3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)"

Transcript

1 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ Χ ανεξάρτητες τµ που ακολουθούν την ίδια κατανοµή (ισόνοµες τµ) µε Ε(Χ ) µ V( ) σ Είναι γνωστό ότι στην περίπτωση που Χ Χ Χ ~ N(µσ ) τότε ~ N( µ σ ) Το ερώτηµα που προκύπτει είναι το εξής: αν οι ανεξάρτητες και ισόνοµες Χ Χ Χ δεν ακολουθούν την κανονική κατανοµή αλλά κάποια άλλη κατανοµή (ίσως και άγνωστη) τότε ποια µπορεί να είναι προσεγγιστικά η κατανοµή του αθροίσµατος Χ +Χ ++Χ για µεγάλο ; Απάντηση σε αυτό το ερώτηµα δίνει το περίφηµο Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) που καταδεικνύει τη σπουδαιότητα της κανονικής κατανοµής Εκτός από το θεωρητικό του ενδιαφέρον και τη σπουδαιότητά του το θεώρηµα αυτό παρέχει µία απλή µέθοδο για τον προσεγγιστικό υπολογισµό πιθανοτήτων που αφορούν αθροίσµατα από ανεξάρτητες τυχαίες µεταβλητές Θεώρηµα 3 (ΚΟΘ) Αν οι τµ Χ Χ Χ είναι ανεξάρτητες και ισόνοµες µε Ε(Χ ) µ V( ) σ < τότε η τµ Z µ σ ακολουθεί ασυµπτωτικά (για µεγάλο συνήθως µεγαλύτερο του 30) την τυπική κανονική κατανοµή Ν(0) Λέγοντας παραπάνω ότι η κατανοµή της τµ Ζ ακολουθεί ασυµπτωτικά τυπική κανονική εννοούµε ότι η σκ F Z της Ζ συγκλίνει στην σκ Φ της τυπικής κανονικής (δηλ F ( x) Φ( x) x R ) Z Παρατήρηση 3 Είµαστε τώρα σε θέση να απαντήσουµε στο ερώτηµα που τέθηκε πριν το ΚΟΘ Συγκεκριµένα το άθροισµα ανεξάρτητων και ισόνοµων τµ Χ +Χ + +Χ µε Ε(Χ )µ V( )σ < και αρκετά µεγάλο θα ακολουθεί προσεγγιστικά κανονική κατανοµή άσχετα µε το ποια είναι η κατανοµή των (κανονική η οποιαδήποτε άλλη) Πράγµατι από το ΚΟΘ ισχύει ότι για µεγάλο Z µ ~ N ( 0 ) σ και εποµένως η τµ Σ σ Z + µ θα ακολουθεί και αυτή κανονική κατανοµή µε µέση τιµή και διασπορά E( ) σ E( Z) + µ µ V ( ) V (σ Z + µ) σ V ( Z) Άρα τελικά για οποιεσδήποτε ανεξάρτητες και ισόνοµες τµ Χ (που ακολουθούν ο- ποιαδήποτε κατανοµή) σ Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 3

2 ~ N( µ σ ) για µεγάλο Σύµφωνα λοιπόν µε το ΚΟΘ κάθε φυσική ποσότητα η τιµή της οποίας µπορεί να θεωρηθεί ότι διαµορφώνεται από ένα µεγάλο αριθµό ανεξάρτητων παραγόντων (δηλαδή µπορεί να γραφεί σαν άθροισµα ενός µεγάλου αριθµού ανεξάρτητων και ισόνοµων τµ) ακολουθεί προσεγγιστικά την κανονική κατανοµή Παρατήρηση 3 Η τµ καλείται δειγµατικός µέσος του δείγµατος Σύµφωνα µε το ΚΟΘ και ο δειγµατικός µέσος (που προέρχεται από παρατηρήσεις που ακολουθούν οποιαδήποτε κατανοµή) ακολουθεί ασυµπτωτικά κανονική κατανοµή Πράγµατι από το ΚΟΘ θα είναι σ Z N + µ~ ( µ σ ) για µεγάλο Ισοδύναµα µε το ΚΟΘ µπορούµε να γράψουµε ότι η τµ για µεγάλο µ µ µ ~ N( 0 ) σ σ σ Πόρισµα 3 Η διωνυµική κατανοµή B( p) προσεγγίζεται ικανοποιητικά από την κανονική κατανοµή Ν(p p(p)) όταν p(p) µεγάλο ( >0 ή καλύτερα >30) Απόδειξη Έστω ανεξάρτητες και ισόνοµες δίτιµες τµ Χ Χ Χ έτσι ώστε P( ) p P( 0) p Αν W + ++ τότε είναι φανερό ότι η W µπορεί να θεωρηθεί ως το πλήθος των επιτυχιών σε ανεξάρτητες δοκιµές η κάθε µία από τις οποίες έχει πιθανότητα επιτυχίας p και πιθανότητα αποτυχίας p (θεωρούµε το επιτυχία και το 0 αποτυχία) Εποµένως W~B(p) Από το ΚΟΘ όµως θα ισχύει επίσης ότι για µεγάλο W N( E( ) V ( )) και επειδή ~ E( ) 0P( 0) + P( ) p E( ) 0 P( 0) + P( ) p V ( ) E( ) E( ) p p p( p) έπεται ότι W ~ N( p p( p)) και τελικά θα είναι B( p) N( p p( p)) Με παρόµοιο τρόπο αποδεικνύεται και το επόµενο πόρισµα Πόρισµα 3 Η κατανοµή Posso µε µέση τιµή λ προσεγγίζεται ικανοποιητικά από την κανονική κατανοµή Ν(λλ) όταν λ µεγάλο (>0 ή καλύτερα >30) Άσκηση 3 Ο χρόνος ζωής µιας ηλεκτρονικής λυχνίας που κατασκευάζει µία βιοµηχανία είναι µία τµ Χ µε συνάρτηση κατανοµής λ x F ( x) e x> 0 Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 4

3 µε λ0005 ) Αν 49 λυχνίες χρησιµοποιηθούν διαδοχικά η µία µετά την άλλη να βρεθεί η πιθανότητα ο συνολικός χρόνος λειτουργίας των λυχνιών αυτών να ξεπερνά τις 7700 ώρες ) Ποια είναι η πιθανότητα ανάµεσα στις 49 αυτές λυχνίες το πολύ 4 να έχουν ζωή µικρότερη των 40 ωρών Λύση Έστω Χ Χ Χ 49 οι τµ που εκφράζουν τους χρόνους ζωής των 49 πρώτων λυχνιών Οι τµ Χ Χ είναι ανεξάρτητες και ισόνοµες Επειδή ακολουθούν εκθετική κατανοµή µε παράµετρο λ0005/00 έπεται ότι E ( ) 00 V ( ) 00 λ λ 49 Η τµ παριστά το συνολικό χρόνο λειτουργίας (σε ώρες) των 49 λυχνιών όταν αυτές χρησιµοποιηθούν διαδοχικά Σύµφωνα µε το ΚΟΘ θα ισχύει ότι (49>30) µε µεγάλη προσέγγιση Ζητείται η πιθανότητα Z ~ N ( 0 ) P( > 7700) P( > ) PZ ( > 5 ) PZ ( 5 ) Φ( 5) Φ(5) 0933 ) Αν Υ είναι το πλήθος των λυχνιών (από τις 49) µε ζωή µικρότερη των 40 ωρών τότε θα ισχύει ότι Y ~ B(ν 49 p P( 40)) Αυτό συµβαίνει διότι αν ως επιτυχία θεωρήσουµε το ενδεχόµενο 40 τότε η τµ Υ µπορεί να θεωρηθεί ως το πλήθος των επιτυχιών σε ν 49 ανεξάρτητες και ισόνοµες δοκιµές µε πιθανότητα επιτυχίας σε κάθε δοκιµή ίση µε P( 40) H πιθανότητα ανάµεσα στις 49 λυχνίες το πολύ 4 να έχουν ζωή µικρότερη των 40 ωρών είναι P(Y 4) Σε αυτό το σηµείο θα µπορούσαµε να χρησιµοποιήσουµε τον ακριβή τύπο: 4 ν v P( Y 4) p ( p) µε ν 49 p P( 40) και P( 40) F( 40) e e 05 Παρατηρούµε όµως ότι είναι αρκετά δύσκολο να υπολογίσουµε το παραπάνω άθροισµα (ιδιαίτερα τους συνδυασµούς) και είναι προτιµότερο να χρησιµοποιήσουµε την προσέγγιση της διωνυµικής από την κανονική κατανοµή Συγκεκριµένα από το Πόρισµα γνωρίζουµε ότι B(νp) N(νpνp(p)) (νp(p) > 0) Άρα προσεγγιστικά Z Y 49 p 49 p( p) Y Y ~ N ( 0 ) και συνεπώς η ζητούµενη πιθανότητα προσεγγιστικά θα είναι PY ( ) P( Y ) P ( Z 3) Φ( 3) Φ(3) (ο παραπάνω ακριβής τύπος µε την διωνυµική κατανοµή δίνει P(Y 4) 0009) Άσκηση 3 Έστω ότι εστιατόρια συναγωνίζονται για τους εργάτες ενός γειτονικού εργοστασίου Αν κάθε εργάτης εκλέγει για το γεύµα του τυχαία ένα από τα εστιατόρια αυτά να προσδιο- Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 5

4 ριστεί ο ελάχιστος αριθµός καθισµάτων που πρέπει να διαθέτει ένα εστιατόριο ώστε µε πιθανότητα τουλάχιστο 095 να είναι σε θέση να εξυπηρετήσει όλους τους πελάτες που έρχονται σε αυτό (500 5) Λύση Ας κάνουµε τη µελέτη µας για ένα συγκεκριµένο εστιατόριο έστω το ο Θεωρούµε τις τµ έτσι ώστε αν ο εργάτης εκλέγει το ο εστιατόριο και 0 αν ο εργάτης δεν εκλέγει το ο εστιατόριο Οι δίτιµες τµ είναι ανεξάρτητες και ισόνοµες µε P P E Vr ( ) ( 0) ( ) ( ) Το πλήθος των πελατών που εκλέγουν το ο εστιατόριο θα είναι ίσος µε Από το ΚΟΘ θα ισχύει όµως ότι E( ) / Z ~ N(0) V ( ) ( ) Σύµφωνα µε την εκφώνηση αν α είναι ο αριθµός καθισµάτων του εστιατορίου θα πρέπει ή ισοδύναµα και άρα θα πρέπει P( ) 095 P( Για θα είναι / / ( ) ( ) ) 095 / PZ ( ( ) ) ( ) ( / 0 95 Φ 645 Φ ( ) ) Φ ( 645 ) / ( ) ( ) ( ) και εποµένως ο ελάχιστος αριθµός καθισµάτων που πρέπει να διαθέτει το ο εστιατόριο είναι 5 Προφανώς το ίδιο ισχύει και για τα υπόλοιπα εστιατόρια Άσκηση 33 Σε µία πόλη 4000 κατοίκων έστω ότι 0 άτοµα την ηµέρα κατά µέσο όρο χρειάζεται να εισαχθούν στο νοσοκοµείο Να υπολογιστεί (κατά προσέγγιση) ο µικρότερος αριθµός των ε- λεύθερων κρεβατιών που πρέπει να διαθέτει ηµερησίως το νοσοκοµείο για να είναι σε θέση να εξυπηρετεί την πόλη µε πιθανότητα τουλάχιστον 95% Λύση Έστω οι τµ έτσι ώστε αν ο κάτοικος χρειάζεται εισαγωγή (κάποια συγκεκριµένη ηµέρα) και 0 διαφορετικά (4000) Οι δίτιµες τµ είναι ανεξάρτητες και ισόνοµες µε Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 0 P( ) P( 0) ( ) 0005 V ( ) E Το πλήθος των κατοίκων που χρειάζεται κρεβάτι θα είναι ίσο µε Από το ΚΟΘ θα ισχύει ότι 6

5 E( ) 0 Z ~ N(0) V ( ) 0 Σύµφωνα µε την εκφώνηση αν α είναι ο αριθµός των κλινών του νοσοκοµείου θα πρέπει και 0 P( ) P( ) Φ( ) Φ( ) Άρα ο µικρότερος αριθµός των ελεύθερων κρεβατιών που πρέπει να διαθέτει ηµερησίως το νοσοκοµείο είναι 6 Άσκηση 34 Μία εταιρία κινητής τηλεφωνίας έχει σε µία πόλη 0000 συνδροµητές Έχει βρεθεί ότι η πιθανότητα να χρησιµοποιήσει κάποιος το κινητό του τηλέφωνο (µία συγκεκριµένη ώρα της ηµέρας και κάτω από κανονικές συνθήκες) είναι 3% Να βρεθεί ο αριθµός των ελεύθερων γραµ- µών που πρέπει να διαθέτει το τηλεφωνικό κέντρο της εταιρίας ώστε το πολύ µία στις 00 κλήσεις να βρίσκει το δίκτυο κατειληµµένο Λύση Έστω οι τµ έτσι ώστε αν ο συνδροµητής χρησιµοποιεί το τηλέφωνό του (τη συγκεκριµένη ώρα) και 0 διαφορετικά (0000) Οι δίτιµες τµ είναι ανεξάρτητες και ισόνοµες µε P( ) 0 03 P( 0) 0 97 E ( ) 003 V ( ) Το πλήθος των συνδροµητών που χρησιµοποιεί το τηλέφωνό του θα είναι ίσος µε Από το ΚΟΘ θα ισχύει ότι E( ) 300 Z ~ N(0) V ( ) 9 Έστω α ο αριθµός των ελεύθερων γραµµών που έχει το τηλεφωνικό κέντρο Σύµφωνα µε την εκφώνηση θα πρέπει η πιθανότητα να είναι το δίκτυο κατειληµµένο να είναι % ή ισοδύναµα και P( 300 > ) 00 P( ) P( ) Φ( ) Φ( ) Άρα ο µικρότερος αριθµός ελεύθερων γραµµών που πρέπει να έχει το τηλεφωνικό κέντρο της ε- ταιρίας είναι 340 Άσκηση 35 Έστω ότι κάποιος θέλει να προσθέσει πραγµατικούς αριθµούς (µε αρκετά δεκαδικά ψηφία ο καθένας) Για συντοµία όµως δεν χρησιµοποιεί όλα τα ψηφία αλλά πριν κάνει την πρόσθεση τους στρογγυλοποιεί προς τον πλησιέστερο ακέραιο Ποια είναι η πιθανότητα το συνολικό σφάλµα (διαφορά πραγµατικού αθροίσµατος από το άθροισµα µετά τις στρογγυλοποιήσεις) να είναι µικρότερο του 0 εάν υποθέσουµε ότι τα σφάλµατα των στρογγυλοποιήσεων είναι ανεξάρτητα και ακολουθούν την οµοιόµορφη στο (05 05) κατανοµή ( 00) Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 7

6 Λύση Έστω Χ Χ Χ τα σφάλµατα των στρογγυλοποιήσεων Θα ισχύει ότι ( ) E ( ) 0 V ( ) Το συνολικό σφάλµα θα είναι ίσο µε Από το ΚΟΘ θα ισχύει ότι Ζητείται η πιθανότητα E( ) 0 Z ~ N(0) V ( ) 00 0 P( 0 < < 0) P ( < Z < ) Φ() Φ( ) Φ() 0 68 Ανισότητες Mrov Chebyshev Ας υποθέσουµε ότι γνωρίζουµε τη µέση τιµή Ε(Χ) µιας τυχαίας µεταβλητής και ίσως ακό- µη και τη διασπορά της V(Χ) Mπορούµε σε αυτή την περίπτωση να εξάγουµε κάποια συµπεράσµατα για την (άγνωστη) κατανοµή της; Ας δούµε στη συνέχεια δύο αποτελέσµατα που µας βοηθούν να βρούµε φράγµατα πιθανοτήτων όταν είναι γνωστή µόνο η Ε(Χ) ή οι Ε(Χ) V(Χ) της κατανοµής Πρόταση 3 (Ανισότητα Mrov) Αν Χ είναι µία θετική τµ (Χ 0) τότε για κάθε > 0 ισχύει ότι E( ) P( ) > 0 Απόδειξη Θα δώσουµε µία απόδειξη για τη συνεχή περίπτωση Έστω ότι η Χ έχει συνάρτηση πυκνότητας πιθανότητας f (επειδή Χ 0 θα είναι f (x) 0 για x < 0) Θα ισχύει ότι E( ) xf ( x) dx xf ( x) dx + xf ( x) dx xf ( x) dx 0 από το οποίο προκύπτει το ζητούµενο 0 Ως πόρισµα της παραπάνω ανισότητας έχουµε το ακόλουθο αποτέλεσµα f ( x) dx P( ) Πρόταση 3 (Ανισότητα Chebyshev) Αν Χ είναι µία τµ µε µέση τιµή µε(χ) και διασπορά V() τότε για κάθε ε > 0 V ( ) P( µ ε) ε Απόδειξη Η τµ Υ (Χµ) είναι θετική και εποµένως από την ανισότητα Mrov θα έχουµε ότι (θέτουµε ε ) E( Υ ) E(( Χ µ ) ) V ( Χ ) ) P(( Χ µ ) ε ) P ( Y ε ε ε ε από όπου προκύπτει το ζητούµενο παρατηρώντας ότι P (( Χ µ ) ε ) P( µ ε) Οι παραπάνω ανισότητες είναι αρκετά χρήσιµες στην περίπτωση που επιθυµούµε να κατασκευάσουµε φράγµατα για πιθανότητες µιας κατανοµής όταν είναι γνωστή µόνο η µέση τιµή ή µόνο η µέση τιµή και η διασπορά της κατανοµής αυτής Είναι προφανές ότι αν είναι γνωστή η κατανοµή (πχ είναι κανονική) τότε οι εν λόγω πιθανότητες µπορούν να υπολογιστούν ακριβώς Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 8

7 και δεν υπάρχει ανάγκη χρήσης των παραπάνω ανισοτήτων Ας δούµε τα παραπάνω µέσα από µία άσκηση Άσκηση 36 Γνωρίζουµε ότι το πλήθος Χ των µονάδων που κατασκευάζει ένα εργοστάσιο κατά τη διάρκεια µίας εβδοµάδας είναι µία τµ µε µέση τιµή 500 (α) Τι µπορούµε να πούµε για την πιθανότητα αυτή την εβδοµάδα η παραγωγή να είναι τουλάχιστον 000 µονάδες; (b) Αν επιπλέον γνωρίζουµε ότι η διασπορά της εβδοµαδιαίας παραγωγής Χ είναι 00 τότε τι µπορούµε να πούµε για την πιθανότητα αυτή την εβδοµάδα η παραγωγή να είναι µεταξύ 400 και 600 µονάδων Λύση (α) Από την ανισότητα Mrov προκύπτει ότι E( ) 500 P ( 000) 50% (β) Από την ανισότητα Chebyshev θα είναι V ( ) P( 400 < < 600) P( ) 99% Η χρησιµότητα όµως των παραπάνω ανισοτήτων δεν εξαντλείται µόνο σε περιπτώσεις όπως αυτή της παραπάνω άσκησης Με τη βοήθεια της ανισότητας Chebyshev µπορούµε να αποδείξουµε ένα πολύ σηµαντικό οριακό θεώρηµα το γνωστό ως νόµο των µεγάλων αριθµών Το νόµο αυτό τον είχαµε επικαλεστεί και στο παρελθόν χωρίς να τον έχουµε διατυπώσει αυστηρά Πριν προχωρήσουµε ας θέσουµε έναν προβληµατισµό σχετικά µε την έννοια της «πιθανότητας» ενός ενδεχοµένου ή της «µέση τιµής» µιας τµ Τι καταλαβαίνουµε διαισθητικά ή τι εννοούµε πρακτικά όταν λέµε ότι η πιθανότητα ενός ενδεχοµένου Α είναι πχ 30% ή όταν λέµε ότι µία τµ Χ έχει µέση τιµή πχ 0; Συνήθως αυτό που έχουµε στο µυαλό µας είναι ότι αν εκτελεστεί το ίδιο πείραµα (που αφορά το Α) πάρα πολλές φορές τότε το ενδεχόµενο Α θα πραγµατοποιηθεί στο 30% των περιπτώσεων Αυτός όµως είναι στην ουσία ο ορισµός κατά τον Vo Mses της πιθανότητας ως οριακής σχετικής συχνότητας (βλ Κεφ Ι σηµειώσεις Στατ ΙΙ) Όµως η θεωρία την ο- ποία αναπτύσσουµε δεν βασίζεται στον ορισµό του Vo Mses αλλά στα αξιώµατα Kolmogorov τα οποία δεν κάνουν κανένα λόγο για συχνότητα εµφάνισης ενδεχοµένων Αυτό που πραγµατικά συµβαίνει είναι ότι ο κανόνας υπολογισµού της πιθανότητας ως ο- ριακής σχετικής συχνότητας από τον Vo Mses αποτελεί (και αυτός όπως και ο κατά Lplce ορισµός της πιθανότητας) πόρισµα των αξιωµάτων Kolmogorov Το αξιοσηµείωτο αυτό γεγονός καθώς και άλλα συµπεράσµατα που θα εξετάσουµε στη συνέχεια προκύπτουν το «νόµο των µεγάλων αριθµών» Θεώρηµα 3 (Νόµος µεγάλων αριθµών) Έστω Χ Χ µία ακολουθία ανεξάρτητων και ισόνο- µων τµ µε Ε( ) µ Τότε µε πιθανότητα Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς µ όταν Απόδειξη (Για απλότητα θα αποδείξουµε το παραπάνω χρησιµοποιώντας τη λεγόµενη «ασθενή» σύγκλιση και θεωρώντας επιπλέον ότι V( ) σ < ) Από την ανισότητα Chebyshev για την τµ θα ισχύει ότι αλλά V ( ) P( µ ε) για κάθε ε > 0 ε 9

8 και άρα τελικά σ V ( ) V ( ) V ( ) V ( ) σ σ P ( µ ε) 0 για κάθε ε > 0 ε Άρα τελικά P ( µ ε < < µ + ε) για κάθε ε > 0 Με άλλα λόγια οσοδήποτε µικρή περιοχή γύρω από το µ και αν θεωρήσουµε το θα ανήκει σε αυτήν για µεγάλο µε πιθανότητα «σχεδόν» Με απλά λόγια αν εκτελέσουµε το ίδιο τυχαίο πείραµα φορές και Χ είναι η τµ που εκφράζει το αποτέλεσµα του -πειράµατος τότε σύµφωνα µε το νόµο των µεγάλων αριθµών ο µέσος όρος των Χ συγκλίνει στη µέση τιµή Ε(Χ ) όταν Έτσι όταν λέµε ότι µία κατανο- µή µε σκ F έχει µέση τιµή µ υπονοούµε ότι ο µέσος όρος ενός µεγάλου δείγµατος από την κατανοµή αυτή (µέσος όρος ανεξάρτητων τµ Χ Χ Χ ~ F) θα συγκλίνει στο µ Έστω τώρα ότι έχουµε έναν µεγάλο (θεωρητικά άπειρο) πληθυσµό (του οποίου εξετάζου- µε ένα χαρακτηριστικό) και επιλέγουµε από αυτόν τυχαία άτοµα µε χαρακτηριστικά Χ Χ Χ Σύµφωνα µε το νόµο των µεγάλων αριθµών ο µέσος του δείγµατος θα συγκλίνει (για µεγάλο ) στη µέση τιµή µ Ε(Χ ) Θεωρητικά αν επιλέξουµε όλο τον πληθυσµό (δηλ ) τότε ο µέσος του πληθυσµού θα είναι ίσος µε µ Ε(Χ ) Για το λόγο αυτό η µέση τιµή Ε(Χ ) µερικές φορές καλείται και πληθυσµιακή µέση τιµή (η µέση τιµή του χαρακτηριστικού σε «ολόκληρο» τον πληθυσµό) Αντίθετα η καλείται δειγµατική µέση τιµή (η µέση τιµή του χαρακτηριστικού στο τυχαίο δείγµα) Ας δούµε τώρα πως προκύπτει ο ορισµός κατά Vo Mses της πιθανότητας από το νόµο των µεγάλων αριθµών Έστω Ω ο δειγµατικός χώρος ενός πειράµατος τύχης και Α ένα ενδεχόµενο υποσύνολο του Ω Αν θεωρήσουµε ότι το πείραµα αυτό επαναλαµβάνεται φορές (ανεξάρτητες µεταξύ τους) και θέσουµε Χ ή 0 ανάλογα µε το αν στο -πείραµα πραγµατοποιηθεί το Α ή όχι τότε από το νόµο των µεγάλων αριθµών θα ισχύει ότι E( ) για Αλλά το εκφράζει το πλήθος των πραγµατοποιήσεων του Α στα πειράµατα δια Συνεπώς εκφράζει τη σχετική συχνότητα εµφάνισης του Α στα πειράµατα Επίσης ισχύει ότι E( ) 0 P( 0) + P( ) P( ) P( A) και εποµένως η παραπάνω σχέση στην ουσία εκφράζει το γεγονός ότι η οριακή σχετική συχνότητα εµφάνισης του Α συγκλίνει στην πιθανότητα του Α Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 30

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία Γεώργιος Κ. Τσιώτας Τµήµα Οικονοµικών Επιστηµών Περιεχόµενα ειγµατοληψία Κατανοµές ειγµατοληψίας Κεντρικό Οριακό Θεώρηµα Τι

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

Ορισμός και Ιδιότητες

Ορισμός και Ιδιότητες ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-3/03, -/04/006. Πρακτικά Συνεδρίου Έµµεσες µετρήσεις φυσικών µεγεθών. Παράδειγµα: Ο πειραµατικός υπολογισµός του g µέσω της µέτρησης του χρόνου των αιωρήσεων απλού

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων

Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων Πιθανότητες και Στατιστική Ενότητα 6: Οριακά θεωρήματα στη Θεωρία Πιθανοτήτων Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Χρησιμότητα ανισοτήτων - οριακών θεωρημάτων Χρησιμότητα

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Βασικά στοιχεία της θεωρίας πιθανοτήτων Η έννοια του Πειράµατος Τύχης. 9 3 6 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ή δειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοωήsτου δειγµατικού χώρου

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

Έγιναν καλά εν έγιναν καλά Οµάδα Α (µε φάρµακο) Οµάδα Β (χωρίς φάρµακο) 35 15

Έγιναν καλά εν έγιναν καλά Οµάδα Α (µε φάρµακο) Οµάδα Β (χωρίς φάρµακο) 35 15 Εργαστήριο Μαθηµατικών & Στατιστικής Γραπτή Εξέταση Περιόδου Ιουνίου 009 στη Στατιστική 9/06/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ 1. Ο χρόνος ζωής ενός εξαρτήµατος εργαστηριακού οργάνου σε εκατοντάδες ώρες περιγράφεται

Διαβάστε περισσότερα

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1)

3 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 21. (1) ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α. Το 50% των κατοίκων µιας πόλης διαβάζουν την εφηµερίδα (α), ενώ το 30% των κατοίκων διαβάζουν την εφηµερίδα (α) και δε διαβάζουν την εφηµερίδα (β). Ποια είναι η πιθανότητα ένας

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n) ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) Θέμα ο (Παρ..3.4, Παρ..4.3, Παρ..4.8.) Εάν = ( ) τυχαίο δείγμα από την ομοιόμορφη ( 0, ) X X,, X. Δείξτε ότι η στατιστική συνάρτηση T = X = το δειγματικό

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Όνοµα: Λιβαθινός Νικόλαος 2291

Όνοµα: Λιβαθινός Νικόλαος 2291 ΠΡΩΤΗ ΆΣΚΗΣΗ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ Όνοµα: Λιβαθινός Νικόλαος 9 Ηµεροµηνία: 3/5/003 Άσκηση ώστε όλες τις υποοµάδες των Z και Ζ 5 * Προκειµένου να δώσουµε τις υποοµάδες θα πρέπει αρχικά να ορίσουµε τα σύνολα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn

( t) ( ) ( 0,1) ( ) ( ) ( ) ( ) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem Lindeberg Levy) τότε η τ.μ. Sn Κεντρικό Οριακό Θεώρημα (Cetral Lmt Theorem Leberg Levy Εάν ~ f (, με [ ] µ, Var [ ] σ < και S τότε η τμ S ( S S µ συγκίνει ως προς κατανομή (coverges strbuto στη Var S σ ( N ( 0,, δηαδή N( 0, ή ισοδύναμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

Βασικά στοιχεία της θεωρίας πιθανοτήτων

Βασικά στοιχεία της θεωρίας πιθανοτήτων Η έννοια του Πειράµατος Τύχης. 9 3 Το σύνολο των πιθανών εκβάσεων ενός πειράµατος τύχης καλείται δειγµατοχώρος ήδειγµατικόςχώρος (sample space)καισυµβολίζεταιµεωήµε S.Έναστοιχείοω ή s του δειγµατικού χώρου

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 15 Οκτωβρίου 2009 ΚΛΑΣΙΚΗ ΠΙΘΑΝΟΤΗΤΑ De Moivre Ο κλασικός ορισµός της πιθανότητας αφορά πεπερασµένους δειγµατικούς χώρους και

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

, µπορεί να είναι η συνάρτηση. αλλού. πλησιάζουν προς την τιµή 1, η διασπορά της αυξάνεται ή ελαττώνεται; (Εξηγείστε γιατί).

, µπορεί να είναι η συνάρτηση. αλλού. πλησιάζουν προς την τιµή 1, η διασπορά της αυξάνεται ή ελαττώνεται; (Εξηγείστε γιατί). Εργαστήριο Μαθηµατικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου 009 στη Στατιστική 0/0/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. [0] Οι ακαθάριστες εβδοµαδιαίες εισπράξεις µιας κτηνοτροφικής µονάδας, από την πώληση

Διαβάστε περισσότερα

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου

Ορισµός. (neighboring) καταστάσεων. ηλαδή στην περίπτωση αλυσίδας Markov. 1.2 ιαµόρφωση µοντέλου 200-04-25. ιαδικασίες γεννήσεων-θανάτων. Ορισµός Οι διαδικασίες γεννήσεων-θανάτων (birth-death rocesses) αποτελούν µια σπουδαία κλάση αλυσίδων Markov (διακριτού ή συνεχούς χρόνου). Η ιδιαίτερη συνθήκη

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

n + 1 X(1 + X). ) = X i i=1 i=1

n + 1 X(1 + X). ) = X i i=1 i=1 ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 6 Σεπτεµβρίου 005 Εξεταστική περίοδος Σεπτεµβρίου 005 ΘΕΜΑΤΑ 1 1. Εστω X (X 1,..., X ) τυχαίο δείγµα από γεωµετρική κατανοµή Ge(), Θ (0, 1). (α) (10 µονάδες)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα