Μορφοµετρικές Παράµετροι Λεκανών Απορροής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μορφοµετρικές Παράµετροι Λεκανών Απορροής"

Transcript

1 Μορφοµετρικές Παράµετροι Λεκανών Απορροής Α. Μετρούµενες παράµετροι του υδρογραφικού δικτύου Τάξεις κλάδου (u) είναι η ιεράρχηση των κλάδων του δικτύου µε κάποια από τις µεθόδους, που αναπτύξαµε παραπάνω. Συνολικό µήκος κλάδων είναι το άθροισµα των µηκών όλων των εντός λεκάνης τάξεως u κλάδων εντός λεκάνης τάξεως u. (ΣL)u Το µέγιστο µήκος της λεκάνης απορροής (Lbmax) Μέγιστο τοπικό ανάγλυφο της λεκάνης απορροής (Η) Περίµετρος λεκάνης απορροής (Ρ) η προβολή του µήκους του κυρίου κλάδου της κοίτης προεκτεινόµενο µέχρι τον υδροκρίτη είναι η διαφορά µεταξύ του υψηλότερου (υδροκρίτη) και χαµηλότερου σηµείου (στόµιο) της λεκάνης κατά µήκος της µεγαλύτερης διάστασης της και η οποία είναι παράλληλη προς το κύριο υδρογραφικό ρέµα. είναι το µήκος του υδροκρίτη που περιβάλλει τη λεκάνη απορροής. Β. Υπολογιζόµενες µορφοµετρικές παράµετροι του υδρογραφικού δικτύου. Υδρογραφική πυκνότητα είναι ο λόγος του συνολικού µήκους των (Du) κλάδων των κοιτών όλων των τάξεων σε µια λεκάνη απορροής δια του εµβαδού Λόγος αναγλύφου (relief ratio) (Rh) Κυκλικότητα (Cu) Βαθµός τραχύτητας (ruggedness number) (Rn) της λεκάνης απορροής Du=ΣLu/Au είναι ο λόγος του τοπικού αναγλύφου της λεκάνης (Η) δια του µεγαλύτερου µετρούµενου µήκους της λεκάνης (Lbmax) από τον χάρτη παράλληλα προς την κύρια υδρογραφική κοίτη Rh=H/Lbmax είναι η παράµετρος που χαρακτηρίζει τη µορφή και το σχήµα που έχει αποκτήσει µια λεκάνη λόγω της δράσης του νερού και δίνεται από τον τύπο Cu=4πAu/P2 είναι το γινόµενο της υδρογραφικής πυκνότητας και του µέγιστου αναγλύφου (Hmax) της λεκάνης απορροής εκφραζόµενων και των δύο µε τις ίδιες 27

2 διαστάσεις Rn=Hmax*D Λόγος επιµήκυνσης της λεκάνης (elongation ratio) (Er) ορίζεται ως ο λόγος της διαµέτρου του κύκλου (d) που έχει εµβαδόν ίσο µε το εµβαδόν της λεκάνης απορροής δια της µέγιστης διάστασης της λεκάνης (Lbmax) Er=d/Lbmax Μετρούµενες παράµετροι του υδρογραφικού δικτύου Το µέγιστο µήκος της λεκάνης απορροής (Lbmax): είναι η προβολή του µήκους του κυρίου κλάδου της κοίτης προεκτεινόµενο µέχρι τον υδροκρίτη. Μέγιστο τοπικό ανάλγυφο της λεκάνης απορροήε (Η): είναι η διαφορά µεταξύ του υψηλότερου (υδροκρίτη) και χαµηλότερου σηµείου (στόµιο) της λεκάνης κατά µήκος της µεγαλύτερης διάστασης της και η οποία είναι παράλληλη προς το κύριο υδρογραφικό ρέµα. Περίµετρος λεκάνης απορροής (Ρ): είναι το µήκος του υδροκρίτη που περιβάλλει τη λεκάνη απορροής. 28

3 Υπολογιζόµενες µορφοµετρικές παράµετροι του υδρογραφικού δικτύου Λόγος αναγλύφου (relief ratio) (Rh): είναι ο λόγος του τοπικού αναγλύφου της λεκάνης (Η) δια του µεγαλύτερου µετρούµενου µήκους της λεκάνης (Lbmax) από τον χάρτη παράλληλα προς την κύρια υδρογραφική κοίτη Rh=H/Lh Το Lh λαµβάνεται από τον τοπογραφικό χάρτη και είναι η προβολή του Lbmax στο οριζόντιο επίπεδο. Ο λόγος αναγλύφου είναι ένας χωρίς διαστάσεις λόγος µεταξύ του υψοµέτρου και του µήκους. Ο λόγος αναγλύφου είναι ίσος µε την εφαπτόµενη της γωνίας η οποία σχηµατίζεται µεταξύ δυο επιπέδων τεµνόµενων στο στόµιο της λεκάνης, το ένα είναι το οριζόντιο επίπεδο και το άλλο διέρχεται από το υψηλότερο σηµείο της λεκάνης. Το Rh µετράει το συνολικό βαθµό κλίσης της λεκάνης και είναι δείκτης της έντασης των διεργασιών διάβρωσης που έγιναν και γίνονται στις κλιτύες της λεκάνης απορροής Βαθµός τραχύτητας (ruggedness number) (Rn) µιας λεκάνης απορροής: είναι το γινόµενο της υδρογραφικής πυκνότητας και του µέγιστου αναγλύφου (Hmax) της λεκάνης απορροής εκφραζόµενων και των δύο µε τις ίδιες διαστάσεις. Rn=Hmax*D Υψηλές τιµές του Rn εµφανίζονται σε περιοχές όπου και οι δύο µορφοµετρικές παράµετροι Hmax και D είναι µεγάλες δηλαδή όταν οι κλιτύες δεν είναι µόνο απότοµες αλλά έχουν και µεγάλο µήκος. Κυκλικότητα (Cu): είναι η παράµετρος που χαρακτηρίζει τη µορφή και το σχήµα που έχει αποκτήσει µια λεκάνη λόγω της δράσης του νερού και δίνεται από τον τύπο: Cu=4πΕ/P2 Όπου Ε:το εµβαδόν της λεκάνης απορροής Ρ: η περίµετρος της λεκάνης απορροής Συνεπώς µπορεί να χρησιµοποιηθεί ως µια ποσοτική παράµετρος ώστε να διακριθούν µεταξύ τους λεκάνες που έχουν υποστεί ανύψωση ή όχι. Οι τιµές που µπορεί να λάβει η παράµετρος της κυκλικότητας είναι από 0 έως 1. Τιµές κοντά στο 1 δείχνουν κυκλικές λεκάνες που είναι αποτέλεσµα µακρόχρονης δράσης του ρέοντος νερού και ασθενούς τεκτονικής δραστηριότητας. Τιµές που τείνουν στο 0 δείχνουν επιµήκεις λεκάνες µε 29

4 προσανατολισµένη διεύθυνση ροής αποτέλεσµα προσφατης τεκτονικής δράσης. Λόγος επιµήκυνσης της λεκάνης (elongation ratio) (Er): είναι η έκφραση του σχήµατος της λεκάνης απορροής και ορίζεται ως ο λόγος της διαµέτρου του κύκλου (d) που έχει εµβαδόν ίσο µε το εµβαδόν της λεκάνης απορροής δια της µέγιστης διάστασης της λεκάνης (Lbmax). Er=d/Lbmax Η µέγιστη διάσταση της λεκάνης (Lbmax) υπολογίστηκε µε τη βοήθεια του λόγου αναγλύφου (Rh). Υψοµετρικό ολοκλήρωµα (Hi): Η υψοµετρική καµπύλη δείχνει µε απλό τρόπο την κατανοµή του αναγλύφου µέσα σε µία λεκάνη, η οποία ορίζεται από την περίµετρό της και από δύο επίπεδα, ένα βασικό επίπεδο διερχόµενο από το στόµιο της λεκάνης και ένα επίπεδο κορυφής διερχόµενο από το ψηλότερο σηµείο του υδροκρίτη της λεκάνης. Με τον τρόπο αυτό, η υψοµετρική καµπύλη περιγράφει τη λεκάνη απορροής σε µία κατά µήκος τοµή. Προκειµένου να χαρακτηριστεί το σχήµα µιας υψοµετρικής καµπύλης µιας δεδοµένης λεκάνης απορροής πραγµατοποιείται ο υπολογισµός τοου υψοµετρικού ολοκληρώµατος (hypsometric integral). Το υψοµετρικό ολοκλήρωµα προσδιορίζεται ως το εµβαδόν της επιφάνειας κάτω από την υψοµετρική καµπύλη. Ο Strahler 1952 χρησιµοποίησε δύο παραµέτρους x και y για να εκφράσει τη σχέση µεταξύ της επιφάνειας και του υψοµέτρου της λεκάνης απορροής χωρίς διαστάσεις. Οι παράµετροι που χρησιµοποίησε φαίνονται στο σχήµα. Το σχετικό ύψος y είναι ι λόγος του ύψους h για κάθε ισοϋψή καµπύλη προς το τοπικό ανάγλυφο της λεκάνης H. Η σχετική επιφάνεια x είναι ο λόγος της οριζόντιας προβολής της επιφάνειας α προς ολόκληρη την οριζόντια προβολή της επιφάνειας (Α) της λεκάνης. Οι λόγοι y και x ποικίλουν από 0 µέχρι 1 (δηλαδή από 0% µέχρι 100%). Στη συνέχεια κατασκευάζεται η γραφική παράσταση α/α και h/h. Ένας άλλος ταχύτερος τρόπος υπολογισµού του υψοµετρικού ολοκληρώµατος (Hi) γίνεται βάση του τύπου: Hi= µέσο υψόµετρο ελάχιστο υψόµετρο µέγιστο υψόµετρο-ελάχιστο υψόµετρο Οι τιµές του µέγιστου και του ελάχιστου υψοµέτρου υπολογίζονται απευθείας από τον τοπογραφικό χάρτη ενώ η τιµή του µέσου υψοµέτρου µπορεί να υπολογιστεί είτε από το µέσο όρο των υψοµέτρων 50 τυχαίων 30

5 σηµείων στη λεκάνη είτε ως η µέση τιµή όλων των υψοµέτρων της λεκάνης. 31

6 Άσκηση 7 η. Να προσδιοριστούν οι µορφοµετρικές παράµετροι λόγος αναγλύφου, κυκλικότητα, βαθµός τραχύτητας, λόγος επιµήκυνσης των λεκανών 4ης τάξης του υδρογραφικού δικτύου του ρέµατος Καραβόµυλος. Επίσης, να υπολογιστεί το υψοµετρικό ολοκλήρωµα για όλη τη λεκάνη απορροής του ρέµατος. 32

7 Άσκηση 7 η (Λύση). 4,1 4,2 4,3 4,4 4,5 D 2882, , , , ,417 Lbmax H P Au(m2) d 3323, , , , ,777 Hmax Rh 0, , , , , Cu 0, , , , , Rn 0, , , , , Er 2, , , , ,

8 Υψοµετρικό Ολοκλήρωµα Κατασκευάστηκε η υψοµετρική καµπύλη για την λεκάνη του ρέµατος Καραβόµυλος όπως φαίνεται στο σχήµα και υπολογίστηκε το υψοµετρικό ολοκλήρωµα ίσο µε Hi=43,4 43,4 34

2. Ποσοτική ανάλυση υδρογραφικών δικτύων

2. Ποσοτική ανάλυση υδρογραφικών δικτύων 2. Ποσοτική ανάλυση υδρογραφικών δικτύων Η ποσοτική ανάλυση ενός υδρογραφικού δικτύου καθορίζει κάποια σχέση µεταξύ των κλάδων του. Η παρατήρηση ύπαρξης µεγάλων κεντρικών κλάδων, µικρότερων δευτερευόντων

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Επιµέλεια: ηµάδη Αγόρω Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΙΣΟΫΨΕΙΣ ΚΑΜΠΥΛΕΣ: είναι

Διαβάστε περισσότερα

Γεωµορφοµετρικά Χαρακτηριστικά των Υδρολογικών Λεκανών της Ελλάδας

Γεωµορφοµετρικά Χαρακτηριστικά των Υδρολογικών Λεκανών της Ελλάδας 12η Συνάντηση Ελλήνων Χρηστών ArcInfo - ArcView 7-8 Νοεµβρίου 2002 Holiday Inn - Αθήνα Γεωµορφοµετρικά Χαρακτηριστικά των Υδρολογικών Λεκανών της Ελλάδας Ιωάννης Πασπαλλής ηµήτρης Κουτσογιάννης Εθνικό

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5ο: Στοιχεία γεωμορφολογίας

ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5ο: Στοιχεία γεωμορφολογίας Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Μεταπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5ο: Στοιχεία

Διαβάστε περισσότερα

Το νερό είναι το μάτι ενός τοπίου. ΔΙΕΡΓΑΣΙΕΣ ΡΕΜΑΤΩΝ Από τον Γεώργιο Ζαΐμη

Το νερό είναι το μάτι ενός τοπίου. ΔΙΕΡΓΑΣΙΕΣ ΡΕΜΑΤΩΝ Από τον Γεώργιο Ζαΐμη Το νερό είναι το μάτι ενός τοπίου ΔΙΕΡΓΑΣΙΕΣ ΡΕΜΑΤΩΝ Από τον Γεώργιο Ζαΐμη Τι είναι ο Υδροκρίτης Mία τοπογραφική διαχωριστικη γραμμή που διχωριζει το νερό που απορρέει επιγανειακα σε δύο ή περισσότερες

Διαβάστε περισσότερα

Πλημμύρες Φυσικό πλαίσιο-γεωμορφολογία και απορροή

Πλημμύρες Φυσικό πλαίσιο-γεωμορφολογία και απορροή Όγκος απορροής Πλημμύρες Φυσικό πλαίσιο-γεωμορφολογία και απορροή Νίκος Μαμάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 4 Φυσικό πλαίσιο Μηχανισμός δημιουργίας επιφανειακής απορροής

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής

Διαβάστε περισσότερα

Υδροµετεωρολογία. Εισαγωγή στα υδρογραφήµατα. Νίκος Μαµάσης, Αθήνα 2009 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ Υ ΡΟΓΡΑΦΗΜΑΤΑ

Υδροµετεωρολογία. Εισαγωγή στα υδρογραφήµατα. Νίκος Μαµάσης, Αθήνα 2009 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ Υ ΡΟΓΡΑΦΗΜΑΤΑ Υδροµετεωρολογία Εισαγωγή στα υδρογραφήµατα Νίκος Μαµάσης, Αθήνα 009 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ Υ ΡΟΓΡΑΦΗΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ Υ ΡΟΓΡΑΦΗΜΑ ΣΥΝΟΛΙΚΗ ΕΚΤΙΜΗΣΗ ΕΛΛΕΙΜΑΤΩΝ Υ ΡΟΚΡΙΤΗΣ

Διαβάστε περισσότερα

Άλλοι χάρτες λαμβάνουν υπόψη και το υψόμετρο του αντικειμένου σε σχέση με ένα επίπεδο αναφοράς

Άλλοι χάρτες λαμβάνουν υπόψη και το υψόμετρο του αντικειμένου σε σχέση με ένα επίπεδο αναφοράς ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Ένας χάρτης είναι ένας τρόπος αναπαράστασης της πραγματικής θέσης ενός αντικειμένου ή αντικειμένων σε μια τεχνητά δημιουργουμένη επιφάνεια δύο διαστάσεων Πολλοί χάρτες (π.χ. χάρτες

Διαβάστε περισσότερα

Πλημμύρες & αντιπλημμυρικά έργα

Πλημμύρες & αντιπλημμυρικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Πλημμύρες & αντιπλημμυρικά έργα Φυσικό πλαίσιο-γεωμορφολογία και απορροή Νίκος Μαμάσης, Επίκουρος Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η

Διαβάστε περισσότερα

Εργαστηριακές Ασκήσεις Δ.Ο.Υ. Ι

Εργαστηριακές Ασκήσεις Δ.Ο.Υ. Ι Εργαστηριακές Ασκήσεις Δ.Ο.Υ. Ι Στο τοπογραφικό διάγραμμα κλίμακας 1:50.000 και ισοδιάστασης 100m, εμφανίζεται χειμαρρώδες ρεύμα, το οποίο καταλήγει σε ένα μεγαλύτερο αποδέκτη και επιβάλλεται η διευθέτησή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την

Διαβάστε περισσότερα

Εισαγωγή στα υδρογραφήµατα

Εισαγωγή στα υδρογραφήµατα Εισαγωγή στα υδρογραφήµατα Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 009 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ Υ ΡΟΓΡΑΦΗΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ Υ ΡΟΓΡΑΦΗΜΑ ΙΑΧΩΡΙΣΜΟΣ ΒΑΣΙΚΗΣ

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Ιωάννης Α. Σιανούδης Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Σκοπός Σκοπός της άσκησης αυτής είναι η επιβεβαίωση μέσα από μια σειρά μετρήσεων και υπολογισμών του θεωρήματος του Torricelli,

Διαβάστε περισσότερα

Γεωλογικές γραμμές: τομές γεωλογικής επιφάνειας με τον τοπογραφικό ανάγλυφο Χρήσιμες στον υπολογισμό της διεύθυνσης, κλίσης κτλ.

Γεωλογικές γραμμές: τομές γεωλογικής επιφάνειας με τον τοπογραφικό ανάγλυφο Χρήσιμες στον υπολογισμό της διεύθυνσης, κλίσης κτλ. Γεωλογικός χάρτης Γεωλογικές επιφάνειες: επιφάνειες στρωμάτων ή επαφής στρωμάτων, ρηγμάτων, πλευρών πτυχής, ασυμφωνίας στρωμάτων Γεωλογικές γραμμές: τομές γεωλογικής επιφάνειας με τον τοπογραφικό ανάγλυφο

Διαβάστε περισσότερα

Κεφάλαιο 1. 1 Βασικές Υδρολογικές έννοιες

Κεφάλαιο 1. 1 Βασικές Υδρολογικές έννοιες Κεφάλαιο 1 1 Βασικές Υδρολογικές έννοιες Η υδρογεωλογική μελέτη μιας περιοχής πρέπει να καταλήγει πάντα σε ποσοτικά στοιχεία σε σχέση με τις παραμέτρους του υδρολογικού ισοζυγίου. Όμως, για να γίνει αυτό,

Διαβάστε περισσότερα

Γεωµορφοµετρικά Χαρακτηριστικά των Υδρολογικών Λεκανών της Ελλάδας

Γεωµορφοµετρικά Χαρακτηριστικά των Υδρολογικών Λεκανών της Ελλάδας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ Υ ΡΑΥΛΙΚΩΝ ΚΑΙ ΘΑΛΑΣΣΙΩΝ ΕΡΓΩΝ Γεωµορφοµετρικά Χαρακτηριστικά των Υδρολογικών Λεκανών της Ελλάδας ιπλωµατική εργασία του φοιτητή

Διαβάστε περισσότερα

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση.

1. Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου Β είναι συνάρτηση. Μαθηματικά Γενικής Παιδείας Ανάλυση o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο ενός άλλου συνόλου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2016 ΕΡΓΑΣΤΗΡΙΟ 3:

Διαβάστε περισσότερα

ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΜΟΡΦΗΣ ΤΗΣ ΓΗΪΝΗΣ ΕΠΙΦΑΝΕΙΑΣ. 22/5/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1

ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΜΟΡΦΗΣ ΤΗΣ ΓΗΪΝΗΣ ΕΠΙΦΑΝΕΙΑΣ. 22/5/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1 ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΜΟΡΦΗΣ ΤΗΣ ΓΗΪΝΗΣ ΕΠΙΦΑΝΕΙΑΣ 22/5/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1 Τοποθέτηση του προβλήµατος Η γήϊνη επιφάνεια [ανάγλυφο] αποτελεί ένα ορατό, φυσικό, συνεχές φαινόµενο, το οποίο εµπίπτει

Διαβάστε περισσότερα

Η δομή των πετρωμάτων ως παράγοντας ελέγχου του αναγλύφου

Η δομή των πετρωμάτων ως παράγοντας ελέγχου του αναγλύφου Κεφάλαιο 11 ο : Η ΔΟΜΗ ΤΩΝ ΠΕΤΡΩΜΑΤΩΝ Η δομή των πετρωμάτων ως παράγοντας ελέγχου του αναγλύφου Στο κεφάλαιο αυτό θα ασχοληθούμε με τις δευτερογενείς μορφές του αναγλύφου που προκύπτουν από τη δράση της

Διαβάστε περισσότερα

Η ΑΝΑΠΤΥΞΗ ΤΟΥ Υ ΡΟΓΡΑΦΙΚΟΥ ΙΚΤΥΟΥ ΤΟΥ ΠΟΡΤΑΪΚΟΥ ΠΟΤΑΜΟΥ ΤΗΣ ΘΕΣΣΑΛΙΑΣ

Η ΑΝΑΠΤΥΞΗ ΤΟΥ Υ ΡΟΓΡΑΦΙΚΟΥ ΙΚΤΥΟΥ ΤΟΥ ΠΟΡΤΑΪΚΟΥ ΠΟΤΑΜΟΥ ΤΗΣ ΘΕΣΣΑΛΙΑΣ ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013 1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΩΝ ΠΛΗΜΜΥΡΑΣ των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Ανατολικής Πελοποννήσου

ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΩΝ ΠΛΗΜΜΥΡΑΣ των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Ανατολικής Πελοποννήσου ΣΧΕΔΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΩΝ ΠΛΗΜΜΥΡΑΣ των Λεκανών Απορροής Ποταμών του Υδατικού Διαμερίσματος Ανατολικής Πελοποννήσου ΣΤΑΔΙΟ Ι 1 η ΦΑΣΗ ΑΥΤΟΨΙΕΣ ΕΚΤΟΣ ΖΔΥΚΠ Τεχνική έκθεση Ιανουάριος 2017 Έκδοση 3 Με τη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση ΓΕΛ. ΚΑΣΤΡΙΤΣΙΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 202- Ονοματεπώνυμο Τμήμα ΘΕΜΑ: ΕΜΒΑΔΟΝ ΠΑΡΑΒΟΛΙΚΟΥ ΧΩΡΙΟΥ. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση Το πρόβλημα μελετήθηκε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

2o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ

2o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ 2o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ Πως αποτυπώνεται το ανάγλυφο από ένα χάρτη Δημιουργία μια τομής χρησιμοποιώντας ένα χάρτη Έννοιες της ισομετρικής κλίμακας και της κατακόρυφης παραμόρφωσης σε μια τομή Κατασκευή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f) = c f, Έστω F = c f Έχουμε

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

Τεχνικό Τοπογραφικό Σχέδιο

Τεχνικό Τοπογραφικό Σχέδιο Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

-1- Π = η απόλυτη παράλλαξη του σημείου με το γνωστό υψόμετρο σε χιλ.

-1- Π = η απόλυτη παράλλαξη του σημείου με το γνωστό υψόμετρο σε χιλ. -1- ΜΕΤΡΗΣΗ ΥΨΟΜΕΤΡΩΝ ΣΗΜΕΙΩΝ ΤΟΥ ΑΝΑΓΛΥΦΟΥ. Η γνώση των υψομέτρων διαφόρων σημείων μιας περιοχής είναι πολλές φορές αναγκαία για ένα δασοπόνο. Η χρησιμοποίηση φωτογραμμετρικών μεθόδων με τη βοήθεια αεροφωτογραφιών

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Απορροή, Κατακράτηση και ιήθηση (4 η Άσκηση)

ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Απορροή, Κατακράτηση και ιήθηση (4 η Άσκηση) ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ Απορροή, Κατακράτηση και ιήθηση (4 η Άσκηση) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ιάρθρωση 4 ου Μαθήµατος Ασκήσεων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 5 η ΕΚ 1. Οι πλευρές ενός τριγώνου σε cm είναι = 3x 3, = 3x + 1 και = x και η περίµετρος Π του τριγώνου είναι Π = 8cm. Να βρείτε τα µήκη των πλευρών του τριγώνου. Να δείξτε ότι το τρίγωνο

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γεωλογείν περί Σεισμών...3. 2. Λιθοσφαιρικές πλάκες στον Ελληνικό χώρο... 15. 3. Κλάδοι της Γεωλογίας των σεισμών...

ΜΕΡΟΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γεωλογείν περί Σεισμών...3. 2. Λιθοσφαιρικές πλάκες στον Ελληνικό χώρο... 15. 3. Κλάδοι της Γεωλογίας των σεισμών... ΜΕΡΟΣ 1 1. Γεωλογείν περί Σεισμών....................................3 1.1. Σεισμοί και Γεωλογία....................................................3 1.2. Γιατί μελετάμε τους σεισμούς...........................................

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.

Σωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες. Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΕΝΟΤΗΤΑ 2 «.Ο.Υ. 7000» «ΦΡΑΓΜΑ 7000» Ειδικό Λογισµικό: Για την ιευθέτηση Ορεινών Υδάτων (.Ο.Υ)

ΕΝΟΤΗΤΑ 1 ΕΝΟΤΗΤΑ 2 «.Ο.Υ. 7000» «ΦΡΑΓΜΑ 7000» Ειδικό Λογισµικό: Για την ιευθέτηση Ορεινών Υδάτων (.Ο.Υ) Ειδικό Λογισµικό: ΕΝΟΤΗΤΑ 1 «.Ο.Υ. 7000» Για την ιευθέτηση Ορεινών Υδάτων (.Ο.Υ) ΕΝΟΤΗΤΑ 2 «ΦΡΑΓΜΑ 7000» Για την ιαστασιολόγηση, Στατική επίλυση και Σχεδίαση Ευθυγράµµων Φραγµάτων Χειµάρρων εκ Λιθοσκυροδέµατος

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΟΓΕΩΛΟΓΙΑ Ε ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΔΙΔΑΣΚΩΝ Ν. ΛΑΜΠΡΑΚΗΣ

ΕΦΑΡΜΟΣΜΕΝΗ ΥΔΡΟΓΕΩΛΟΓΙΑ Ε ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΔΙΔΑΣΚΩΝ Ν. ΛΑΜΠΡΑΚΗΣ ONOMA ΕΠΩΝΥΜΟ Α.Μ. Ημερομηνία παράδοσης: ΑΣΚΗΣΗ 1 Η ΥΔΡΟΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ Παρακάτω παρατίθενται κάποιες από τις πιο βασικές υδρολογικές έννοιες: Υδρολογική λεκάνη σ ένα σημείο ή καλύτερα σε μία διατομή

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΚΑΤΗΓΟΡΙΕΣ ΑΡ ΕΥΤΙΚΩΝ ΜΕΘΟ ΩΝ. Επιφανειακές. Καταιονισµός. Μικροάρδευση (Στάγδην και microsprayers)

ΒΑΣΙΚΕΣ ΚΑΤΗΓΟΡΙΕΣ ΑΡ ΕΥΤΙΚΩΝ ΜΕΘΟ ΩΝ. Επιφανειακές. Καταιονισµός. Μικροάρδευση (Στάγδην και microsprayers) ΜΕΘΟ ΟΙ ΑΡ ΕΥΣΗΣ Είναι οι τρόποι µε τους οποίους εφαρµόζεται το νερό στο έδαφος. Εξαρτώνται: Εδαφικές συνθήκες Κλιµατικές συνθήκες Υδρολογικές συνθήκες Τοπογραφία Είδος καλλιέργειας ΜΕΘΟ ΟΙ ΑΡ ΕΥΣΗΣ Για

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα 0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος σχολικό έτος 03-04) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Μπούζας Δημήτρης Πετρόπουλος

Διαβάστε περισσότερα

Ζητείται η χάραξη δικτύου οµβρίων σε παραθαλάσσιο οικοδοµικό συνεταιρισµό, του οποίου δίνεται συνηµµένα το τοπογραφικό σε κλίµακα 1:

Ζητείται η χάραξη δικτύου οµβρίων σε παραθαλάσσιο οικοδοµικό συνεταιρισµό, του οποίου δίνεται συνηµµένα το τοπογραφικό σε κλίµακα 1: Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα ίκτυα αποχέτευσης Άσκηση ΟΕ3: Χάραξη δικτύου οµβρίων παραθαλάσσιου οικισµού (εξέταση προόδου Μαΐου

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΟΡΦΟΛΟΓΙΚΗ ΑΝΑΛΥΣΗ ΠΑΡΑΚΤΙΑΣ ΖΩΝΗΣ ΜΕ ΧΡΗΣΗ

Διαβάστε περισσότερα

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning Σύνθετες διατομές Μθδλ Μεθοδολογίες τα τρία βασικά προβλήματα της Υδραυλικής των ανοικτών

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Φωτογεωλογίας (Dra)

Εργαστηριακή Άσκηση Φωτογεωλογίας (Dra) Εργαστηριακή Άσκηση Φωτογεωλογίας (Dra) Δίνονται αεροφωτογραφίες για στερεοσκοπική παρατήρηση. Ο βορράς είναι προσανατολισμένος προς τα πάνω κατά την ανάγνωση των γραμμάτων και των αριθμών. Ερωτήσεις:

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

Περιβαλλοντική Υδρογεωλογία. Υδροκρίτης-Πιεζομετρία

Περιβαλλοντική Υδρογεωλογία. Υδροκρίτης-Πιεζομετρία Περιβαλλοντική Υδρογεωλογία Υδροκρίτης-Πιεζομετρία Οριοθέτηση υδρολογικής λεκάνης Χάραξη υδροκρίτη Η λεκάνη απορροής, παρουσιάζει ορισμένα γνωρίσματα που ονομάζονται φυσιογραφικά χαρακτηριστικά και μπορούν

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c

II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ. 1. Γραφήματα-Επιφάνειες: z= 2. Γραμμική προσέγγιση-εφαπτόμενο επίπεδο. 3. Ισοσταθμικές: f(x, y) = c II.6 ΙΣΟΣΤΑΘΜΙΚΕΣ.Γραφήματα-Επιφάνειες.Γραμμική προσέγγιση-εφαπτόμενο επίπεδο 3.Ισοσταθμικές 4.Κλίση ισοσταθμικών 5.Διανυσματική ή Ιακωβιανή παράγωγος 6.Ιδιότητες των ισοσταθμικών 7.κυρτότητα των ισοσταθμικών

Διαβάστε περισσότερα

Ποτάµια ράση ΠΟΤΑΜΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ. Ποτάµια ιάβρωση. Ποτάµια Μεταφορά. Ποτάµια Απόθεση. Βασικό επίπεδο

Ποτάµια ράση ΠΟΤΑΜΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ. Ποτάµια ιάβρωση. Ποτάµια Μεταφορά. Ποτάµια Απόθεση. Βασικό επίπεδο ΠΟΤΑΜΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ Η µορφολογία του επιφανειακού αναγλύφου που έχει δηµιουργηθεί από δράση του τρεχούµενου νερού ονοµάζεται ποτάµια µορφολογία. Οι διεργασίες δηµιουργίας της ονοµάζονται ποτάµιες διεργασίες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Επίλυση Παντορροϊκού δικτύου

Επίλυση Παντορροϊκού δικτύου Επίλυση Παντορροϊκού δικτύου Π. Σιδηρόπουλος Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@uth.gr o Υπολογισμόςδικτύων αποχέτευσης H διαδικασία

Διαβάστε περισσότερα

Εισαγωγή στα υδρογραφήµατα

Εισαγωγή στα υδρογραφήµατα Εισαγωγή στα υδρογραφήµατα Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 2012 ΙΑΡΘΡΩΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ Υ ΡΟΓΡΑΦΗΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΛΕΚΑΝΗΣ ΑΠΟΡΡΟΗΣ Υ ΡΟΓΡΑΦΗΜΑ ΙΑΧΩΡΙΣΜΟΣ ΒΑΣΙΚΗΣ

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Εισαγωγή Ο νόµος του Gauss: Μπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού της έντασης του ηλεκτρικού πεδίου. Βασίζεται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ Proslipsis.gr ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 006 ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό αντικείμενο)

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος ) Δίνεται η παραγωγίσιμη συνάρτηση f για την οποία ισχύει : [f()] 8 +α[f()] = -e f(), α>,για κάθε. α) Να δείξετε ότι f()=c, για κάθε,όπου c αρνητική σταθερά. β) Να βρείτε τις

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

ΠΟΤΑΜΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ

ΠΟΤΑΜΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ ΠΟΤΑΜΙΑ ΓΕΩΜΟΡΦΟΛΟΓΙΑ 2 η ΕΝΟΤΗΤΑ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ Εκτίμηση ποτάμιας διάβρωσης Σκοπός της εργασίας: Να εκτιμηθεί ποσοτικά η ποτάμια διάβρωση κατά μήκος οκτώ χειμάρρων στη βόρεια Πελοπόννησο. Να βρεθεί

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS 1 1. ΗΛΕΚΤΡΙΚΗ ΡΟΗ O νόμος του Gauss και o νόμος του Coulomb είναι δύο εναλλακτικές διατυπώσεις της ίδιας βασικής σχέσης μεταξύ μιας κατανομής φορτίου και του

Διαβάστε περισσότερα

2. ΓΕΩΓΡΑΦΙΑ ΤΗΣ Υ ΡΟΣΦΑΙΡΑΣ

2. ΓΕΩΓΡΑΦΙΑ ΤΗΣ Υ ΡΟΣΦΑΙΡΑΣ 2. ΓΕΩΓΡΑΦΙΑ ΤΗΣ Υ ΡΟΣΦΑΙΡΑΣ 2.1 Ωκεανοί και Θάλασσες. Σύµφωνα µε τη ιεθνή Υδρογραφική Υπηρεσία (International Hydrographic Bureau, 1953) ως το 1999 θεωρούντο µόνο τρεις ωκεανοί: Ο Ατλαντικός, ο Ειρηνικός

Διαβάστε περισσότερα

Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή

Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή Ομάδα Δ. Λύνοντασ Προβλήματα Φυςικήσ με τον υπολογιςτή Πρόβλημα 9 α : Κλίςη καμπύλησ Πρόβλημα 9 β : Εμβαδόν καμπύλησ Πωσ μπορεί κανείσ να λύςει προβλήματα με τη βοήθεια τησ Mahemaica Πρόβλημα 9 α : Κλίςη

Διαβάστε περισσότερα

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ ΣΥΝΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ -.Μ.Κ. 10.98 1 ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΣ Ε1 Μ 2γ Ε2 2β 1. ΡΙΣΜΙ ΡΙΣΜΙ - ΚΤΣΚΕΥΕΣ Η έλλειψη είναι επίπεδη καµπύλη 2 ου βαθµού, είναι δε ο γεωµετρικός τόπος των σηµείων, των οποίων το άθροισµα

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 5 ο : Απορροή

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ 5 Ο ΧΩΡΙΚΕΣ ΑΝΑΛΥΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ GIS ΑΝΑΛΥΣΗ ΧΩΡΙΚΩΝ, ΘΕΜΑΤΙΚΩΝ & ΣΥΝΔΥΑΣΜΕΝΩΝ ΔΕΔΟΜΕΝΩΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ Ένα GIS πρέπει να μπορεί

Διαβάστε περισσότερα

Υδρολογία - Υδρογραφία. Υδρολογικός Κύκλος. Κατείσδυση. Επιφανειακή Απορροή. Εξατµισιδιαπνοή. κύκλος. Κατανοµή του νερού του πλανήτη

Υδρολογία - Υδρογραφία. Υδρολογικός Κύκλος. Κατείσδυση. Επιφανειακή Απορροή. Εξατµισιδιαπνοή. κύκλος. Κατανοµή του νερού του πλανήτη Υδρολογία - Υδρογραφία Στο κεφάλαιο αυτό θα ασχοληθούµε µε το τµήµα του υδρολογικού κύκλου που σχετίζεται µε την υπόγεια και επιφανειακή απορροή του γλυκού νερού της γης. Η επιστήµη που ασχολείται µε την

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα