diode. Z. Prijić predavanja Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku. Elektronske komponente. Diode. Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku Z. Prijić predavanja 2014. Definicija Dioda je naziv za poluprovodničku komponentu koja ima dva priključka, anodu i katodu. Električni

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Jednosmerne i naizmenične struje

Jednosmerne i naizmenične struje Glava 5 Jednosmerne i naizmenične struje 51 Intenzitet i gustina struje Električna struja predstavlja usmereno kretanje naelektrisanja Pokretljiva naelektrisanja koja mogu obrazovati električnu struju

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Drugi zakon termodinamike

Drugi zakon termodinamike Drugi zakon termodinamike Uvod Drugi zakon termodinamike nije univerzalni prirodni zakon, ne važi za sve sisteme, naročito ne za neobične sisteme (mikrouslovi, svemirski uslovi). Zasnovan je na zajedničkom

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

ISTORIJAT 2. Veća cena Složenije i skuplje održavanje Manja pouzdanost i kraći vek trajanja

ISTORIJAT 2. Veća cena Složenije i skuplje održavanje Manja pouzdanost i kraći vek trajanja JEDNOSMERNI POGONI ISTORIJAT 1 Prvi realizovani električni pogoni. Prvi DC motor konstruisao je Jacobi 1838. godine u Petrogradu, a motor je pokretao čamac s 14 osoba po reci Nevi. Namotaji statora i rotora

Διαβάστε περισσότερα

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006.

Dr Miodrag Popović. Osnovi elektronike. za studente Odseka za softversko inženjerstvo. Elektrotehnički fakultet Beograd, 2006. Dr Miodrag Popović Osnovi elektronike za studente Odseka za softversko inženjerstvo Elektrotehnički fakultet Beograd, 2006. Sadržaj 1. UOD... 1 1.1 Šta je to elektrotehnika?... 1 1.2 Oblasti elektrotehnike:...

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva

2. Data je žičana otpornička mreža na slici. Odrediti ekvivalentnu otpornost između krajeva 1. U kolu stalne struje sa slike 1 poznato je R1 = 2R = 200 Ω, Rp> R1, E1 =-E2 = 10 V i E3 = E4 = 10 V. izračunati Ig (Ig 0) tako da snage koje razvijaju idealni naponski generator E3 i idealni strujni

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA

FIZIČKO-TEHNIČKA MERENJA: ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA : ELEKTRIČNA KOLA NEOPHODNA ZA RAD SENZORA, ŠUM U SENZORIMA I KOLIMA UVOD Signal koji generiše senzor je ili suviše slab ( ~ μv) ili sadrži šum ili sadrži neželjene komponente (DC nivo) ili nije u odgovarajućoj

Διαβάστε περισσότερα

POJAČAVAČI VELIKIH SIGNALA (drugi deo)

POJAČAVAČI VELIKIH SIGNALA (drugi deo) OJAČAAČI ELIKIH SIGNALA (drugi deo) Obrtači faze 0. decembar 0. ojačavači velikih signala 0. decembar 0. ojačavači velikih signala Obrtači faze Diferencijalni pojačavač sa nesimetričnim ulazom. Rc Rb Rb

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA

DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA DINAMIČKI MODEL (SIMETRIČNOG) TROFAZNOG ASINHRONOG MOTORA bs as cs bs br cr br ar br ar cr ar cr bs cs as 1856-1943 cs as Asinhroni (indukcioni) motor Patent iz1888 godine Naponska jednačina: u u R i t

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

5. Predavanje. October 25, 2016

5. Predavanje. October 25, 2016 5. Predavanje October 25, 2016 1 Električne struje Za razliku od struja koje su vidljive: morske struje, rečne struje, strujanje vazduha itd., električne struje nisu direktno vidljive, već se celokupno

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE

ELEKTRODINAMIKA ELEMENTI STRUJNOG KRUGA IZVOR ELEKTRIČNE ENERGIJE ELEKTRODINAMIKA ELEKTRIČNA STRUJA I PRIPADNE POJAVE ELEMENTI STRUJNOG KRUGA Strujni krug je sastavljen od: izvora u kojemu se neki oblik energije pretvara u električnu energiju, spojnih vodiča i trošila

Διαβάστε περισσότερα

Peta vežba Vektorsko upravljanje asinhronim motorom

Peta vežba Vektorsko upravljanje asinhronim motorom Peta vežba Vektorsko upravljanje asinhronim motorom Uvod Cilj vežbe je da se prouče statičke i dinamičke karakteristike pogona sa vektorskim upravljanjem. Kroz ovu vežbu, studenti će imati priliku da prouče

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα