Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number)"

Transcript

1 ΚΛΙΜΑΚΕΣ ΧΡΟΝΟΥ Διάστημα ισχύος ( 0 h UTC ) TAI - UTC Άλλες κλίμακες 1980 Jan Jul s TAI - GPS Time = 19 s 1981 Jul Jul s 1982 Jul Jul s 1983 Jul Jul s TDT - TAI = s 1985 Jul Jan s 1988 Jan Jan s 1990 Jan Jan s 1991 Jan Jul s TT - TAI = s 1992 Jul Jul s 1993 Jul Jul s 1994 Jul Jan s 1996 Jan Jul s 1997 Jul Jan s 1999 Jan Jan s 2006 Jan Jan s 2009 Jan Jul s 2012 Jul Jul s 2015 Jul s 16 / 17 sec 19 sec sec UTC μεταβλητό GPSTime σταθερό TAI σταθερό TT 1

2 Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number) Για τον υπολογισμό του αριθμού Ιουλιανής Ημέρας από την ημερομηνία χρησιμοποιούνται οι ακόλουθες μεταβλητές: Υ = αριθμός του έτους Μ = αριθμός του μήνα ( 1 για Ιανουάριο, 2 για Φεβρουάριο κλπ) D = ημέρα του μήνα (με το αντίστοιχο δεκαδικό μέρος αν η χρονική στιγμή δεν είναι 0 h ) Στο σημείο αυτό γίνεται η εξής τροποποίηση: Αν Μ = 1 ή Μ = 2, τότε αντικαθιστούμε το Υ με Υ 1 και το Μ με Μ+12 Στα επόμενα, η συνάρτηση ΙΝΤ(x) δηλώνει το ακέραιο μέρος της μεταβλητής x. 1. Α = ΙΝΤ(Υ/100) 2. Β = 2 Α + ΙΝΤ(Α/4) Σημείωση: αν η ημερομηνία αναφέρεται στο Ιουλιανό Ημερολόγιο, τότε Β = 0 Ο ζητούμενος Αριθμός Ιουλιανής Ημέρας (JD) δίνεται από την τιμή της παράστασης: 3. JD = ΙΝΤ( (Υ )) + ΙΝΤ( (Μ+1)) + D + Β Η Τροποποιημένη Ιουλιανή Ημέρα (MJD) δίνεται από την σχέση: MJD = JD Ο Αριθμός Ιουλιανής Ημέρας μπορεί να αναφέρεται είτε στην κλίμακα του Παγκόσμιου Χρόνου (UT1) είτε στην κλίμακα του Γήινου Χρόνου (ΤΤ) Παράδειγμα 1: 12 h UT1 της 1 ης Ιανουαρίου 2000 (εποχή J2000) Y = 2000, M = 1, D = 1.5 και μετά την τροποποίηση: Υ = 1999, Μ = 13 A = 19, B = 13 JD = = Παράδειγμα 2: 19 h 27 m 34 s.59 ΤΤ της 21 ης Μαρτίου 2015 Y = 2015, M = 3, D = A = 20, B = 13 JD (ΤΤ) = =

3 ΜΕΤΑΠΤΩΣΗ Για τον υπολογισμό της μετάπτωσης από την χρονική στιγμή JD 1(ΤΤ) στην χρονική στιγμή JD 2(ΤΤ), ορίζουμε τα διαστήματα: T = (JD ) / και t = (JD 2 JD 1 ) / Υπολογίζουμε τις γωνίες στροφής από τις σχέσεις: ζ = ( Τ Τ 2 ) t + ( Τ) t t 3 θ = ( T T 2 ) t + ( T) t t 3 z = ( Τ Τ 2 ) t + ( Τ) t t 3 Ο πίνακας στροφής Ρ δίνεται από το γινόμενο: Ρ = R 3 (-z) R 2 (θ) R 3 (-ζ) ή, αναλυτικότερα: cos z sin z 0 P = sin z cos z 0 1 cosθ 0 sin θ cos ζ sin ζ sin ζ cosζ sin θ 0 cos θ Οι ορθογώνιες ουρανογραφικές συντεταγμένες S 2 (x,y,z) την στιγμή JD 2 δίνονται από την σχέση: S 2 = P S 1, όπου S 1 οι αντίστοιχες συντεταγμένες την στιγμή JD 1. Οι ορθογώνιες συντεταγμένες (x,y,z) και οι σφαιρικές συντεταγμένες (α,δ) συνδέονται με τις σχέσεις: x y z cosα cosδ = sin α cosδ και α = arctan( sin δ δ = arcsin z y x ) 3

4 ΚΛΟΝΗΣΗ Σύμφωνα με την θεωρία της κλόνησης του 1980, η επίδραση της κλόνησης υπολογίζεται σε δύο συνιστώσες: κλόνηση κατά την λόξωση Δε και κλόνηση κατά το (εκλειπτικό) μήκος Δψ. Η κλόνηση κατά την λόξωση Δε πρέπει να προστεθεί στην μέση λόξωση της εκλειπτικής ε 0 για να προκύψει η αληθής λόξωση ε. Δηλαδή : ε = ε 0 + Δε Η μέση λόξωση ε 0 δίνεται από την σχέση: ε 0 = Τ Τ Τ 3 όπου T = (JD (ΤΤ) ) / (η JD στην κλίμακα του Γήινου Χρόνου ΤΤ) Η εξίσωση του Ισημερινού σημείου δίνεται από την παράσταση: Eq. E = Δψ cos(ε 0 + Δε) / 15 = Δψ cosε / 15 όπου η Δψ εκφράζεται σε δευτερόλεπτα τόξου (arcsec) και η Eq. E σε δευτερόλεπτα χρόνου (sec). Ο πίνακας Ν, που περιγράφει την επίδραση της κλόνησης, είναι γινόμενο τριών επί μέρους στροφών ως εξής: Ν = R 1 (-ε ) R 3 (-Δψ) R 1 (ε 0 ) ή, αναλυτικότερα: N = cos ε sin ε cos Δψ sin Δψ 0 sin Δψ cos Δψ 0 0 sin ε cos ε cosε 0 sin ε 0 0 sin ε 0 cos ε 0 Οι συνιστώσες της κλόνησης την χρονική στιγμή JD (στην κλίμακα ΤΤ) υπολογίζονται με την ακόλουθη διαδικασία: 1) T = (JD (ΤΤ) ) / ) υπολογίζονται οι εξής πέντε γωνίες: Μέση ανωμαλία της Σελήνης l Μέση ανωμαλία της Γης l Όρισμα του πλάτους της Σελήνης F Μέση αποχή της Σελήνης από τον Ήλιο D Μήκος του ανιόντος δεσμού της Σελήνης με την εκλειπτική Ω από τους ακόλουθους τύπους (όπου N r δηλώνει πλήρεις κύκλους 360 μοιρών): l = ' (1325 r ' ) T T T 3 l' = ' ( 99 r ' ) T T T 3 F = 93 16' (1342 r ' ) T T T 3 D= ' (1236 r ' ) T T T 3 Ω= ' ( 5 r ' ) T T T 3 3) Οι συνιστώσες της κλόνησης υπολογίζονται από το άθροισμα των όρων που εμφανίζονται στον επόμενο πίνακα. Η συνιστώσα Δψ προκύπτει από άθροισμα των ημιτόνων των όρων, ενώ η Δε από το άθροισμα των συνημιτόνων των ίδιων όρων. Οι γωνίες που χρησιμοποιούνται είναι ένας γραμμικός συνδυασμός των πέντε βασικών γωνιών που υπολογίστηκαν ανωτέρω. 4

5 Συνδυασμός γωνιών ΠΙΝΑΚΑΣ ΠΕΡΙΟΔΙΚΩΝ ΟΡΩΝ ΤΗΣ ΚΛΟΝΗΣΗΣ Δίνονται οι 42 σημαντικότεροι όροι, σε μονάδες (Σύμφωνα με την 1980 IAU Theory of Nutation ) Συντελεστής ημιτόνου (Δψ) Συντελεστής συνημιτόνου (Δε) l l F D Ω Σταθερός όρος Γραμμικός Σταθερός όρος Γραμμικός T T T T T T T T T T T T T T T T T T T T T T

6 ΜΕΤΑΤΡΟΠΕΣ ΚΛΙΜΑΚΩΝ ΧΡΟΝΟΥ Ο Παγκόσμιος Χρόνος UT1 υπολογίζεται από τον Συντονισμένο Χρόνο UTC με την προσθήκη της διόρθωσης DUT. Αυτή δίνεται (με προσέγγιση 0.02 sec) με τα ωριαία σήματα συγχρονισμού αλλά ακριβέστερη τιμή της αναφέρεται στα δελτία της IERS (βλέπε σελ. 13, στήλη UT1 UTC). Η σχέση του Συντονισμένου Χρόνου (UTC) με τις κλίμακες του Ατομικού (ΤΑΙ) και του Γήινου Χρόνου (ΤΤ) δίνεται στην σελ. 1. Ο μέσος αστρικός χρόνος Greenwich θ την χρονική στιγμή JD (στην κλίμακα του Παγκόσμιου Χρόνου UT1) υπολογίζεται από την σχέση: θ = 18 h 41 m 50 s s d + 6 s d 2-1 s d 3 όπου d = JD Ο αληθής αστρικός χρόνος Greenwich θ αλ υπολογίζεται από τον μέσο αστρικό χρόνο θ με την προσθήκη της εξίσωσης του Ισημερινού σημείου (Eq. E): θ αλ = θ + Eq. E Οι θέσεις των σωμάτων του Ηλιακού συστήματος εκφράζονται συνήθως στην κλίμακα του Βαρυκεντρικού Δυναμικού Χρόνου (TDB). Ο χρόνος αυτός είναι πρακτικά ίσος με τον ΤΤ. Όταν απαιτείται μεγάλη ακρίβεια, μπορεί να υπολογιστεί από την σχέση: TDB = TT + 0 s sin(l ) + 0 s sin (2 l ) όπου l είναι η μέση ανωμαλία της Γης, που δίνεται, με ικανοποιητική προσέγγιση, από τον τύπο: l = d (d = JD ) 6

7 Αστρικός χρόνος Greenwich στις 0 h UT1 για το έτος 2015 Ημερομηνία Μέσος Αληθής Eq.E. Julian Date Μην Ημ h m s h m s s Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb Feb

8 Αστρικός χρόνος Greenwich στις 0 h UT1 για το έτος 2015 Ημερομηνία Μέσος Αληθής Eq.E. Julian Date Μην Ημ h m s h m s s Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr Apr

9 Αστρικός χρόνος Greenwich στις 0 h UT1 για το έτος 2015 Ημερομηνία Μέσος Αληθής Eq.E. Julian Date Μην Ημ h m s h m s s May May May May May May May May May May May May May May May May May May May May May May May May May May May May May May May Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun Jun

10 Αστρικός χρόνος Greenwich στις 0 h UT1 για το έτος 2015 Ημερομηνία Μέσος Αληθής Eq.E. Julian Date Μην Ημ h m s h m s s Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Jul Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug Aug

11 Αστρικός χρόνος Greenwich στις 0 h UT1 για το έτος 2015 Ημερομηνία Μέσος Αληθής Eq.E. Julian Date Μην Ημ h m s h m s s Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Sep Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct Oct

12 Αστρικός χρόνος Greenwich στις 0 h UT1 για το έτος 2015 Ημερομηνία Μέσος Αληθής Eq.E. Julian Date Μην Ημ h m s h m s s Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Jan

13 ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΤΗΣ ΓΗΣ ser7/finals.daily - ftp://maia.usno.navy.mil/ser7/finals.daily Date MJD X p σx p Y p σy p UT1-UTC σ(ut1-utc) " " " " s s I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P (Απόσπασμα του αρχείου finals.daily της 3 ης Μαρτίου 2015) Η σήμανση Ι δηλώνει τιμές του Bulletin A της IERS, ενώ η σήμανση Ρ δηλώνει προβλεπόμενες τιμές 13

14 ΠΑΡΑΔΕΙΓΜΑ ΧΡΗΣΗΣ ΤΩΝ ΠΙΝΑΚΩΝ Από κάποιο τόπο παρατηρήθηκε το άστρο ι Gem να μεσουρανεί άνω, νότια του ζενίθ, την χρονική στιγμή 18 h 51 m 40 s.612 UTC της 5 ης Μαρτίου 2015, σε ζενίθια απόσταση 16 g Την στιγμή της παρατήρησης η ατμοσφαιρική πίεση ήταν 1000 mbar και η θερμοκρασία 20 C. Στον κατάλογο Tycho2 δίνονται οι ακόλουθες πληροφορίες για το άστρο (TYC ): Θέση (ICRF, J2000): α = 7 h 25 m 43 s.5959, δ = Ίδια κίνηση: μ α = arcsec/year, μ δ = arcsec/year Ακτινική ταχύτητα: V r = km/sec Ετήσια παράλλαξη: π = arcsec Ζητούνται οι αστρονομικές συντεταγμένες Λ, Φ του τόπου, ανηγμένες στον Συμβατικό Πόλο (CIO). Διαδικασία υπολογισμών Α. Προσδιορισμός χρονικής στιγμής παρατήρησης στις κλίμακες UT1, TΤ & μέσο αστρικό: 1. Από σελ. 13 Πινάκων: DUT = UT1 UTC - 0 s.532 UT1 = 18 h 51 m 40 s.080 JD = Από σελ. 1: TT = UTC + 35 s + 32 s.184 = 18 h 52 m 47 s.796 JD (TΤ) = και t = (JD (TΤ) J2000) / = Από σελ. 8 (με παρεμβολή): θ = 5 h 44 m 28 s.106 (μέσος αστρικός χρόνος Greenwich) Β. Υπολογισμός των φαινόμενων συντεταγμένων του άστρου (α,δ) την στιγμή της παρατήρησης: 3. Για την αναγωγή των συντεταγμένων στο γεώκεντρο θα υπολογιστούν η ετήσια παράλλαξη και η ετήσια αποπλάνηση του άστρου. Από το πίνακα θέσης & ταχύτητας της Γης (αρχείο Earth_2015.txt στην ιστοσελίδα του μαθήματος), με παρεμβολή προκύπτει το διάνυσμα θέσης Ε και ταχύτητας Ε της Γης την στιγμή της παρατήρησης (δηλαδή JD (TΤ) = ): Ε = (Χ,Υ,Ζ) = ( , , AU) AU Ε = (Χ,Υ,Ζ ) = ( , , ) AU/day Σύμφωνα με τις Σημειώσεις (σελ. 59), το διάνυσμα q της βαρυκεντρικής θέσης είναι: ( , , ) Το διάνυσμα m κίνησης του άστρου είναι: ( , , ) rad/century Το μοναδιαίο γεωκεντρικό διάνυσμα p (ίδια κίνηση + ετήσια παράλλαξη) είναι: ( , , ) Το τελικό γεωκεντρικό διάνυσμα p 2 ( + ετήσια αποπλάνηση) είναι: ( , , ) 4. Επίδραση της μετάπτωσης από την εποχή J2000 μέχρι την στιγμή της παρατήρησης JD (TΤ) : Από τους τύπους της σελ. 3: ζ = , θ = , z = και ο πίνακας Ρ της μετάπτωσης είναι: 14

15 Επίδραση της κλόνησης την στιγμή JD (TΤ) : Από τους τύπους της σελ. 4 τα τροχιακά ορίσματα είναι: l = l = F = D = Ω = Μέση λόξωση της εκλειπτικής ε 0 = = Δψ = arcsec Δε = arcsec Αληθής λόξωση (ε 0 + Δε) = = Ο πίνακας Ν της κλόνησης είναι: Ο συνολικός πίνακας αναγωγής NPB είναι: Η φαινόμενη θέση του άστρου p 3 (ορθογώνιες συντεταγμένες x,y,z) είναι: ( , , ) και οι αντίστοιχες σφαιρικές συντεταγμένες είναι: α = 7 h 26 m 41 s.173 δ =

16 Γ. Υπολογισμός του αστρονομικού πλάτους Άνω μεσουράνηση νότια του ζενίθ: Φ = δ + z 8. Διόρθωση της ζενίθιας απόστασης από την επίδραση της αστρονομικής διάθλασης: z 0 = 16 g = = R 0 = arcsec R = arcsec z = = Αστρονομικό πλάτος Φ = = Δ. Υπολογισμός του αστρονομικού μήκους Άνω μεσουράνηση: Λ = α θ αλ Εξίσωση των ισημεριών (Eq. E) = sec θ αλ = 5 h 44 m 28 s Ημερήσια αποπλάνηση (στην άνω μεσουράνηση): Δα = 0 s.0213 (cosφ / cosδ) = 0 s.0178 α = 7 h 26 m 41 s.191 Αστρονομικό μήκος Λ = 1 h 42 m 12 s.839 = 1 h = = Ε. Αναγωγή στον Συμβατικό Πόλο (CIO) Για την αναγωγή στον Συμβατικό Πόλο (CIO) χρησιμοποιούνται οι σχέσεις: Φ CIO = Φ (X p cosλ Y p sinλ) και Λ CIO = Λ (X p sinλ + Y p cosλ) tanφ 10. Από την σελ. 13 : X p = και Y p = , επομένως: Φ CIO = Φ = , Λ CIO = Λ =

17 17

18 ΠΗΓΕΣ ΔΕΔΟΜΕΝΩΝ 1. Ορθογώνιες συντεταγμένες και ταχύτητα της Γης Τα αντίθετα διανύσματα (δηλαδή η θέση και η ταχύτητα του Βαρύκεντρου ως προς τη Γη) αποστέλλονται ως απάντηση στο To: Subject: JOB (Περιεχόμενο μηνύματος)!$$sof _ADDR = ' ' COMMAND = '000' OBJ_DATA = 'NO' MAKE_EPHEM = 'YES' TABLE_TYPE = 'VEC' CENTER = REF_PLANE = 'FRAME' START_TIME = '2014-Dec-31 00:00:00' STOP_TIME = '2016-Jan-02 00:00:00' STEP_SIZE = '12 hours' REF_SYSTEM = 'J2000' OUT_UNITS = 'AU-D' VECT_TABLE = '2' VECT_CORR = 'NONE' TIME_DIGITS = 'FRACSEC' CSV_FORMAT = 'NO' VEC_LABELS = 'YES' CA_TABLE_TYPE= 'STANDARD'!$$EOF 2. Φαινόμενες συντεταγμένες του Ήλιου Αποστέλλονται ως απάντηση στο To: Subject: JOB (Περιεχόμενο μηνύματος)!$$sof _ADDR = ' ' COMMAND = '010' OBJ_DATA = 'NO' MAKE_EPHEM = 'YES' TABLE_TYPE = 'OBS' CENTER = START_TIME = '2014-Dec-31 00:00:00' STOP_TIME = '2016-Jan-02 00:00:00' STEP_SIZE = '12 hours' QUANTITIES = '2' CAL_FORMAT = 'BOTH' ANG_FORMAT = 'HMS' APPARENT = 'AIRLESS TIME_DIGITS = 'MIN' CA_TABLE_TYPE= 'STANDARD'!$$EOF 18

19 3. Φαινόμενες συντεταγμένες του Πολικού (α UMi) Ιστοσελίδα του Astronomisches Recheninstitut Heidelberg: Επιλογές: Object: Polaris (ή HIP 11767) Start date - End date Interval of generation: 24 (hours) Output: (Old) equinox system Output format: HTML Προσοχή: Οι συντεταγμένες δίδονται για τις 0 h ΤΤ, όχι 0 h UT1. 4. Αστρικός Χρόνος (GMST και GAST) Ιστοσελίδα του Astronomisches Recheninstitut Heidelberg: 5. Προσανατολισμός της Γης (κίνηση του Πόλου και UT1-UTC) Ιστοσελίδα του IERS Rapid Service/Prediction Center (USNO): Section: IERS Bulletin A finals.daily -- all EOP values for last 90 days (with 90 days of predictions) 19

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Διπλωματική εργασία Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Καλλιανού Φωτεινή Θέμα της εργασίας : Τα συστήματα και τα πλαίσια αναφοράς (ουράνια και γήινα) Οι κινήσεις

Διαβάστε περισσότερα

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD)

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Διαταραχές των κινήσεων της Γης Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Μεταβολή στην διεύθυνση του άξονα περιστροφής στον χώρο (μετάπτωση

Διαβάστε περισσότερα

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 45 6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 6.1 Εισαγωγή Ως τώρα έχουμε δεχθεί ότι οι ουρανογραφικές συντεταγμένες (α,δ) κάθε άστρου ή οι αστρονομικές συντεταγμένες (Λ,Φ) ενός συγκεκριμένου τόπου παραμένουν σταθερές,

Διαβάστε περισσότερα

Γεωδαιτική Αστρονομία

Γεωδαιτική Αστρονομία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Γεωδαιτική Αστρονομία Ρωμύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr ΑΝΑΚΕΦΑΛΑΙΩΣΗ Σφαιρικό σύστημα αναφοράς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 3: Συστήματα Χρόνου Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Σφαιρικό σύστημα αναφοράς

Σφαιρικό σύστημα αναφοράς Σφαιρικό σύστημα αναφοράς Ουρανογραφικό σύστημα αναφοράς Αστρονομικό σύστημα αναφοράς Οριζόντιο σύστημα αναφοράς Ισημερινό σύστημα αναφοράς Το τρίγωνο θέσης Αστρικός Χρόνος - 1 Ο αστρικός χρόνος είναι

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Ανατολή-δύση αστέρων Από την σχέση αυτή προκύπτουν δυο τιμές για την ωριαία γωνία Η Δ για την οποία ο αστέρας βρίσκεται στον

Διαβάστε περισσότερα

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 23 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συμβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονομάζεται κλίμακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Κύρια σημεία του μαθήματος Το σχήμα και οι κινήσεις της Γης Μετάπτωση και κλόνιση του άξονα της Γης Συστήματα χρόνου και ορισμοί: αστρικός χρόνος,

Διαβάστε περισσότερα

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 25 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συµβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονοµάζεται κλίµακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο

Διαβάστε περισσότερα

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 37 5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 5.1 Εισαγωγή Οι κύριες κινήσεις της Γης είναι: μια τροχιακή κίνηση του κέντρου μάζας γύρω από τον Ήλιο και μια περιστροφική κίνηση γύρω από τον άξονα που περνά από

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Σφαιρικό Τρίγωνο Σφαιρικό τρίγωνο λέγεται το μέρος της σφαίρας, το οποίο περικλείεται μεταξύ των τόξων τριών μέγιστων κύκλων, με την προϋπόθεση

Διαβάστε περισσότερα

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης Οι Κινήσεις της Γης. Eπιπτώσεις στα Συστήματα για τη ορυφορική Γεωδαισία Οι αρχαίοι θεωρούσαν τη Γη ακίνητη και κέντρο του σύμπαντος Η κίνηση της Γης TEPAK ορυφορική Γεωδαισία 6 ο Εξάμηνο 2011-12 Στην

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle 21 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ Ως τώρα είδαμε πως ορίζονται διάφορα συστήματα αναφοράς και πως οι συντεταγμένες, σε κάθε σύστημα, αλλάζουν ανάλογα με την διεύθυνση παρατήρησης, τον τόπο και τον χρόνο. Για να γίνουν

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 3 1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 1.1 Βασικές έννοιες Για τις εφαρμογές της Γεωδαιτικής Αστρονομίας είναι απαραίτητος ο ορισμός συστημάτων συντεταγμένων, στα οποία περιγράφονται οι θέσεις και

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Σύστημα γήινων συντεταγμένων Γήινος μεσημβρινός του τόπου Ο Μεσημβρινός του Greenwich (πρώτος κάθετος) Γεωγραφικό μήκος 0

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή

Διαβάστε περισσότερα

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω Παράρτημα Αʹ Στοιχεία αστρονομίας θέσης - πηγές δεδομένων Αʹ.1 Εισαγωγή Απαραίτητη προϋπόθεση για να αξιοποιηθούν όλα όσα αναπτύξαμε στο κυρίως βιβλίο είναι να γνωρίζουμε τη θέση στον ουρανό του αντικειμένου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα 1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση)

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 4ο εξάμηνο ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός της ς - Συνδέσεις των γεωεπιστημών

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος 2015. {COM(2015) 85 final}

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος 2015. {COM(2015) 85 final} ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ Βρυξέλλες, 26.2.2015 SWD(2015) 32 final ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ Εκθεση χώρας - Κύπρος 2015 {COM(2015) 85 final} Το παρόν έγγραφο δεν συνιστά επίσημη θέση της Ευρωπαϊκής

Διαβάστε περισσότερα

Data Analysis Examination

Data Analysis Examination Data Analysis Examination Page 1 of (D1) Διπλός Πάλσαρ Κάνοντας συστηµατικές έρευνες τις τελευταίες δεκαετίες, οι αστρονόµοι κατάφεραν να εντοπίσουν ένα µεγάλο πλήθος από πάλσαρς µε περίοδο περιστροφής

Διαβάστε περισσότερα

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές Ανακοίνωση για το µέλλον της ΚAΠ «Η ΚΑΠπροςτο2020: αντιµετωπίζοντας τις προκλήσεις στον τοµέα των τροφίµων, στους φυσικούς πόρους και στις περιφέρειες» Γ Γεωργίας και Αγροτικής Ανάπτυξης Ευρωπαϊκή Επιτροπή

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ

Διαβάστε περισσότερα

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Β.Π. Ουράνιος Ισηµερινός Ν.Π. Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη ΦΥΣΙΚΗ Η Φυσική είναι πειραματική επιστήμη Μέσα από το πείραμα ψάχνουμε κανονικότητες και αρχές (θεωρίες, νόμοι) ΕρώτημαΠείραμαΑποτέλεσμαΘεωρία Νόμος Φυσική 1 ΦΥΣΙΚΗ Η Φυσική χρησιμοποιεί μοντέλα Απλοποιημένη

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονομία

Εισαγωγή στην Αστρονομία Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ. Διπλωματική εργασία

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ. Διπλωματική εργασία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ Διπλωματική εργασία Ταυτόχρονος προσδιορισμός των αστρονομικών συντεταγμένων με τη μέτρηση οριζόντιων γωνιών αστέρων

Διαβάστε περισσότερα

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται ΚΕΦΑΛΑΙΟ 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΧΡΟΝΟΣ 2.1 Ουράνια σφαίρα-βασικοί ορισµοί Για να ορίσουµε τις θέσεις των αστέρων, τους θεωρούµε να προβάλλονται σαν σηµεία στην εσωτερική επιφάνεια µιας σφαίρας µε αυθαίρετη

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

Σωστές πρακτικές στη χρήση του GPS και του HEPOS: Εμπειρίες από τα 10 χρόνια λειτουργίας του συστήματος

Σωστές πρακτικές στη χρήση του GPS και του HEPOS: Εμπειρίες από τα 10 χρόνια λειτουργίας του συστήματος : Εμπειρίες από τα 10 χρόνια λειτουργίας του συστήματος Μιχάλης Γιαννίου Δημήτης Μάστορης Τμήμα Γεωδαιτικών Δεδομένων Διεύθυνση Ψηφιακών Συστημάτων, Υπηρεσιών & Προώθησης Προϊόντων Tel. +30-210-6505832,

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Με δεδομένο ότι η Ένταση της Ηλιακής ακτινοβολίας εκτός της ατμόσφαιρας

Διαβάστε περισσότερα

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέιο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΑΚΤΙΝΟΒΟΛΙΑ ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ Μάθημα 2o Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΔΕΥΤΕΡΑ 6/3/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Περίληψη Ηλιακή

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Τελεστές - Κατηγορίες Εκφράσεις - Κατηγορίες Υπολογισμός εκφράσεων Προτάσεις - Κατηγορίες

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ -A.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 19/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή Κεφάλαιο 5: 5.1. Εισαγωγή Η ηλιακή γεωμετρία περιγράφει τη σχετική κίνηση γης και ήλιου και αποτελεί ένα σημαντικό παράγοντα που υπεισέρχεται στον ενεργειακό ισολογισμό κτηρίων. Ανάλογα με τη γεωμετρία

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου.

Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου. Ενότητα 1 Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου. Την 21η Μαρτίου οι ουρανογραφικές συντεταγμένες του Ήλιου είναι α = 0 h, δ = 0 ενώ

Διαβάστε περισσότερα

Δορυφορικές τροχιές. Μετατροπές δορυφορικών συντεταγμένων. Εξίσωση του Kepler. Εξίσωση του Kepler Μ = Ε e sine, M E

Δορυφορικές τροχιές. Μετατροπές δορυφορικών συντεταγμένων. Εξίσωση του Kepler. Εξίσωση του Kepler Μ = Ε e sine, M E Δορυφορικές τροχιές Μετατροπές δορυφορικών συντεταγμένων Εξίσωση του Kepler Η Μέση Ανωμαλία Μ, για μη κυκλικές τροχιές δεν τιστοιχεί σε κάποια υλοποιήσιμη γωνία, καθώς δεν αφέρεται στο πραγματικό σώμα,

Διαβάστε περισσότερα

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω

Διαβάστε περισσότερα

Δορυφορικές Επικοινωνίες

Δορυφορικές Επικοινωνίες Δορυφορικές Επικοινωνίες Διάλεξη #3 Μηχανική των Τροχιών - 2 ο Μέρος Διδάσκων: Αθανάσιος Κανάτας Καθηγητής Πανεπιστηµίου Πειραιώς Περιεχόμενα Διάλεξης #3 Παρεκκλίσεις Τροχιών Τροχιές Σύγχρονες στον Ήλιο

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ. 1.1. Γενικά

1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ. 1.1. Γενικά 1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ και έχει για κέντρο της τον εκάστοτε παρατηρητή και αυθαίρετη αλλά σταθερή ακτίνα. Ο άξονας περιστροφήςτηςγηςτέµνειτηνουράνιασφαίρασεδύοσηµεία Π και Π, που ονοµάζονται βόρειος(ουράνιος)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη

ΦΥΣΙΚΗ. Η Φυσική είναι πειραματική επιστήμη ΦΥΣΙΚΗ Η Φυσική είναι πειραματική επιστήμη Μέσα από το πείραμα ψάχνουμε κανονικότητες και αρχές (θεωρίες, νόμοι) ΕρώτημαΠείραμαΑποτέλεσμαΘεωρία Νόμος Φυσική 1 ΦΥΣΙΚΗ Φυσική 2 ΦΥΣΙΚΗ Η Φυσική χρησιμοποιεί

Διαβάστε περισσότερα

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά

Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Άσκηση ετοιμότητας για το Ενδιάμεσο Διαγώνισμα

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017 Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017 19) Ποια είναι η περιοχή τιμών των ουρανογραφικών συντεταγμένων των ουράνιων αντικειμένων που είναι (i) αειφανή και (ii) αφανή για το Αστεροσκοπείο του Χελμού.

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ERACOBUILD. Φωτοβολταϊκά και Net Metering. «Αντίστροφη Μέτρηση για Κατοικίες Χαμηλού Άνθρακα» Φάνος Καραντώνης - Γραμματέας ΣΕΑΠΕΚ

ERACOBUILD. Φωτοβολταϊκά και Net Metering. «Αντίστροφη Μέτρηση για Κατοικίες Χαμηλού Άνθρακα» Φάνος Καραντώνης - Γραμματέας ΣΕΑΠΕΚ ERACOBUILD «Αντίστροφη Μέτρηση για Κατοικίες Χαμηλού Άνθρακα» Φωτοβολταϊκά και Net Metering Εφαρμογή Εθνικού Στόχου για ΑΠΕ Ετήσια αύξηση του μεριδίου των ΑΠΕ στην τελική κατανάλωση Ενδεικτική πορεία υλοποίησης

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Υπολογισμός Εξατμισοδιαπνοής της καλλιέργειας αναφοράς Μέθοδος Penman-Monteith FAO 56 (τροποποιημένη)

Υπολογισμός Εξατμισοδιαπνοής της καλλιέργειας αναφοράς Μέθοδος Penman-Monteith FAO 56 (τροποποιημένη) Υπολογισμός Εξατμισοδιαπνοής της καλλιέργειας αναφοράς Μέθοδος Penman-Monteith FAO 56 (τροποποιημένη) Ο υπολογισμός της εξατμισοδιαπνοής μπορεί να γίνει από μια εξίσωση της ακόλουθης μορφής: ETa ks kc

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 7.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ

Διαβάστε περισσότερα

1.2: 1.2 D R r (1.1) 1.3: 206.265 (1.2)

1.2: 1.2    D R r (1.1) 1.3: 206.265 (1.2) ΕΙΣΑΓΩΓΗ Η Αστρονοµία κατέχει ξεχωριστή θέση ανάµεσα στις επιστήµες και από πολλούς θεωρείται η αρχαιότερη όλων. Παρά ταύτα πρόδροµος και «µητέρα» της θεωρείται η Αστρολογία. Η Αστρονοµία ξεκίνησε παρατηρώντας

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ II ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ

ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50 Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα Εσωτερικό γινόµενο διανυσµάτων. ΚΑΤΗΓΟΡΙΑ 8 Ασκήσεις προς λύση 1-50 1. Θεωρούμε τα σημεία Α(1,2), Β(4,1). Να βρείτε σημείο Μ του άξονα

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 ΠΡΟΣΟΧΗ: Αυτό το έγγραφο ΔΕΝ θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε και τις σημειώσετε σ αυτό το έντυπο,

Διαβάστε περισσότερα

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ KΕΦΑΛΑΙΟ 1: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ Σελ. : 03 έως 16 του βιβλίου ΚΣ 0 ο VIDO, 11013 0λ έως 8:40λ : Σχόλια στα αποτελέσματα της εξέτασης προόδου 8:40λ έως το τέλος: Σε ένα πλανήτη η βαρυτική του αυτοενέργεια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH TZΕΜΟΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 3507 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH Όλοι γνωρίζουμε ότι η εναλλαγή των 4 εποχών οφείλεται στην κλίση που παρουσιάζει ο άξονας περιστροφής

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ

ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΟΡΥΦΟΡΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Διδάσκων: Δρ. Εμμανουήλ Θ. Μιχαηλίδης Ασκήσεις #1 Δορυφορικές Τροχιές Άσκηση 1 2

Διαβάστε περισσότερα

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 9: Εργαστηριακές ασκήσεις Δρ. Γρηγόριος Βάρρας

Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 9: Εργαστηριακές ασκήσεις Δρ. Γρηγόριος Βάρρας Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 9: Εργαστηριακές ασκήσεις Δρ. Γρηγόριος Βάρρας 1.1. ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1η ΘΕΜΑ: Μονάδες μέτρησης της Τοπογραφίας. Μετατροπή μονάδων. Συστήματα μέτρησης. 1.

Διαβάστε περισσότερα

Πολλαπλασιασμός αριθμού με διάνυσμα

Πολλαπλασιασμός αριθμού με διάνυσμα Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017 ΠΡΟΣΟΧΗ: Δεν θα συμπληρώσετε τίποτα πάνω σε αυτό το έγγραφο, ούτε θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε,

Διαβάστε περισσότερα

Αναλυτική Φωτογραμμετρία

Αναλυτική Φωτογραμμετρία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 3: Μαθηματικό υπόβαθρο Αναλυτικής Φωτογραμμετρίας Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί

() 1 = 17 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE Ορισµοί SECTION 7 ΣΥΝΑΡΤΗΣΕΙΣ LEGENDRE 7. Ορισµοί Οι συναρτήσεις που ικανοποιούν τη διαφορική εξίσωση Legere ( )y'' y' + ( + )y καλούνται συναρτήσεις Legere τάξης. Η γενική λύση της διαφορικής εξίσωσης του Legere

Διαβάστε περισσότερα