3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)"

Transcript

1 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ Χ ανεξάρτητες τµ που ακολουθούν την ίδια κατανοµή (ισόνοµες τµ) µε Ε(Χ ) µ V( ) σ Είναι γνωστό ότι στην περίπτωση που Χ Χ Χ ~ N(µσ ) τότε ~ N( µ σ ) Το ερώτηµα που προκύπτει είναι το εξής: αν οι ανεξάρτητες και ισόνοµες Χ Χ Χ δεν ακολουθούν την κανονική κατανοµή αλλά κάποια άλλη κατανοµή (ίσως και άγνωστη) τότε ποια µπορεί να είναι προσεγγιστικά η κατανοµή του αθροίσµατος Χ +Χ ++Χ για µεγάλο ; Απάντηση σε αυτό το ερώτηµα δίνει το περίφηµο Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) που καταδεικνύει τη σπουδαιότητα της κανονικής κατανοµής Εκτός από το θεωρητικό του ενδιαφέρον και τη σπουδαιότητά του το θεώρηµα αυτό παρέχει µία απλή µέθοδο για τον προσεγγιστικό υπολογισµό πιθανοτήτων που αφορούν αθροίσµατα από ανεξάρτητες τυχαίες µεταβλητές Θεώρηµα 3 (ΚΟΘ) Αν οι τµ Χ Χ Χ είναι ανεξάρτητες και ισόνοµες µε Ε(Χ ) µ V( ) σ < τότε η τµ Z µ σ ακολουθεί ασυµπτωτικά (για µεγάλο συνήθως µεγαλύτερο του 30) την τυπική κανονική κατανοµή Ν(0) Λέγοντας παραπάνω ότι η κατανοµή της τµ Ζ ακολουθεί ασυµπτωτικά τυπική κανονική εννοούµε ότι η σκ F Z της Ζ συγκλίνει στην σκ Φ της τυπικής κανονικής (δηλ F ( x) Φ( x) x R ) Z Παρατήρηση 3 Είµαστε τώρα σε θέση να απαντήσουµε στο ερώτηµα που τέθηκε πριν το ΚΟΘ Συγκεκριµένα το άθροισµα ανεξάρτητων και ισόνοµων τµ Χ +Χ + +Χ µε Ε(Χ )µ V( )σ < και αρκετά µεγάλο θα ακολουθεί προσεγγιστικά κανονική κατανοµή άσχετα µε το ποια είναι η κατανοµή των (κανονική η οποιαδήποτε άλλη) Πράγµατι από το ΚΟΘ ισχύει ότι για µεγάλο Z µ ~ N ( 0 ) σ και εποµένως η τµ Σ σ Z + µ θα ακολουθεί και αυτή κανονική κατανοµή µε µέση τιµή και διασπορά E( ) σ E( Z) + µ µ V ( ) V (σ Z + µ) σ V ( Z) Άρα τελικά για οποιεσδήποτε ανεξάρτητες και ισόνοµες τµ Χ (που ακολουθούν ο- ποιαδήποτε κατανοµή) σ Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 3

2 ~ N( µ σ ) για µεγάλο Σύµφωνα λοιπόν µε το ΚΟΘ κάθε φυσική ποσότητα η τιµή της οποίας µπορεί να θεωρηθεί ότι διαµορφώνεται από ένα µεγάλο αριθµό ανεξάρτητων παραγόντων (δηλαδή µπορεί να γραφεί σαν άθροισµα ενός µεγάλου αριθµού ανεξάρτητων και ισόνοµων τµ) ακολουθεί προσεγγιστικά την κανονική κατανοµή Παρατήρηση 3 Η τµ καλείται δειγµατικός µέσος του δείγµατος Σύµφωνα µε το ΚΟΘ και ο δειγµατικός µέσος (που προέρχεται από παρατηρήσεις που ακολουθούν οποιαδήποτε κατανοµή) ακολουθεί ασυµπτωτικά κανονική κατανοµή Πράγµατι από το ΚΟΘ θα είναι σ Z N + µ~ ( µ σ ) για µεγάλο Ισοδύναµα µε το ΚΟΘ µπορούµε να γράψουµε ότι η τµ για µεγάλο µ µ µ ~ N( 0 ) σ σ σ Πόρισµα 3 Η διωνυµική κατανοµή B( p) προσεγγίζεται ικανοποιητικά από την κανονική κατανοµή Ν(p p(p)) όταν p(p) µεγάλο ( >0 ή καλύτερα >30) Απόδειξη Έστω ανεξάρτητες και ισόνοµες δίτιµες τµ Χ Χ Χ έτσι ώστε P( ) p P( 0) p Αν W + ++ τότε είναι φανερό ότι η W µπορεί να θεωρηθεί ως το πλήθος των επιτυχιών σε ανεξάρτητες δοκιµές η κάθε µία από τις οποίες έχει πιθανότητα επιτυχίας p και πιθανότητα αποτυχίας p (θεωρούµε το επιτυχία και το 0 αποτυχία) Εποµένως W~B(p) Από το ΚΟΘ όµως θα ισχύει επίσης ότι για µεγάλο W N( E( ) V ( )) και επειδή ~ E( ) 0P( 0) + P( ) p E( ) 0 P( 0) + P( ) p V ( ) E( ) E( ) p p p( p) έπεται ότι W ~ N( p p( p)) και τελικά θα είναι B( p) N( p p( p)) Με παρόµοιο τρόπο αποδεικνύεται και το επόµενο πόρισµα Πόρισµα 3 Η κατανοµή Posso µε µέση τιµή λ προσεγγίζεται ικανοποιητικά από την κανονική κατανοµή Ν(λλ) όταν λ µεγάλο (>0 ή καλύτερα >30) Άσκηση 3 Ο χρόνος ζωής µιας ηλεκτρονικής λυχνίας που κατασκευάζει µία βιοµηχανία είναι µία τµ Χ µε συνάρτηση κατανοµής λ x F ( x) e x> 0 Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 4

3 µε λ0005 ) Αν 49 λυχνίες χρησιµοποιηθούν διαδοχικά η µία µετά την άλλη να βρεθεί η πιθανότητα ο συνολικός χρόνος λειτουργίας των λυχνιών αυτών να ξεπερνά τις 7700 ώρες ) Ποια είναι η πιθανότητα ανάµεσα στις 49 αυτές λυχνίες το πολύ 4 να έχουν ζωή µικρότερη των 40 ωρών Λύση Έστω Χ Χ Χ 49 οι τµ που εκφράζουν τους χρόνους ζωής των 49 πρώτων λυχνιών Οι τµ Χ Χ είναι ανεξάρτητες και ισόνοµες Επειδή ακολουθούν εκθετική κατανοµή µε παράµετρο λ0005/00 έπεται ότι E ( ) 00 V ( ) 00 λ λ 49 Η τµ παριστά το συνολικό χρόνο λειτουργίας (σε ώρες) των 49 λυχνιών όταν αυτές χρησιµοποιηθούν διαδοχικά Σύµφωνα µε το ΚΟΘ θα ισχύει ότι (49>30) µε µεγάλη προσέγγιση Ζητείται η πιθανότητα Z ~ N ( 0 ) P( > 7700) P( > ) PZ ( > 5 ) PZ ( 5 ) Φ( 5) Φ(5) 0933 ) Αν Υ είναι το πλήθος των λυχνιών (από τις 49) µε ζωή µικρότερη των 40 ωρών τότε θα ισχύει ότι Y ~ B(ν 49 p P( 40)) Αυτό συµβαίνει διότι αν ως επιτυχία θεωρήσουµε το ενδεχόµενο 40 τότε η τµ Υ µπορεί να θεωρηθεί ως το πλήθος των επιτυχιών σε ν 49 ανεξάρτητες και ισόνοµες δοκιµές µε πιθανότητα επιτυχίας σε κάθε δοκιµή ίση µε P( 40) H πιθανότητα ανάµεσα στις 49 λυχνίες το πολύ 4 να έχουν ζωή µικρότερη των 40 ωρών είναι P(Y 4) Σε αυτό το σηµείο θα µπορούσαµε να χρησιµοποιήσουµε τον ακριβή τύπο: 4 ν v P( Y 4) p ( p) µε ν 49 p P( 40) και P( 40) F( 40) e e 05 Παρατηρούµε όµως ότι είναι αρκετά δύσκολο να υπολογίσουµε το παραπάνω άθροισµα (ιδιαίτερα τους συνδυασµούς) και είναι προτιµότερο να χρησιµοποιήσουµε την προσέγγιση της διωνυµικής από την κανονική κατανοµή Συγκεκριµένα από το Πόρισµα γνωρίζουµε ότι B(νp) N(νpνp(p)) (νp(p) > 0) Άρα προσεγγιστικά Z Y 49 p 49 p( p) Y Y ~ N ( 0 ) και συνεπώς η ζητούµενη πιθανότητα προσεγγιστικά θα είναι PY ( ) P( Y ) P ( Z 3) Φ( 3) Φ(3) (ο παραπάνω ακριβής τύπος µε την διωνυµική κατανοµή δίνει P(Y 4) 0009) Άσκηση 3 Έστω ότι εστιατόρια συναγωνίζονται για τους εργάτες ενός γειτονικού εργοστασίου Αν κάθε εργάτης εκλέγει για το γεύµα του τυχαία ένα από τα εστιατόρια αυτά να προσδιο- Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 5

4 ριστεί ο ελάχιστος αριθµός καθισµάτων που πρέπει να διαθέτει ένα εστιατόριο ώστε µε πιθανότητα τουλάχιστο 095 να είναι σε θέση να εξυπηρετήσει όλους τους πελάτες που έρχονται σε αυτό (500 5) Λύση Ας κάνουµε τη µελέτη µας για ένα συγκεκριµένο εστιατόριο έστω το ο Θεωρούµε τις τµ έτσι ώστε αν ο εργάτης εκλέγει το ο εστιατόριο και 0 αν ο εργάτης δεν εκλέγει το ο εστιατόριο Οι δίτιµες τµ είναι ανεξάρτητες και ισόνοµες µε P P E Vr ( ) ( 0) ( ) ( ) Το πλήθος των πελατών που εκλέγουν το ο εστιατόριο θα είναι ίσος µε Από το ΚΟΘ θα ισχύει όµως ότι E( ) / Z ~ N(0) V ( ) ( ) Σύµφωνα µε την εκφώνηση αν α είναι ο αριθµός καθισµάτων του εστιατορίου θα πρέπει ή ισοδύναµα και άρα θα πρέπει P( ) 095 P( Για θα είναι / / ( ) ( ) ) 095 / PZ ( ( ) ) ( ) ( / 0 95 Φ 645 Φ ( ) ) Φ ( 645 ) / ( ) ( ) ( ) και εποµένως ο ελάχιστος αριθµός καθισµάτων που πρέπει να διαθέτει το ο εστιατόριο είναι 5 Προφανώς το ίδιο ισχύει και για τα υπόλοιπα εστιατόρια Άσκηση 33 Σε µία πόλη 4000 κατοίκων έστω ότι 0 άτοµα την ηµέρα κατά µέσο όρο χρειάζεται να εισαχθούν στο νοσοκοµείο Να υπολογιστεί (κατά προσέγγιση) ο µικρότερος αριθµός των ε- λεύθερων κρεβατιών που πρέπει να διαθέτει ηµερησίως το νοσοκοµείο για να είναι σε θέση να εξυπηρετεί την πόλη µε πιθανότητα τουλάχιστον 95% Λύση Έστω οι τµ έτσι ώστε αν ο κάτοικος χρειάζεται εισαγωγή (κάποια συγκεκριµένη ηµέρα) και 0 διαφορετικά (4000) Οι δίτιµες τµ είναι ανεξάρτητες και ισόνοµες µε Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 0 P( ) P( 0) ( ) 0005 V ( ) E Το πλήθος των κατοίκων που χρειάζεται κρεβάτι θα είναι ίσο µε Από το ΚΟΘ θα ισχύει ότι 6

5 E( ) 0 Z ~ N(0) V ( ) 0 Σύµφωνα µε την εκφώνηση αν α είναι ο αριθµός των κλινών του νοσοκοµείου θα πρέπει και 0 P( ) P( ) Φ( ) Φ( ) Άρα ο µικρότερος αριθµός των ελεύθερων κρεβατιών που πρέπει να διαθέτει ηµερησίως το νοσοκοµείο είναι 6 Άσκηση 34 Μία εταιρία κινητής τηλεφωνίας έχει σε µία πόλη 0000 συνδροµητές Έχει βρεθεί ότι η πιθανότητα να χρησιµοποιήσει κάποιος το κινητό του τηλέφωνο (µία συγκεκριµένη ώρα της ηµέρας και κάτω από κανονικές συνθήκες) είναι 3% Να βρεθεί ο αριθµός των ελεύθερων γραµ- µών που πρέπει να διαθέτει το τηλεφωνικό κέντρο της εταιρίας ώστε το πολύ µία στις 00 κλήσεις να βρίσκει το δίκτυο κατειληµµένο Λύση Έστω οι τµ έτσι ώστε αν ο συνδροµητής χρησιµοποιεί το τηλέφωνό του (τη συγκεκριµένη ώρα) και 0 διαφορετικά (0000) Οι δίτιµες τµ είναι ανεξάρτητες και ισόνοµες µε P( ) 0 03 P( 0) 0 97 E ( ) 003 V ( ) Το πλήθος των συνδροµητών που χρησιµοποιεί το τηλέφωνό του θα είναι ίσος µε Από το ΚΟΘ θα ισχύει ότι E( ) 300 Z ~ N(0) V ( ) 9 Έστω α ο αριθµός των ελεύθερων γραµµών που έχει το τηλεφωνικό κέντρο Σύµφωνα µε την εκφώνηση θα πρέπει η πιθανότητα να είναι το δίκτυο κατειληµµένο να είναι % ή ισοδύναµα και P( 300 > ) 00 P( ) P( ) Φ( ) Φ( ) Άρα ο µικρότερος αριθµός ελεύθερων γραµµών που πρέπει να έχει το τηλεφωνικό κέντρο της ε- ταιρίας είναι 340 Άσκηση 35 Έστω ότι κάποιος θέλει να προσθέσει πραγµατικούς αριθµούς (µε αρκετά δεκαδικά ψηφία ο καθένας) Για συντοµία όµως δεν χρησιµοποιεί όλα τα ψηφία αλλά πριν κάνει την πρόσθεση τους στρογγυλοποιεί προς τον πλησιέστερο ακέραιο Ποια είναι η πιθανότητα το συνολικό σφάλµα (διαφορά πραγµατικού αθροίσµατος από το άθροισµα µετά τις στρογγυλοποιήσεις) να είναι µικρότερο του 0 εάν υποθέσουµε ότι τα σφάλµατα των στρογγυλοποιήσεων είναι ανεξάρτητα και ακολουθούν την οµοιόµορφη στο (05 05) κατανοµή ( 00) Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 7

6 Λύση Έστω Χ Χ Χ τα σφάλµατα των στρογγυλοποιήσεων Θα ισχύει ότι ( ) E ( ) 0 V ( ) Το συνολικό σφάλµα θα είναι ίσο µε Από το ΚΟΘ θα ισχύει ότι Ζητείται η πιθανότητα E( ) 0 Z ~ N(0) V ( ) 00 0 P( 0 < < 0) P ( < Z < ) Φ() Φ( ) Φ() 0 68 Ανισότητες Mrov Chebyshev Ας υποθέσουµε ότι γνωρίζουµε τη µέση τιµή Ε(Χ) µιας τυχαίας µεταβλητής και ίσως ακό- µη και τη διασπορά της V(Χ) Mπορούµε σε αυτή την περίπτωση να εξάγουµε κάποια συµπεράσµατα για την (άγνωστη) κατανοµή της; Ας δούµε στη συνέχεια δύο αποτελέσµατα που µας βοηθούν να βρούµε φράγµατα πιθανοτήτων όταν είναι γνωστή µόνο η Ε(Χ) ή οι Ε(Χ) V(Χ) της κατανοµής Πρόταση 3 (Ανισότητα Mrov) Αν Χ είναι µία θετική τµ (Χ 0) τότε για κάθε > 0 ισχύει ότι E( ) P( ) > 0 Απόδειξη Θα δώσουµε µία απόδειξη για τη συνεχή περίπτωση Έστω ότι η Χ έχει συνάρτηση πυκνότητας πιθανότητας f (επειδή Χ 0 θα είναι f (x) 0 για x < 0) Θα ισχύει ότι E( ) xf ( x) dx xf ( x) dx + xf ( x) dx xf ( x) dx 0 από το οποίο προκύπτει το ζητούµενο 0 Ως πόρισµα της παραπάνω ανισότητας έχουµε το ακόλουθο αποτέλεσµα f ( x) dx P( ) Πρόταση 3 (Ανισότητα Chebyshev) Αν Χ είναι µία τµ µε µέση τιµή µε(χ) και διασπορά V() τότε για κάθε ε > 0 V ( ) P( µ ε) ε Απόδειξη Η τµ Υ (Χµ) είναι θετική και εποµένως από την ανισότητα Mrov θα έχουµε ότι (θέτουµε ε ) E( Υ ) E(( Χ µ ) ) V ( Χ ) ) P(( Χ µ ) ε ) P ( Y ε ε ε ε από όπου προκύπτει το ζητούµενο παρατηρώντας ότι P (( Χ µ ) ε ) P( µ ε) Οι παραπάνω ανισότητες είναι αρκετά χρήσιµες στην περίπτωση που επιθυµούµε να κατασκευάσουµε φράγµατα για πιθανότητες µιας κατανοµής όταν είναι γνωστή µόνο η µέση τιµή ή µόνο η µέση τιµή και η διασπορά της κατανοµής αυτής Είναι προφανές ότι αν είναι γνωστή η κατανοµή (πχ είναι κανονική) τότε οι εν λόγω πιθανότητες µπορούν να υπολογιστούν ακριβώς Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 8

7 και δεν υπάρχει ανάγκη χρήσης των παραπάνω ανισοτήτων Ας δούµε τα παραπάνω µέσα από µία άσκηση Άσκηση 36 Γνωρίζουµε ότι το πλήθος Χ των µονάδων που κατασκευάζει ένα εργοστάσιο κατά τη διάρκεια µίας εβδοµάδας είναι µία τµ µε µέση τιµή 500 (α) Τι µπορούµε να πούµε για την πιθανότητα αυτή την εβδοµάδα η παραγωγή να είναι τουλάχιστον 000 µονάδες; (b) Αν επιπλέον γνωρίζουµε ότι η διασπορά της εβδοµαδιαίας παραγωγής Χ είναι 00 τότε τι µπορούµε να πούµε για την πιθανότητα αυτή την εβδοµάδα η παραγωγή να είναι µεταξύ 400 και 600 µονάδων Λύση (α) Από την ανισότητα Mrov προκύπτει ότι E( ) 500 P ( 000) 50% (β) Από την ανισότητα Chebyshev θα είναι V ( ) P( 400 < < 600) P( ) 99% Η χρησιµότητα όµως των παραπάνω ανισοτήτων δεν εξαντλείται µόνο σε περιπτώσεις όπως αυτή της παραπάνω άσκησης Με τη βοήθεια της ανισότητας Chebyshev µπορούµε να αποδείξουµε ένα πολύ σηµαντικό οριακό θεώρηµα το γνωστό ως νόµο των µεγάλων αριθµών Το νόµο αυτό τον είχαµε επικαλεστεί και στο παρελθόν χωρίς να τον έχουµε διατυπώσει αυστηρά Πριν προχωρήσουµε ας θέσουµε έναν προβληµατισµό σχετικά µε την έννοια της «πιθανότητας» ενός ενδεχοµένου ή της «µέση τιµής» µιας τµ Τι καταλαβαίνουµε διαισθητικά ή τι εννοούµε πρακτικά όταν λέµε ότι η πιθανότητα ενός ενδεχοµένου Α είναι πχ 30% ή όταν λέµε ότι µία τµ Χ έχει µέση τιµή πχ 0; Συνήθως αυτό που έχουµε στο µυαλό µας είναι ότι αν εκτελεστεί το ίδιο πείραµα (που αφορά το Α) πάρα πολλές φορές τότε το ενδεχόµενο Α θα πραγµατοποιηθεί στο 30% των περιπτώσεων Αυτός όµως είναι στην ουσία ο ορισµός κατά τον Vo Mses της πιθανότητας ως οριακής σχετικής συχνότητας (βλ Κεφ Ι σηµειώσεις Στατ ΙΙ) Όµως η θεωρία την ο- ποία αναπτύσσουµε δεν βασίζεται στον ορισµό του Vo Mses αλλά στα αξιώµατα Kolmogorov τα οποία δεν κάνουν κανένα λόγο για συχνότητα εµφάνισης ενδεχοµένων Αυτό που πραγµατικά συµβαίνει είναι ότι ο κανόνας υπολογισµού της πιθανότητας ως ο- ριακής σχετικής συχνότητας από τον Vo Mses αποτελεί (και αυτός όπως και ο κατά Lplce ορισµός της πιθανότητας) πόρισµα των αξιωµάτων Kolmogorov Το αξιοσηµείωτο αυτό γεγονός καθώς και άλλα συµπεράσµατα που θα εξετάσουµε στη συνέχεια προκύπτουν το «νόµο των µεγάλων αριθµών» Θεώρηµα 3 (Νόµος µεγάλων αριθµών) Έστω Χ Χ µία ακολουθία ανεξάρτητων και ισόνο- µων τµ µε Ε( ) µ Τότε µε πιθανότητα Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς µ όταν Απόδειξη (Για απλότητα θα αποδείξουµε το παραπάνω χρησιµοποιώντας τη λεγόµενη «ασθενή» σύγκλιση και θεωρώντας επιπλέον ότι V( ) σ < ) Από την ανισότητα Chebyshev για την τµ θα ισχύει ότι αλλά V ( ) P( µ ε) για κάθε ε > 0 ε 9

8 και άρα τελικά σ V ( ) V ( ) V ( ) V ( ) σ σ P ( µ ε) 0 για κάθε ε > 0 ε Άρα τελικά P ( µ ε < < µ + ε) για κάθε ε > 0 Με άλλα λόγια οσοδήποτε µικρή περιοχή γύρω από το µ και αν θεωρήσουµε το θα ανήκει σε αυτήν για µεγάλο µε πιθανότητα «σχεδόν» Με απλά λόγια αν εκτελέσουµε το ίδιο τυχαίο πείραµα φορές και Χ είναι η τµ που εκφράζει το αποτέλεσµα του -πειράµατος τότε σύµφωνα µε το νόµο των µεγάλων αριθµών ο µέσος όρος των Χ συγκλίνει στη µέση τιµή Ε(Χ ) όταν Έτσι όταν λέµε ότι µία κατανο- µή µε σκ F έχει µέση τιµή µ υπονοούµε ότι ο µέσος όρος ενός µεγάλου δείγµατος από την κατανοµή αυτή (µέσος όρος ανεξάρτητων τµ Χ Χ Χ ~ F) θα συγκλίνει στο µ Έστω τώρα ότι έχουµε έναν µεγάλο (θεωρητικά άπειρο) πληθυσµό (του οποίου εξετάζου- µε ένα χαρακτηριστικό) και επιλέγουµε από αυτόν τυχαία άτοµα µε χαρακτηριστικά Χ Χ Χ Σύµφωνα µε το νόµο των µεγάλων αριθµών ο µέσος του δείγµατος θα συγκλίνει (για µεγάλο ) στη µέση τιµή µ Ε(Χ ) Θεωρητικά αν επιλέξουµε όλο τον πληθυσµό (δηλ ) τότε ο µέσος του πληθυσµού θα είναι ίσος µε µ Ε(Χ ) Για το λόγο αυτό η µέση τιµή Ε(Χ ) µερικές φορές καλείται και πληθυσµιακή µέση τιµή (η µέση τιµή του χαρακτηριστικού σε «ολόκληρο» τον πληθυσµό) Αντίθετα η καλείται δειγµατική µέση τιµή (η µέση τιµή του χαρακτηριστικού στο τυχαίο δείγµα) Ας δούµε τώρα πως προκύπτει ο ορισµός κατά Vo Mses της πιθανότητας από το νόµο των µεγάλων αριθµών Έστω Ω ο δειγµατικός χώρος ενός πειράµατος τύχης και Α ένα ενδεχόµενο υποσύνολο του Ω Αν θεωρήσουµε ότι το πείραµα αυτό επαναλαµβάνεται φορές (ανεξάρτητες µεταξύ τους) και θέσουµε Χ ή 0 ανάλογα µε το αν στο -πείραµα πραγµατοποιηθεί το Α ή όχι τότε από το νόµο των µεγάλων αριθµών θα ισχύει ότι E( ) για Αλλά το εκφράζει το πλήθος των πραγµατοποιήσεων του Α στα πειράµατα δια Συνεπώς εκφράζει τη σχετική συχνότητα εµφάνισης του Α στα πειράµατα Επίσης ισχύει ότι E( ) 0 P( 0) + P( ) P( ) P( A) και εποµένως η παραπάνω σχέση στην ουσία εκφράζει το γεγονός ότι η οριακή σχετική συχνότητα εµφάνισης του Α συγκλίνει στην πιθανότητα του Α Boutss MV (003) Σηµειώσεις Στατιστικής ΙΙΙ Τµήµα Οικονοµικής Επιστήµης Πανεπιστήµιο Πειραιώς 30

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Να κατανοηθεί η έννοια της εκτίµησης σηµείου και της εκτίµησης διαστήµατος. Επίσης να κατανοηθεί η έννοια της δειγµατικής κατανοµής παραµέτρου και να υπολογισθούν µε χρήση της Κεντρικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα.

Η Διωνυμική Κατανομή. μαθηματικών. 2 Ο γονότυπος μπορεί να είναι ΑΑ, Αα ή αα. Η Διωνυμική Κατανομή Η Διωνυμική κατανομή συνδέεται με ένα πολύ απλό πείραμα τύχης. Ίσως το απλούστερο! Πρόκειται για τη δοκιμή Bernoulli, ένα πείραμα τύχης με μόνο δύο, αμοιβαίως αποκλειόμενα, δυνατά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ 4.. Εισαγωγή Στην προσομοίωση σε πολλές περιπτώσεις είναι απαραίτητη η δημιουργία δειγμάτων τυχαίων μεταβλητών που ακολουθούν κάποια καθορισμένη

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram).

Κατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram). Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 Κατανοµές 1. Οµοιόµορφη κατανοµή Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Η Κανονική Κατανομή. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 81

Η Κανονική Κατανομή. Εργαστήριο Μαθηματικών & Στατιστικής/ Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 81 Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας

X = συνεχης. Είναι εμφανές ότι αναγκαία προϋπόθεση για την ύπαρξη της ροπογεννήτριας Ροπογεννήτριες (mome geerig fucios), πιθανογεννήτριες (robbiliy geerig fucios) και χαρακτηριστικές συναρτήσεις (chrcerisic fucios) Η ροπογεννήτρια συνάρτηση της τμ είναι η πραγματική συνάρτηση πραγματικής

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται

Διαβάστε περισσότερα

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι: Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4 ΚΕΦΑΛΑΙΟ ΙΙ. Η έννοια της τυχαίας µεταβλητής Συχνά αυτό το οποίο παρατηρούµε σε ένα πείραµα τύχης δεν είναι το όποιο αποτέλεσµα ω Ω αλλά µια µαθηµατική ποσότητα Χ εξαρτώµενη από το αποτέλεσµα ω Ω. Ας εξετάσουµε

Διαβάστε περισσότερα

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στατιστική 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές Γεώργιος Μενεξές Τμήμα Γεωπονίας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΙΑ ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Στο Σετ αυτό περιλαμβάνονται θέματα Πιθανοτήτων που έχουν δοθεί σε εξετάσεις παρελθόντων ετών στα Τμήματα Γεωλογικό

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα