Η ΜΕθοδος ΥπολογισμοΥ της κλιμακας Thorpe με βαση μετρησεις CTD. ΕφαρμογΗ για υπολογισμο του ρυθμου

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η ΜΕθοδος ΥπολογισμοΥ της κλιμακας Thorpe με βαση μετρησεις CTD. ΕφαρμογΗ για υπολογισμο του ρυθμου"

Transcript

1 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 531 Η ΜΕθοδος ΥπολογισμοΥ της κλιμακας Thorpe με βαση μετρησεις CTD. ΕφαρμογΗ για υπολογισμο του ρυθμου αναμειξης στα ΚρητικΑ ΣτενΑ Kioroglou S. *, Zervakis V.**,Tragou E.** *Ελληνικό Κέντρο Θαλασσίων Ερευνών, 46,7 χλμ Αθηνών Σουνίου **Πανεπιστήμιο Αιγαίου, Τμήμα Επιστήμης της Θάλασσας, Σαπφούς 5, Μυτιλήνη ΠΕΡΙΛΗΨΗ Ο ρυθμός κατακόρυφης ανάμειξης των θαλασσίων υδάτων θεωρείται χρήσιμος τόσο για την εφαρμογή αριθμητικών μοντέλων κυκλοφορίας όσο και για την μελέτη βιοχημικών διεργασιών. Εχει προταθεί ότι ρυθμοί ανάμειξης μπορούν να εκτιμηθούν, αν είναι γνωστή η τάξη μεγέθους των περιοχών τύρβης (eddies), σαν συνάρτηση του μεγέθους των τοπικών αναστροφών της δυναμικής πυκνότητας, όπως αυτή μετρείται από CTD. Βασική παράμετρος του παραπάνω υπολογισμού είναι η κλίμακα Thorpe. Στην εργασία μας εφαρμόζουμε αλγόριθμο για την εκτίμηση, με βάση CTD μετρήσεις στα Ανατολικά και Δυτικά Κρητικά Στενά των ετών 1997, 1998, του μεγέθους των αναστροφών δυναμικής πυκνότητας, εντοπίζουμε τις περιοχές τύρβης, και υπολογίζουμε γιαυτές, όσο και κατά μέσο όρο για όλη την θαλάσσια στήλη, χρήσιμες παραμέτρους ανάμειξης όπως η κλίμακα Thorpe και οι ρυθμοί ενεργειακής σκέδασης και διάχυσης. Λέξεις Κλειδιά: Θύλακες ανατροπής πυκνότητας, Κλίμακα Θόρπ, ανατροπές, ρυθμός σκέδασης, ρυθμός διάχυσης. The application of an estimation method of Thorpe scales with use of CTD data, on the calculation of mixing rates at the Cretan Arc Straits ABSTRACT Studies of vertical ocean mixing are useful in parameterizing large scale effects of mixing in models and in getting an insight into biochemical processes in the sea. The scales are very small, of the order of few centimeters. It has been suggested however, that the mixing rates could be estimated, if eddy length scale in terms of potential density inversions length scale is calculated. Thorpe scale is a basic parameter of the abovementioned calculation. We apply an algorithm for estimating the length scale, energy dissipation and turbulent diffusion rates of the turbulent (overturning) eddies, based on CTD measurements at the Western and Eastern Cretan Arc Straits, during the years 1997, Keywords: Density inversions, Thorpe scale, overturns, dissipation and diffusion rates.

2 532 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας ΕισαγωγΗ Είναι γνωστό ότι τα φαινόμενα τυρβώδους (turbulent) (χαώδους) διάχυσης και ανάμειξης (eddy diffusion, eddy mixing) παίζουν σημαντικό ρόλο στις βιολογικές και χημικές διεργασίες που λαμβάνουν στην θάλασσα. Το φάσμα της κλίμακας των φαινομένων αυτών ξεκινά από μερικά εκατοστά, έναντι της τάξεως των χιλιομέτρων που χρησιμοποιούνται στα μοντέλα θαλάσσιας κυκλοφορίας. Απαιτείται επομένως γνώση των στατιστικών τουλάχιστον παραμέτρων τους όπως ο συντελεστής τυρβώδους διάχυσης (eddy diffusivity, Ku), και ο ρυθμός μετατροπής τυρβώδους κινητικής ενέργειας σε θερμότητα (dissipation rate, ε) (Tennekes and Lumley, 1972) προκειμένου να ποσοτικοποιηθεί ο ρόλος τους στην θαλάσσια κυκλοφορία. Πρώτη φορά προτάθηκε από τον Dillon (Dillon 1982), να εξαχθούν ρυθμοί ανάμειξης από τον υπολογισμό, μέσω μετρήσεων CTD, της κατακόρυφης διάστασης κατά Thorpe (Thorpe scale, L T ) τυρβωδών θυλάκων ανατροπής, (overturning eddies), δηλαδή θυλάκων τυρβώδους κίνησης, που στο κατακόρυφο επίπεδο προκαλούν πρόσκαιρες υδροδυναμικές αστάθειες, με βαρύτερα νερά να υπέρκεινται ελαφρύτερων νερών. Στην παρούσα εργασία γίνεται μία προσπάθεια εντοπισμού θυλάκων ανατροπής και υπολογισμού των L T, Ku, και ε, από CTD μετρήσεις στις περιοχές των Κρητικών στενών Κάσου και Αντικυθήρων. Για τον εντοπισμό των θυλάκων, καθώς και για τον ποιοτικό τους διαχωρισμό σε πραγματικούς και σφαλματικούς εφαρμόζεται με δικό μας αλγόριθμο η μέθοδος των Galbraith and Kelley (Galbraith and Kelley, 1995), εφεξής αναφερόμενη ως μέθοδος GK. Η ΜεθοδολογΙα α. Συνθήκη εντοπισμού θυλάκων ανατροπής. Οι θύλακες ανατροπής (overturns) απεικονίζονται στο κατακόρυφο προφίλ της δυναμικής πυκνότητας, σαν περιοχές αναστροφών (density inversions), που έχουν κατά προσέγγιση το σχήμα Ζ, με την πάνω δεξιά κορυφή να αντιστοιχεί στην τοπικά μέγιστη πυκνότητα και την κάτω αριστερή στην τοπικά ελάχιστη πυκνότητα Λόγω της εσωτερικής συμμετρίας μιας δομής Ζ, το αλγεβρικό άθροισμα των μετατοπίσεων που χρειάζεται να διανύσουν οι εμπεριεχόμενες μάζες προκειμένου η δομή να καταστεί ευσταθής, (κατά Thorpe μετατοπίσεις ή Thorpe displacements, Li) ισούται με μηδέν, διότι οι προς τα πάνω μετατοπίσεις των ελαφρών μαζών, εξισορροπούνται από τις προς τα κάτω μετατοπίσεις των βαρέων μαζών. Αυτό εκφράζεται, σε διακριτοποιημένη μορφή με τον παρακάτω τύπο. ν = η ν = 1 L ν = 0 (1) όπου L ν η κατά Thorpe μετατόπιση της νιοστής μάζας από το ασταθές σημείο που βρίσκεται, στο τελικό σημείο ευστάθειάς της μέσα στο κατακόρυφο προφίλ δυναμικής πυκνότητας. Το κριτήριο του τύπου (1) εφαρμόσαμε και σαν αλγοριθμική συνθήκη εντοπισμού των ορίων των θυλάκων ανατροπής. β. Ελεγχος μετρητικού θορύβου. Κάθε θύλακας ανατροπής ελέγχθη περαιτέρω με την μέθοδο GK, εάν η όχι είναι παράγωγο μετρητικού θορύβου, ως εξής. Για κάθε θύλακα ανατροπής, έστω τον j-oστό, υπ αριθμόν j, όλες οι διαδοχικές κατά Thorpe μετατοπίσεις L i, του ίδιου προσήμου, ομαδοποιήθηκαν σε σύνολα μετατοπίσεων (διαδρομές, runs), πληθικού αριθμού ( μήκος διαδρομής, run length) έστω Ν jk. Υπολογίστηκε κατόπιν η μέση τετραγωνική τιμή rmsrun j, των Ν jk, επί όλων των διαδρομών (runs), πληθικού αριθμού κ, του εν λόγω θύλακα ανατροπής, ποσοστωμένη με ειδικά βάρη τα πάχη των κατακόρυφων περιοχών, που οι εν λόγω διαδρομές αντιπροσώπευαν.

3 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 533 Για μία τυχαία σειρά πραγματικών αριθμών, όπως ο γνήσιος μετρητικός θόρυβος δυναμικής πυκνότητας, είτε μόνος του, είτε υπερθεμένος σε ένα γραμμικό προφίλ πυκνότητας, ώστε το προιόν της υπέρθεσης να είναι τυχαία κατανεμημένες στο βάθος αναστροφές (πράγμα που εξασφαλίζεται όταν το πλάτος θορύβου είναι αρκετά μεγάλο) η συνάρτηση πυκνότητας πιθανότητας (pdf (n)) μιάς διαδρομής με μήκος διαδρομής = n, προβλέπεται από την θεωρία ίση n pdf ( n) = με 2 (2), δηλαδή η πιθανότητα να έχουμε διαδρομές με μεγάλη τιμή μήκους διαδρομής τείνει στο μηδέν. Για θύλακες ανατροπών τύπου Ζ όμως, έχουμε μεγάλες θετικού προσήμου διαδρομές (μεγάλη τιμή n, που σημαίνει πολλές διαδοχικές μετατοπίσεις ιδίου προσήμου) στην κορυφή των θυλάκων και μεγάλες αρνητικού προσήμου διαδρομές στην βάση τους, με αποτέλεσμα η αντίστοιχη pdf (n) να τείνει να είναι μεγάλη για μεγάλες τιμές n. Ωστόσο, για μικρές τιμές n η θεωρητική καμπύλη (2), και η μετρημένη καμπύλη, για οποιοδήποτε προφίλ δυναμικής πυκνότητας, γραμμικό ή μή, τείνουν να ταυτίζονται, και η αντίστοιχη περιοχή θεωρείται ως περιοχή θορύβου (Galbraith and Kelley 1995). Αν λοιπόν για έναν θύλακα ανατροπής η μέση τιμή μήκους διαδρομής, rmsrunj, είναι αρκετά μικρή (μικρότερη από μία τιμή - κατώφλι), ώστε η αντίστοιχη pdf(rmsrunj) να υπάγεται στην περιοχή μετρητικού θορύβου, o συγκεκριμένος θύλακας πρέπει να απορρίπτεται. Η τιμή αυτή ορίζεται κατά την μέθοδο GK να είναι ίση με την τιμή n που αντιστοιχεί στο πρώτο σημείο τομής μεταξύ της καμπύλης 2 1 (που n+ pdf ( n) = ορίζεται, για κάθε τιμή n,να έχει διπλάσια τιμή pd=pdf(n) απ αυτήν τύπου (2)) και της καμπύλης pdf (n) που αντιστοιχεί στο σύνολο των μετρημένων θυλάκων ανατροπής γ. Ελεγχος συστηματικών σφαλμάτων. Επιπρόσθετα, οι εντοπισμένοι θύλακες ανατροπής, ελέγθηκαν για το άν είναι προιόντα συστηματικών σφαλμάτων του CTD, όπως ασυγχρονισμών των σενσόρων θερμοκρασίας και αγωγιμότητας, ή καθυστέρησης απόκρισης του σένσορα αγωγιμότητας σε αλλαγές θερμοκρασίας. Τέτοια σφάλματα φαίνονται στο προφίλ πυκνότητας σαν μύτες (spikes), που μοιάζουν ωστόσο με αναστροφές. Kατά Galbraith και Kelley (1995) αυτές οι πλασματικές αναστροφές, απεικονίζονται στο T-S διάγραμμα σαν ανακυκλώσεις (loops), λόγω της μη γραμμικότητάς τους. Αντίθετα, οι αναστροφές που αντιστοιχούν σε γνήσιους θύλακες, λόγω του ότι ένας θύλακας αντιπροσωπεύει μία και μοναδική μάζα με συγκεκριμένη T-S ταυτότητα (signature), παρουσιάζονται σαν ισχυρά γραμμικές στο διάγραμμα T-S. Υπολογίσαμε τους δύο δείκτες, ε S, ε T, γραμμικής Τ- S γνησιότητας κατά GK, ως εξής, ε S = rms((ρ ι - ρ Sι ) / rms(ρ ι -ρ μ ) ) (3), εt = rms((ρ ι -ρ Tι ) / rms(ρ ι -ρ μ )) (4) όπου rms οι μέσες τετραγωνικές τιμές, ρ ι αντιστοιχεί στην σειρά των μετρημένων δυναμικών πυκνοτήτων του θύλακα, ρ Tι, ρ Sι οι προσεγγίσεις της εν λόγω σειράς από τις σειρές μετρημένων τιμών αλατότητας S i, και θερμοκρασίας Ti αντίστοιχα, με γραμμική παρεμβολή (μέθοδος ελαχίστων τετραγώνων), δηλαδή,,, όπου α s, a T, bs, b T, οι υπολογισμένες σταθερές της γραμμικής παρεμβολής, και ρ μ η μέση τιμή όλων των μετρημένων δυναμικών πυκνοτήτων του θύλακα. Εάν η μέγιστη των τιμών ε S, ε T, ήταν μεγαλύτερη του 0.5 (στην ιδανική περίπτωση γνήσιων γραμμικών θυλάκων τείνει στο μηδέν), ολόκληρος ο θύλακας απορρίπτονταν σαν προιόν των συστηματικών σφαλμάτων που εξηγήθηκαν πιο πάνω.

4 534 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας δ. Υπολογισμός των σταθερών Ku, ε, L T. Η μοριακή διάχυση μιάς ιδιότητας με συγκέντρωση περιγράφεται από την εξίσωση C = K 2 C t (5), που σημαίνει ότι η μοριακή διάχυση συνεχίζεται από τις υψηλές στις χαμηλές συγκεντρώσεις, μέχρι πλήρους ομογενοποίησης, όπου Κ ο σταθερός συντελεστής μοριακής διάχυσης. Η τυρβώδης διάχυση ωστόσο είναι πολύ πιό έντονη και πολύπλοκη από την μοριακή και περιγράφεται κατά προσέγγιση με εξίσωση ανάλογη της (5), όπου στην θέση της σταθεράς Κ τοποθετείται ο συντελεστής τυρβώδους διάχυσης K u, που ωστόσο δεν είναι παγκόσμια (universally) σταθερός, αλλά εξαρτάται, ιδιαίτερα για την κατακόρυφη διάσταση, από την τοπική κλίμακα Thorpe, L T, του θύλακα ανατροπής, καθώς και από την τοπική στρωμάτωση της πυκνότητας που εκφράζεται από την συχνότητα Brunt-Vaisala, N 2, ως εξής κατά προσέγγιση K u LT N (6), όπου L T = L i (7) η μέση τετραγωνική τιμή των κατά Thorpe μετατοπίσεων μέσα στον θύλακα ανατροπής. O ρυθμός απώλειας τυρβώδους κινητικής ενέργειας σε θερμότητα ε από την άλλη, δίνεται από τον τύπο, (8), όπου ν ο συντελεστής μοριακού ιξώδους u' και z η κατακόρυφη μικροβαθμίδα οριζόντιας τυρβώδους ταχύτητας, που μπορεί να μετρηθεί αξιόπιστα μόνο με σένσορες υψηλής ακριβείας (shear probes), που πέφτουν ελεύθερα στην θαλάσσια στήλη. Στην πράξη, μιά μέση τιμή της ε, αντιπροσωπευτική ενός θύλακα ανατροπής, η μιάς ολόκληρης κατακόρυφης περιοχής ανάμειξης, δίνεται από τον προσεγγιστικό τύπο and Garrett, 2000). (9) (Stansfield Πίνακας 1. Μέσες τιμές των παραμέτρων (επί όλων των θυλάκων ανατροπής) κατακόρυφης τυρβώδους διάχυσης για τους πλόες των Κρητικών Στενών Αντικυθήρων, ΠΛΟΑΣ Μ1Α Μ2Α Μ3Α Αρ.θυλάκων Κατανομή βυθός Επιφάνεια - βάθους LT(m) ε ( m s ) N ( s 2 2 ) 2*10-2 4* *10-7 2* *10-7 7* rmsrun Πίνακας 2. Μέσες τιμές των παραμέτρων (επί όλων των θυλάκων ανατροπής) κατακόρυφης τυρβώδους διάχυσης για τους πλόες των Κρητικών Στενών Κάσου, ΠΛΟΑΣ Μ1Κ Μ2Κ Μ3Κ Αρ.θυλάκων Κατανομή βάθους Βυθός, επιφάνεια LT(m) ε( 2 3 m s N ( s 2 2 ) ) Βυθός, ενδιάμεσα επιφάνεια Βυθός, ενδίαμεσα επιφάνεια *10-1 2*10-2 3*10-1 3*10-4 3*10-7 1*10-5 8*10-5 2*10-6 8*10-6 rmsrun

5 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 535 Εικ. 1 Κριτήριο αποκλεισμού ενός θύλακα ανατροπής σαν προϊόν θορύβου. Εικ. 2 Ένας γνήσιος θύλακας ανατροπής στα βαθιά. Εικ. 3. Ένας γνήσιος θύλακας ανατροπής επιφανειακών υδάτων 3. Εφαρμογή της Μεθόδου και αποτελέσματα. Η μέθοδος GK εφαρμόστηκε για τον υπολογισμό συντελεστών κατακόρυφης τυρβώδους διάχυσης, σε μετρήσεις CTD στα Κρητικά Στενά της Κάσου, που έγιναν τον Μάη του 1997 (πλόας Μ1Κ), τον Ιανουάριο του 1998 (πλόας Μ2Κ) και τον Ιούνη του 1998 (Μ3Κ), και των Αντικυθήρων (πλόες Μ1Α, Μ2Α, Μ3Α αντίστοιχα). Αντί της συνθήκης εντοπισμού θυλάκων ανατροπής που περιγράφεται από την εξίσωση (1), στην πράξη εφαρμόστηκε από τον κώδικά μας η συνθήκη ν = η ν = 1 ν = η ν = 1 L L ν ν c (10) όπου c=0.2=20%,στην ουσία εκφράζει το επιτρεπτό σφάλμα στην αριθμητική υλοποίηση της εξ. (1). Εντοπίστηκαν αρχικά 5571 θύλακες που ικανοποιούσαν την εξ. (10), ωστόσο, μόνο 17 απο αυτούς ικανοποιούσαν τα δύο κριτήρια γνησιότητας που προαναφέρθηκαν. Στους υπ αριθμ. 1 και 2 πίνακες παρακάτω συνοψίζονται τα αποτελέσματα των υπολογισμών μας, (μέσες τιμές επί όλων των θυλάκων) για τα στενά Αντικυθήρων και Κάσου αντίστοιχα και η εικ.1 απεικονίζει την μέθοδο αποκλεισμού θορύβου για τον πλόα Μ2Κ. Τέλος οι εικ. 2, 3 δείχνουν δύο έγκυρους θύλακες, οι οποίοι έχουν το Ζ σχήμα που προβλέπεται από την θεωρία. Στους πιό πάνω πίνακες παρατηρούμε ότι στα στενά της Κάσου, τον Μάη 1997 (πλόας Μ1Κ) οι ρυθμοί ανάμειξης είναι εντονότεροι κατά 1 έως 3 τάξεις μεγέθους από τους αντίστοιχους ρυθμούς ανάμειξης των υπόλοιπων πλοών. Μάλιστα δύο από τους 4 θύλακες ανατροπής αυτού του πλόα, συμβαίνουν στα πολύ βαθιά νερά ( μ) και ένας εκ των τελευταίων ακριβώς πάνω από τον βυθό. Συνολικά εντοπίστηκαν 3 θύλακες ακριβώς πάνω από τον βυθό, και υποθέτουμε ότι μπορεί να οφείλονται στην διείσδυση βαθιάς νεοσχηματισμένης μάζας στην περιοχή, που να ευνοεί, μέσω σχηματισμού διεπιφανειών με έντονες βαθμίδες πυκνοτήτων, την δημιουργία εσωτερικών κυμάτων που όταν σπάνε προκαλούν θύλακες ανατροπής. Εν γένει πάντως είναι εμφανής η εντονότερη ανάμειξη στα στενά της Κάσου. Ευχαριστίες. Ευχαριστούμε θερμά τον Δρ. Κοντογιάννη Χαρίλαο, Ερευνητή του Ελληνικού

6 536 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας Κέντρου Θαλασσίων Ερευνών για την ευγενή χορηγία των δεδομένων. ΑναφορEς. Dillon, T. M., 1982: Vertical Overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, Galbraith, P. S., and D. E. Kelley, 1996: Identifying overturns in CTD Profiles. J. of Atmospheric and Oceanic Technology, 13, Stansfield K. and C. Garett, 2000: Calculating Thorpe Scales and vertical mixing rates from CTD Data, with Application to Juan De Fuca Straits. Tennekes H. and J.L Lumley: A First Course in Turbulence, MIT press, New York 1972.

ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΟΥ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΚΑΤΑΚΟΡΥΦΗΣ ΤΥΡΒΩΔΟΥΣ ΔΙΑΧΥΣΗΣ, ΜΕΣΩ ΤΑΥΤΟΠΟΙΗΣΗΣ ΘΥΛΑΚΩΝ ΑΝΑΤΡΟΠΗΣ ΣΕ ΠΑΡΑΚΤΙΕΣ ΚΑΙ ΑΝΟΙΧΤΕΣ ΘΑΛΑΣΣΕΣ

ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΟΥ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΚΑΤΑΚΟΡΥΦΗΣ ΤΥΡΒΩΔΟΥΣ ΔΙΑΧΥΣΗΣ, ΜΕΣΩ ΤΑΥΤΟΠΟΙΗΣΗΣ ΘΥΛΑΚΩΝ ΑΝΑΤΡΟΠΗΣ ΣΕ ΠΑΡΑΚΤΙΕΣ ΚΑΙ ΑΝΟΙΧΤΕΣ ΘΑΛΑΣΣΕΣ ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΟΥ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΚΑΤΑΚΟΡΥΦΗΣ ΤΥΡΒΩΔΟΥΣ ΔΙΑΧΥΣΗΣ, ΜΕΣΩ ΤΑΥΤΟΠΟΙΗΣΗΣ ΘΥΛΑΚΩΝ ΑΝΑΤΡΟΠΗΣ ΣΕ ΠΑΡΑΚΤΙΕΣ ΚΑΙ ΑΝΟΙΧΤΕΣ ΘΑΛΑΣΣΕΣ Κιόρογλου Σ. 1, Ζερβάκης Β., Τράγου Ε. 1 Ελληνικό Κέντρο Θαλάσσίων

Διαβάστε περισσότερα

ΠΡΟΣΦΑΤΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΦΥΣΙΚΟΧΗΜΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΚΟΡΙΝΘΙΑΚΟΥ ΚΟΛΠΟΥ ( ).

ΠΡΟΣΦΑΤΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΦΥΣΙΚΟΧΗΜΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΚΟΡΙΝΘΙΑΚΟΥ ΚΟΛΠΟΥ ( ). 8ο Πανελλήνιο Συμποσιο Ωκεανογραφίας & Αλιείας 767 ΠΡΟΣΦΑΤΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΤΩΝ ΦΥΣΙΚΟΧΗΜΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΚΟΡΙΝΘΙΑΚΟΥ ΚΟΛΠΟΥ (2004-2005). Σταύρος Μπαρμπετσέας*, Αλεξάνδρα Παυλίδου & Ρόζα Ψυλλίδου-Γκιουράνοβιτς

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τ Μ Η Μ Α Γ Ε Ω Γ Ρ Α Φ Ι Α Σ ΕΛ. ΒΕΝΙΖΕΛΟΥ, 70 17671 ΚΑΛΛΙΘΕΑ-ΤΗΛ: 210-9549151 FAX: 210-9514759 ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ E ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 3 ΠΥΚΝΟΤΗΤΑ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ ΘΑΛΑΣΣΙΕΣ

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

Ασκηση 10 η : «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού Θερμοκρασία Αλατότητα Πυκνότητα Διαγράμματα Τ-S

Ασκηση 10 η : «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού Θερμοκρασία Αλατότητα Πυκνότητα Διαγράμματα Τ-S Ασκηση 10 η : «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού Θερμοκρασία Αλατότητα Πυκνότητα Διαγράμματα Τ-S Πυκνότητα (p): ο λόγος της μάζας του θαλασσινού νερού (gr) ανά μονάδα όγκου (cm 3

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Υδρομετεωρολογία Διεργασίες μεταφοράς

Υδρομετεωρολογία Διεργασίες μεταφοράς Υδρομετεωρολογία Διεργασίες μεταφοράς Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2000 Γενικές έννοιες Σώματα Τρόποι μεταφοράς Στερεά Ρευστά (υγρά, αέρια) Ακτινοβολία

Διαβάστε περισσότερα

Υδρομετεωρολογία Διεργασίες μεταφοράς

Υδρομετεωρολογία Διεργασίες μεταφοράς Υδρομετεωρολογία Διεργασίες μεταφοράς Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2000 Γενικές έννοιες Σώματα Τρόποι μεταφοράς Ακτινοβολία (radiation) Χαρακτηρίζεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

9 o Γ.Λ. ΠΕΙΡΑΙΑ ιαγώνισµα ΦΥΣΙΚΗΣ (2) 0. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς /5 / 2007

9 o Γ.Λ. ΠΕΙΡΑΙΑ ιαγώνισµα ΦΥΣΙΚΗΣ (2) 0. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς /5 / 2007 1) Ένα σώµα εκτοξεύεται από τη βάση λείου κεκλιµένου επιπέδου µε αρχική ταχύτητα υ 0, προς τα πάνω (θέση 1) και σταµατά στη θέση (2) που βρίσκεται σε ύψος h. i) Ποια πρόταση που αναφέρεται στο έργο του

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Συνθήκες ευστάθειας και αστάθειας στην ατμόσφαιρα

Συνθήκες ευστάθειας και αστάθειας στην ατμόσφαιρα Συνθήκες ευστάθειας και αστάθειας στην ατμόσφαιρα Οι κατακόρυφες κινήσεις των αερίων μαζών επηρεάζουν τόσο τον καιρό όσο και τις διαδικασίας ανάμειξης που είναι ιδιαίτερα σημαντικές στη μελέτη της αέριας

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Διακριτικές Συναρτήσεις

Διακριτικές Συναρτήσεις Διακριτικές Συναρτήσεις Δρ. Δηµήτριος Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας Τµήµα Διοίκησης Επιχειρήσεων Θερµικός χάρτης των XYZ ξενοδοχείων σε σχέση µε τη γεωγραφική περιοχή τους P. Adamopoulos New

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ Ν. Ε. Ηλιού Αναπληρωτής Καθηγητής Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Θεσσαλίας Γ. Δ.

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ Προσοχή στα παρακάτω!!!!! 1. Σχεδιάζουμε το σώμα σε μια θέση της κίνησής του, (κατά προτίμηση τυχαία) και σημειώνουμε εκεί όλες τις δυνάμεις που ασκούνται στο σώμα.

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη

Διαβάστε περισσότερα

Ατμοσφαιρική Ρύπανση

Ατμοσφαιρική Ρύπανση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Διασπορά και διάχυση ατμοσφαιρικών ρύπων. Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡOΦΟΡΙΚΗΣ ΤΕ ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΖΗΣΚΑ ΠΑΝΑΓΙΩΤΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ ΕΠΙΣΚΟΠΗΣΗ ΠΑΡΟΥΣΙΑΣΗΣ Σκοπός Πτυχιακής Εργασίας

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα,

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, 1 Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, Τα πολυπληθέστερα σωματίδια των Κ.Α. είναι τα πρωτόνια. Όπως έχουμε αναφέρει, η ενέργεια τους είναι υψηλή και αντιδρούν με τους πυρήνες της ατμόσφαιρας.

Διαβάστε περισσότερα

2 Δεκεμβρίου Απολογισμός Δράσεων της υποδομής Greek Argo για το 2015

2 Δεκεμβρίου Απολογισμός Δράσεων της υποδομής Greek Argo για το 2015 2 Δεκεμβρίου 2015 Απολογισμός Δράσεων της υποδομής Greek Argo για το 2015 Απολογισμός δράσεων των υποδομών GreekArgo - EuroArgo εντός του 2015 (Γ. Κορρές, Δ. Κάσσης, Α. Κωνσταντινίδου) Σύντομες παρουσιάσεις

Διαβάστε περισσότερα

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΕΡΓΟ Το έργο, εκφράζει την ενέργεια που μεταφέρεται από ένα σώμα σ ένα άλλο ή που μετατρέπεται από μια μορφή σε μία άλλη. Για σταθερή δύναμη δίνεται από τη σχέση W F Δx Είναι μονόμετρο μέγεθος και η μονάδα

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 13 Πάτρα 28 Προσαρμοστικός έλεγχος με μοντέλο αναφοράς

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση

Διαβάστε περισσότερα

Πραγματικοί κυματισμοί

Πραγματικοί κυματισμοί Πραγματικοί κυματισμοί Οι κυματισμοί που δημιουργεί η επίδραση του ανέμου στην επιφάνεια της θάλασσας, δεν είναι «μονοχρωματικοί». Η επιφάνεια της θάλασσας μπορεί να προσεγγιστεί με σύνθεση περισσοτέρων

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας ΦΥΣ102 1 Δυναμική Ενέργεια και διατηρητικές δυνάμεις

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΚΟΡΥΦΗ ΑΝΩΣΤΙΚΗ ΦΛΕΒΑ ΜΕΣΑ ΣΕ ΣΤΡΩΜΑΤΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ

Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ 12 Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ Εισαγωγή Στο παρόν Κεφάλαιο περιγράφεται η λειτουργία και απόδοση του πρότυπου ανιχνευτή ΝΕΣΤΩΡ κατά τη λειτουργία του στη βαθιά θάλασσα. Συγκεκριμένα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΛΙΝΔΡΙΚΗΣ ΚΑΤΑΣΚΕΥΗΣ ΛΟΓΩ ΔΙΝΩΝ Γ. Σ. ΤΡΙΑΝΤΑΦYΛΛΟΥ ΚΑΘΗΓΗΤΗΣ ΕΜΠ Διατύπωση των εξισώσεων Θεωρούμε κύλινδρο διαμέτρου D, μήκους l, και μάζας m. Ο κύλινδρος συγκρατειται

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Θυρόφραγµα υπό Γωνία

Θυρόφραγµα υπό Γωνία Ολοκληρωµένη ιαχείριση Υδατικών Πόρων 247 Θυρόφραγµα υπό Γωνία Κ.. ΧΑΤΖΗΑΘΑΝΑΣΙΟΥ Ε.. ΡΕΤΣΙΝΗΣ Ι.. ΗΜΗΤΡΙΟΥ Πολιτικός Μηχανικός Πολιτικός Μηχανικός Αναπλ. Καθηγητής Ε.Μ.Π. Περίληψη Στην πειραµατική αυτή

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Συλλογή μεταφορά και. Κεφάλαιο 2 ο ΜΕΤΡΗΣΕΙΣ - ΑΙΣΘΗΤΗΡΙΑ

Συλλογή μεταφορά και. Κεφάλαιο 2 ο ΜΕΤΡΗΣΕΙΣ - ΑΙΣΘΗΤΗΡΙΑ Συλλογή μεταφορά και έλεγχος Δεδομένων Κεφάλαιο 2 ο ΜΕΤΡΗΣΕΙΣ - ΑΙΣΘΗΤΗΡΙΑ Αισθητήρια (sensors) είναι κυκλώματα που δέχονται ένα σήμα ή μια διέγερση από το περιβάλλον και απαντούν με ένα ηλεκτρικό σήμα.

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6: ΕΡΜΗΝΕΙΑ ΕΠΙΦΑΝΕΙΑΚΩΝ ΚΑΙ ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΤΑΝΟΜΩΝ

ΕΡΓΑΣΤΗΡΙΟ 6: ΕΡΜΗΝΕΙΑ ΕΠΙΦΑΝΕΙΑΚΩΝ ΚΑΙ ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΤΑΝΟΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΡΑΚΤΙΑΣ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 6: ΕΡΜΗΝΕΙΑ ΕΠΙΦΑΝΕΙΑΚΩΝ ΚΑΙ ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΤΑΝΟΜΩΝ ΑΓΡΙΝΙΟ, 2016 ΑΣΚΗΣΗ 6:

Διαβάστε περισσότερα

Κεφάλαιο 5. Ενέργεια συστήματος

Κεφάλαιο 5. Ενέργεια συστήματος Κεφάλαιο 5 Ενέργεια συστήματος Εισαγωγή στην ενέργεια Οι νόμοι του Νεύτωνα και οι αντίστοιχες αρχές μας επιτρέπουν να λύνουμε μια ποικιλία προβλημάτων. Ωστόσο, μερικά προβλήματα, που θεωρητικά μπορούν

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8)

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΕΛ. ΒΕΝΙΖΕΛΟΥ 70, 76 7 ΑΘΗΝΑ Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) Πέτρος Κατσαφάδος pkatsaf@hua.gr Τμήμα Γεωγραφίας Χαροκόπειο Πανεπιστήμιο Αθηνών

Διαβάστε περισσότερα

1. Τοπικοί άνεµοι και ατµοσφαιρική ρύπανση

1. Τοπικοί άνεµοι και ατµοσφαιρική ρύπανση 1. Τοπικοί άνεµοι και ατµοσφαιρική ρύπανση Όπως είναι γνωστό, οι ρύποι µιας καπνοδόχου αποµακρύνονται ακολουθώντας υποχρεωτικά την κατεύθυνση πνοής του ανέµου. Η ταχύτητα του ανέµου δεν είναι σταθερή.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ Χριστοδούλου Αντρέας Λεμεσός 2014 2 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

9 th Symposium on Oceanography & Fisheries, Proceedings, Volume Ι

9 th Symposium on Oceanography & Fisheries, Proceedings, Volume Ι 9 th Symposium on Oceanography & Fisheries, 2009 - Proceedings, Volume Ι ΥΠΕΡΕΤΗΣΙΑ ΜΕΤΑΒΛΗΤΟΤΗΤΑ ΤΩΝ ΒΑΘΙΩΝ ΣΤΡΩΜΑΤΩΝ ΣΤΟ ΒΟΡΕΙΟ ΑΙΓΑΙΟ Ζερβάκης Β. 1, Κρασακοπούλου Ε. 2, Τράγου Ε. 1, Κοντογιάννης Χ.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΑΡΧΕΣ ΣΥΓΚΕΝΤΡΩΣΗ ΡΥΠΟΥ Έστω η συγκέντρωση

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Άσκηση 3. Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις

Άσκηση 3. Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις Άσκηση 3 Ποιοτική Μελέτη των νόμων ελέγχου δύο και τριών όρων (συσκευή: Προσομοιωτής ελέγχου PCS327: Σχ.1) Απαραίτητες γνώσεις 1) Αυτόματος έλεγχος δύο και τριών όρων 2) Εμπειρικαί μέθοδοι εκλογής των

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014

4 Αρμονικές Ταλαντώσεις 1 γενικά 17/9/2014 4 Αρμονικές Ταλαντώσεις γενικά 7/9/4 Περιοδικά φαινόμενα Περιοδικά φαινόμενα Περίοδος Συχνότητα ωνιακή συχνότητα Ταλαντώσεις Απλή αρμονική ταλάντωση Περιοδικό φαινόμενο Περιοδικά φαινόμενα ονομάζονται

Διαβάστε περισσότερα

Ισοδυναµία τοπολογιών βρόχων.

Ισοδυναµία τοπολογιών βρόχων. Ισοδυναµία τοπολογιών βρόχων. Κατά κανόνα, συµφέρει να ανάγουµε τις «πολύπλοκες» τοπολογίες βρόχων σε έναν απλό κλειστό βρόχο, µε µία συνάρτηση µεταφοράς στον κατ ευθείαν κλάδο και µία συνάρτηση µεταφοράς

Διαβάστε περισσότερα

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα.

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα. Αγωγιμομετρία Η Πορεία των Υπολογισμών με Παραδείγματα. Πρώτα πρέπει να υπολογίσουμε την ισοδύναμη αγωγιμότητα άπειρης αραίωσης για κάθε ηλεκτρολύτη. Εδώ πρέπει να προσέξουμε τις μονάδες. Τα μεγέθη που

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ

ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ ΑΝΑΛΥΣΗ ΤΗΣ ΑΠΟΚΛΙΣΗΣ ΑΠΟ ΤΗΝ ΗΜΙΤΟΝΟΕΙΔΗ ΚΑΜΠΥΛΗ ΒΡΟΧΟΠΤΩΣΗΣ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΩΣ ΔΕΙΚΤΗ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Καλύβας Θ., Ζέρβας Ε.¹ ¹ Σχολή Θετικών Επιστημών και Τεχνολογίας, Ελληνικό Ανοικτό Πανεπιστήμιο,

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην

Διαβάστε περισσότερα

Ατμοσφαιρική Ρύπανση

Ατμοσφαιρική Ρύπανση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Ατμοσφαιρικό οριακό στρώμα. Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Πέµπτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α.. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι P(A B) P(A)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : = . Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΦΥΣΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 Προσδιορισµός του ύψους του οραικού στρώµατος µε τη διάταξη lidar. Μπαλής

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications)

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications) ΚΕΦΑΛΑΙΟ 5 ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Idetificatios) Στο κεφάλαιο αυτό γίνεται παρουσίαση μεθοδολογίας για την ανεύρεση ενός αξιόπιστου μοντέλου πριν ή κατά την λειτουργία της

Διαβάστε περισσότερα

Μοντέλα Boussinesq. Σειρά V 2

Μοντέλα Boussinesq. Σειρά V 2 Μοντέλα Boussinesq Σειρά V Μοντέλα Boussinesq Η πρώτη ομάδα εξισώσεων εφαρμοσμένη σε μη σταθερό πυθμένα εξήχθη από τον Peregrine (1967) και είναι κοινώς γνωστές ως εξισώσεις Boussinesq. Η μαθηματική προσομοίωση

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύματα. Ομάδα Δ.

2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3 ΑΛΛΑΓΗ ΤΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ ΑΕΡΑ ΜΕ ΤΟ ΥΨΟΣ, ΣΤΑΘΕΡΟΤΗΤΑ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ KAI ΡΥΠΑΝΣΗ ΤΟΥ ΑΕΡΑ Στην κατακόρυφη κίνηση του αέρα οφείλονται πολλές ατμοσφαιρικές διαδικασίες, όπως ο σχηματισμός των νεφών και

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1 4 93 Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια Π. Παπαδάκης,a, Γ. Πιπεράκης,b & Μ. Καλογεράκης,,c Ινστιτούτο Υπολογιστικών Μαθηματικών

Διαβάστε περισσότερα