Elektronske komponente

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Elektronske komponente"

Transcript

1 Elektronske komponente Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014.

2 Sadržaj 1 Kalem

3 Sadržaj Kalem 1 Kalem

4 - definicije Kalem Kalem je pasivna elektronska komponenta koja se tipično sastoji od većeg broja navojaka provodne žice. Prolazak struje kroz kalem uspostavlja magnetno polje 1. i i Magnetno polje se predstavlja koncentričnim linijama magnetnog fluksa Φ. Jedinica je Veber (Wb). 1 Detaljnije o magnetizmu u materijalu iz predmeta Elektrotehnika II.

5 - definicije Gustina fluksa i induktivnost Kalem Gustina magnetnog fluksa B predstavlja broj linija fluksa Φ koje prolaze kroz površinu A: B = Φ A (T = Wb m 2 ) (1) Jedinica je Tesla. Induktivnost kalema L predstavlja meru promene magnentog fluksa dφ usled promene struje kroz kalem di L : L = N dφ di L (H), (2) pri čemu je N broj navojaka kalema. Jedinica za induktivnost je Henri.

6 - definicije Indukovani napon Kalem Promena magnetnog fluksa dφ u vremenu t indukuje na krajevima kalema napon (Faradejev zakon): v L = N dφ dt. (3) Kada promenu magnetnog fluksa izaziva struja koja protiče kroz kalem, polaritet indukovanog napona je takav da se suprotstavlja protoku struje (Lencov zakon). Iz (2) i (3) je: v L = L di L dt. (4)

7 - definicije Konstantna struja Kalem I I Za konstantnu struju kroz kalem, magnento polje je konstantno.

8 Sadržaj Kalem 1 Kalem

9 Impulsna pobuda Povorka naponskih impulsa Kalem v in 0 0 t Amplituda impulsa je V IN. Učestanost impulsa je f = 1/T, pri čemu je T perioda impulsa. Faktor iskorišćenja periode (Duty Cycle) je: D = t W 100 (%) T Impulsi se kontinualno ponavljaju sa periodom T.

10 Osnovno kolo Na kalem L 1 = 100 µh se, preko otpornika R 1 = 100 Ω, dovodi povorka impulsa v in. R 1 100R v L L 1 v in 100uH Neka je amplituda impulsa V IN = 1 V, perioda T = 10 µs, a faktor iskorišćenja periode D = 50%.

11 Pobudni napon v in, napon na kalemu v L i struja kroz kalem i L 1.0V 0.9V 0.8V 0.7V 0.6V v 0.5V in 0.4V 0.3V 0.2V 0.1V 0.0V 1.0V 0.8V 0.6V 0.4V 0.2V v L 0.0V -0.2V -0.4V -0.6V -0.8V -1.0V 10mA 9mA 8mA 7mA i L 5mA 6mA 4mA 3mA 2mA 1mA 0mA 0µs 1µs 2µs 3µs 4µs 5µs 6µs 7µs 8µs 9µs t

12 Mehanizam Neposredno po dovo denju impulsa, na krajevima kalema se indukuje napon V L = V IN, koji teži da se suprotstavi protoku struje kroz kalem - u prvom trenutku struja kroz kalem je jednaka nuli. Zbog kontinualnog prisustva impulsa, struja kroz kalem počinje da raste, a indukovani napon opada, sve dok ne postane jednak nuli. Struja kroz kalem postaje konstantna i njenu vrednost ograničava otpornik R 1. Kalem se električno pojavljuje kao kratak spoj i kolo ulazi u stacionarno stanje. Da bi kroz kalem protekla struja, na njegovim krajevima se prvo uspostavlja napon!

13 Po dovo denju impulsa i i Magnetno polje se širi.

14 Vremenska konstanta Struja raste eksponencijalno, tako da je: i L = V t IN 1 e τ, (5) R 1 pri čemu je τ vremenska konstanta kalema: τ = L 1 R 1 (s) (6) Kolo ulazi u stacionarno stanje nakon vremena t 5τ. Tada je struja kroz kalem konstantna i iznosi I L = V IN /R 1 (u primeru 1 V/100 Ω = 10 ma).

15 Energija U stacionarnom stanju kalem je akumulirao energiju W L u magnetnom polju: W L = 1 2 L 1I 2 L (J). (7) Akumulirana energija je posledica rada koji je uložio izvor da bi uspostavio konstantnu struju kroz kalem.

16 Mehanizam Neposredno po prestanku dejstva impulsa, na krajevima kalema se indukuje napon V L = V IN, koji teži da održi prethodno uspostavljeno stacionarno stanje - zbog toga je negativan! Zbog odsustva impulsa, struja kroz kalem počinje da opada, a indukovani napon raste 2, sve dok ne postane jednak nuli. Struja kroz kalem postaje jednaka nuli i kolo ulazi u stacionarno stanje. Napomena: indukcija negativnog napona na kalemu je posebno opasna jer može oštetiti izvor! 2 Raste od vrednosti V IN do nule.

17 Po prestanku impulsa i i Magnetno polje kolabira.

18 Mehanizam Struja opada eksponencijalno, tako da je: i L = V t IN e τ, (8) R 1 Kolo ulazi u stacionarno stanje nakon vremena t 5τ. Tada je struja kroz kalem jednaka nuli. Napon na kalemu je tako de jednak nuli.

19 Primer Za razmatrano kolo: τ = L = = 1 µs R Kalem će biti u stacionarnom stanju za vreme: t 5τ = 5 µs Ako je vreme trajanja impulsa t W kraće od 5τ, kalem neće biti u stacionarnom stanju, već će struja kroz njega varirati.

20 Opšta formula U opštem slučaju se trenutna vrednost struje kroz kalem može opisati pomoću izraza: i L = I 2 + (I 1 I 2 ) e t τ (9) gde su I 1 i I 2 početna i krajnja vrednost struje kroz kalem, respektivno.

21 Nazivna struja (Rated Current) Maksimalna struja koja može da pro de kroz kalem naziva se nazivna ili nominalna struja. Njena vrednost pre svega zavisi od vrste materijala od koje je napravljen kalem, kao i od geometrijskih parametara. Ako kroz kalem pro de struja veća od nominalne, na kalemu će doći do značajne disipacije snage, odnosno pregrevanja. Posledica po električno kolo može biti prekid.

22 Izvor i prekidač S 1 L V S0 R Nakon zatvaranja prekidača uspostavlja se stacionarno stanje, na isti način kao i u kolu sa impulsnom pobudom.

23 Izvor i prekidač - princip svećice Prilikom otvaranja prekidača dolazi do nagle promene vrednosti struje u kolu od V S0 /R do nule. Na prekidaču se, usled velike razlike potencijala na njegovim krajevima, može pojaviti varničenje! S 1 L V L V S0 R

24 Sadržaj Kalem 1 Kalem

25 Odziv kondenzatora na naizmenični signal Prostoperiodični naizmenični signal (sin) - AC i in I IN 0 amplituda vreme t -I IN perioda T Signal se ponavlja sa periodom T. Učestanost signala je: f = 1 T

26 Idealni kalem sa naizmeničnom pobudom Neka je, u idealnom slučaju, R 1 = 0. Na kalem se dovodi prostoperiodični naizmenični signal i in : i in = I IN sin(ωt) i in L 1 Kružna učestanost ω je: ω = 2πf = 2π T

27 Trenutna vrednost struje Prema definiciji je trenutna vrednost napona na kalemu: v L = L di L dt (10) napon na kalemu će biti maksimalan kada je promena struje u vremenu maksimalna napon na kalemu će biti jednak nuli kada je promena struje u vremenu jednaka nuli

28 Da bi kroz kalem protekla struja, na njegovim krajevima najpre mora da se pojavi napon!

29 Reaktansa kalema (Inductive Reactance) Ako se poveća učestanost, struja kroz kalem će se brže menjati u vremenu. Zbog toga će napon da poraste: f ω di L /dt v L Ako se poveća induktivnost, porašće i napon: L v L Može se definisati mera otpora koji kalem pruža promeni struje kroz njega. Ona je, na osnovu prethodnih zaključaka, direktno proporcionalna učestanosti i induktivnosti. Naziva se reaktansa kalema: X L = ωl = 2πfL (Ω) (11)

30 Reaktansa kalema - granični slučajevi Kada je induktivnost fiksna: Za niske učestanosti reaktansa ima malu vrednost. Za jednosmerni signal ω = 0 X L = 0, pa se kalem u kolu pojavljuje kao kratak spoj. Za visoke učestanosti reaktansa ima veliku vrednost. Za naizmenični signal visoke učestanosti ω X L, pa se kalem u kolu pojavljuje kao prekid!

31 Reaktansa kalema - primer Neka je L = 10 µh. Za f = 10 Hz je: X L = 2πfL 62.8 mω Za f = 100 MHz je: X L = 2πfL 6.28 kω

32 Snaga Idealni kalem ne disipira energiju. Tokom jedne poluperiode naizmeničnog signala energija se akumulira u kalemu u obliku magnetnog polja. Tokom druge poluperiode se akumulirana energija vraća izvoru. Teorijski gledano, nema gubitka energije na kalemu. Trenutna snaga je: p L = v L i L Kada je trenutna snaga pozitivna, kalem akumulira energiju. Kada je trenutna snaga negativna, kalem vraća energiju.

33 Efektivna vrednost naizmeničnog signala (Root Mean Square rms) Efektivna vrednost naizmeničnog napona jednaka je vrednosti jednosmernog napona koji na istom opterećenju disipira istu snagu kao i taj naizmenični napon. Slično važi i za struju. Efektivna vrednost sinusnog signala predstavlja njegovu amplitudu podeljenu sa 2: V eff = V IN 2 I eff = I IN 2

34 Reaktivna snaga (Reactive Power) Kod kalema se definiše reaktivna snaga: P Lr = V Leff I Leff (VAR) (12) Jedinica je VAR - Volt-Amper-Reaktivni. Za reaktivnu snagu važe relacije: P Lr = V 2 Leff X L P Lr = I 2 Leff X L

35 Impedansa (Impedance) Oblik Omovog zakona za naizmenične signale: Z = V I (13) Veličine I i V su fazori 3. Veličina Z se naziva impedansa. Formalno gledano, impedansa nije fazor, jer se u opštem slučaju ne menja prostoperiodično u vremenu. Kod otpornika su struja i napon u fazi, pa je: Z R = V R I R = V R 0 I R 0 = V R I R = R (14) 3 Detaljnije o fazorima u delu o kondenzatorima.

36 Fazni pomeraj kod kalema Kod kalema napon ne prati struju u vremenu, već u odnosu na nju ide ispred (prednjači). Drugim rečima, napon i struja su me dusobno fazno pomereni i to tako da napon prednjači u odnosu na struju za 90.

37 Impedansa kalema Pošto napon prednjači u odnosu na struju za 90, impedansa kalema je: Z L = V L I L = V L 90 I L 0 = V L I L (90 0 ) = X L 90 (15) U kompleksnom obliku je: Z L = jx L (16) pri čemu je X L reaktansa kalema definisana izrazom (11).

38 Ekvivalentna serijska otpornost (Equivalent Series Resistance) Žica u namotajima realnog kalema reaguje na promenu struje, tako što disipira energiju u vidu toplote. To znači da, za razliku od idealnog, kod realnog kalema postoji gubitak energije. Ovaj gubitak se može električno opisati uvo denjem otpornika na red sa idealnim kalemom. L Imaginarna osa R S jx L R S Realna osa Otpornost R S se naziva ekvivalentna serijska otpornost (ESR).

39 Gubici u namotajima Gubici u namotajima se mogu opisati preko tangensa ugla gubitaka δ: Imaginarna osa jx L R S Realna osa tan δ = R S X L = R S ωl Tangens ugla gubitaka naziva se još i faktor disipacije (Dissipation factor) i označava sa DF. (17)

40 Faktor dobrote (Quality Factor) Recipročna vrednost tangensa ugla gubitaka naziva se faktor dobrote kalema Q: Q = 1 tan δ = ωl (18) R S Faktor dobrote je u stvari odnos reaktivne snage idealnog kalema i snage disipirane na njegovim namotajima: Q = P I 2 Lr Leff X L = P RS I 2 Leff R = X L = ωl (19) S R S R S

41 Faktor dobrote Šta pokazuje faktor dobrote? Da bi kalem mogao da radi na višim učestanostima, potrebno je da ima što manju ekvivalentnu serijsku otpornost. Proizvo dači u tehničkim specifikacijama obično daju minimalnu i tipičnu vrednost faktora dobrote, pri odre denim učestanostima (npr. za 100 MHz).

42 Sadržaj Kalem 1 Kalem

43 Parazitna kapacitivnost Zbog postojanja navojaka, realni kalem poseduje i parazitnu kapacitivnost.

44 Parazitna kapacitivnost (Stray Capacitance) Ova kapacitivnost se može električno opisati uvo denjem kondenzatora paralelno sa idealnim kalemom i njegovom ekvivalentnom serijskom otpornošću. L C P R S

45 Impedansa kola Reaktansa i impedansa 4 kondenzatora su: X C = 1 ωc = 1 2πfC (Ω) (20) pri čemu je C kapacitivnost kondenzatora. Impedansa kola je: Z C = jx C (21) Z = (Z RS + Z L ) Z CP (22) 4 Detaljnije u delu o kondenzatorima.

46 Impedansa kola Ekvivalentna serijska otpornost ima značajan uticaj na impedansu samo na niskim učestanostima. Već na srednjim učestanostima se može smatrati da je Z L Z RS, pa se kolo svodi na paralelnu vezu kalema i kondenzatora: Z Z L Z CP (23) Reaktansa kondenzatora opada sa porastom učestanosti: X C 1 f Reaktansa kalema raste sa porastom učestanosti: X L f

47 Rezonantna učestanost Na rezonantnoj učestanosti f r će reaktanse kondenzatora i kalema biti jednake.

48 Rezonantna učestanost Rezonantna učestanost se odre duje iz uslova: X L = X CP = 2πf r L = 1 2πf r C P, odakle je: 1 f r = 2π (24) LC P

49 Impedansa Do rezonantne učestanosti dominira induktivna priroda impedanse. Iznad rezonantne učestanosti dominira kapacitivna priroda impedanse. Kod kalema sa jezgrom, ekvivalentno kolo uključuje i otpornost koja predstavlja gubitke u jezgru. U zavisnosti od jezgra, ova otpornost se može pojaviti redno ili paralelno.

50 Zavisnost impedanse realnog kalema od učestanosti

51 Eksperimentalne karakteristike realnog kalema

52 Iznad rezonantne učestanosti kalem počinje da se ponaša kao kondenzator! Rezonantna učestanost implicitno zavisi od konstrukcije kalema. Područje primene odre denog tipa kalema ograničeno je rezonantnom učestanošću.

53 Završne napomene Dodatna literatura Kalem Radi konciznosti, u ovoj prezentaciji nisu dati detalji vezani za izvo denje pojedinih izraza. Te informacije se mogu naći u dodatnom materijalu za predmet Elektronske komponente, kao i u materijalima iz predmeta Elektrotehnika I i II. Zainteresovani studenti se mogu osloniti i na slobodno dostupnu inostranu literaturu, npr. Lessons in Electric Circuits. Tako de, predstavljanje kompleksnih brojeva je uprošćeno u odnosu na formalne definicije, koje se mogu pronaći u literaturi iz premeta Matematika I.

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

MAGNETNO SPREGNUTA KOLA

MAGNETNO SPREGNUTA KOLA MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Snaga naizmenicne i struje

Snaga naizmenicne i struje Snaga naizmenicne i struje Zadatak električne mreže u okviru elektroenergetskog sistema (EES) je prenos i distribucija električne energije od izvora do potrošača, uz zadovoljenje kriterijuma koji se tiču

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Snage u ustaljenom prostoperiodičnom režimu

Snage u ustaljenom prostoperiodičnom režimu Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

NAIZMENI ČNE STRUJE NAIZMENIČNE

NAIZMENI ČNE STRUJE NAIZMENIČNE NAIZMENI ČNE STRUJE NAIZMENIČNE Osnovni pojmovi Pored struja konstantne jačine (vremenski stalne struje), postoje i struje koje su promenljive u toku vremena (menjaju jačinu, ili smer, ili i jačinu i smer

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem.

θ a ukupna fluks se onda dobija sabiranjem ovih elementarnih flukseva, tj. njihovim integraljenjem. 4. Magnetski fluks i Faradejev zakon magnetske indukcije a) Magnetski fluks Ako je magnetsko polje kroz neku konturu površine θ homogeno (kao na lici 5), tada je fluks kroz tu konturu jednak Φ = = cosθ

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Pozitivna poluperioda Negativna poluperioda. Period. Osnovni pojmovi o naizmjeničnim veličinama

Pozitivna poluperioda Negativna poluperioda. Period. Osnovni pojmovi o naizmjeničnim veličinama Osnovni pojmovi o naizmjeničnim veličinama U praktičnoj primjeni, dominantni značaj imaju električne struje i naponi čije se karakteristične veličine periodično mjenjaju po sinusoidalnom zakonu Električni

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Sinhrone mašine

ELEKTRIČNE MAŠINE Sinhrone mašine ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam

Elektromagnetizam. Elektromagnetizam. Elektromagnetizam. Elektromagnetizam (AP301-302) Magnetno polje dva pravolinijska provodnika (AP312-314) Magnetna indukcija (AP329-331) i samoindukcija (AP331-337) Prvi zapisi o magentizmu se nalaze još u starom veku: pronalazak rude gvožđa

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj 1 MOSFET - model za male signale 2 Struja kroz i disipacija snage Model za male

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE. Osnovni pojmovi

NAIZMENIČNE STRUJE. Osnovni pojmovi NAZMENČNE STRUJE Osnovni pojovi Naizenične struje i naponi su električne veličine koje toko vreena enjaju ser. Prea vreenskoj zavisnosti jačine struje, naizenične struje se ogu podeliti na sledeći način:

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Osnove mikroelektronike

Osnove mikroelektronike Osnove mikroelektronike Z. Prijić T. Pešić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2006. Sadržaj Bipolarni tranzistor 1 Bipolarni tranzistor 2 Ebers-Molov model Strujno-naponske

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Odredivanje odziva u električnim kolima

Odredivanje odziva u električnim kolima Odredivanje odziva u električnim kolima 28. oktobar 2015 Kada se u električno kolo uključe naponski ili strujni generatori dolazi do promjene stanja kola. Na elementima kola se javljaju naponi, a kroz

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 Predavanje VI II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs ? Kalemovi Kalem je elektronska komponenta koja poseduje reaktivnu otpornost direktno proporcionalnu

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

4 Izvodi i diferencijali

4 Izvodi i diferencijali 4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1.

l = l = 0, 2 m; l = 0,1 m; d = d = 10 cm; S = S = S = S = 5 cm Slika1. . U zračnom rasporu d magnetnog kruga prema slici akumulirana je energija od,8 mj. Odrediti: a. Struju I; b. Magnetnu energiju akumuliranu u zračnom rasporu d ; Poznato je: l = l =, m; l =, m; d = d =

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ

ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ ПИТАЊА ЗА УСМЕНИ ИСПИТ ИЗ ЕЛЕКТРОТЕХНИКЕ 1. Napisati vektorski izraz za Kulonov zakon i objasni značenje pojedinih članova izraza. Kada važi Kulonov zakon? 2. Šta je Faradejev kavez? 3. Kako se može detektovati

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003.

PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003. PVI DO ISPIT I OSNOV KTOTHNIK 8 jun 003 Napomene Ispit traje 0 minuta Nije ozvoqeno napu{tawe sale 90 minuta o po~etka ispita Dozvoqena je upotreba iskqu~ivo pisaqke i ovog lista papira Kona~ne ogovore

Διαβάστε περισσότερα

ELEKTROMAGNETNA INDUKCIJA

ELEKTROMAGNETNA INDUKCIJA ELEKTROMAGNETNA INDUKCIJA Nakon Erstedovog otkrića elektromagnetizma, Faradej je 1821. god. konstruisao eksperimentalni uređaj - prvi elektromotor Električni provodnik rotirao je oko fiksiranog magneta

Διαβάστε περισσότερα

Diferencijabilnost funkcije više promenljivih

Diferencijabilnost funkcije više promenljivih Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama

Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Kratak uvod. EM projekti i komponente mogu se uvesti (importovati) u MW Circuit Solver na tri načina: 1. Iz biblioteke gotovih EM komponenti.

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Elektronske komponente

Elektronske komponente Elektronske komponente Laboratorijski praktikum Z. Prijic Univerzitet u Nišu Elektronski fakultet u Nišu Katedra za mikroelektroniku Predavanja 2015. Sadržaj 1 Mere bezbednosti Uvodne napomene Referentni

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Analiza rada Teslinog transformatora

Analiza rada Teslinog transformatora Analiza rada Teslinog transformatora Sadržaj: 1. Uvod... 3 2. Konstrukcija Teslinog transformatora... 4 2.1 Napojni transformator... 6 2.2 Iskrište sa LC oscilatornim kolom... 7 2.3 Visokonaponski transformator

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα