Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
|
|
- Αντώνιος Χατζηιωάννου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 4 ο μάθημα
2 Κεφάλαιο 7 Έργο και Ενέργεια
3 Έργο σε μια διάσταση Νόμοι διατήρησης: ενέργειας ορμής στροφορμής μάζας W = F x Δx 1 Joule = 1 J = 1 N m = 1 kg m 2 /s 2 1 ft lbf = 1ft 1 lbf = 1,356 J
4 Έργο σε μια διάσταση
5 Έργο σε μια διάσταση Ο άνθρωπος παράγει έργο (όχι χρήσιμο) στην πραγματικότητα, αλλά επειδή Δx=0 φαίνεται ότι δεν παράγεται έργο (η ανθρώπινη μηχανή θα ήταν πιο αποδοτική αν είχε προβλεφθεί μηχανισμός ακαμψίας) Αν ο άνθρωπος κινείται μέσα σε ανελκυστήρα, τότε Δx>0 και επειδή η μετατόπιση και η δύναμη είναι ομόρροπες έργο θετικό Στο σύστημα αναφοράς του εδάφους, η μπάλλα κινείται προς τα πάνω και παράγεται επάνω της έργο. Στο σύστημα αναφοράς του ανελκυστήρα, η μπάλλα ηρεμεί και δεν παράγεται έργο επάνω της. Αρα, πριν τον υπολογισμό του έργου πρέπει να καθοριστεί σαφώς το σύστημα αναφοράς.
6 Έργο σε μια διάσταση Έστω ότι η δύναμη είναι συνάρτηση της θέσης F x =F x (x). Τότε το ολικό έργο είναι: W i= n 1 = ΔWi = i= 0 i= n 1 i= 0 Fx( xi) Δx b W = x F x) dx a ( = εμβαδό που περιορίζεται από την καμπύλη της συνάρτησης
7 Έργο σε μια διάσταση W b = Fx ( x) dx = ( kx) dx a b a = k [ 1 ] x = k( b a ) 2 b a 2
8 Πολλαπλασιασμός διανυσμάτων Εσωτερικό Γινόμενο (δίνει αριθμό, όχι διάνυσμα) Εξωτερικό Γινόμενο (δίνει διάνυσμα)
9 Έργο σε τρεις διαστάσεις Σχήμα. Σταθερή δύναμη F δρα κατά τη μετατόπιση Δr. Fcosθ είναι η συνιστώσα της F κατά μήκος της Δr. W=FΔr cosθ = F Δr = FxΔx + FyΔy + FzΔz Εργο + ή ανάλογα με τη γωνία θ (F, Δr ομόροπα, αντίροπα) Για δύναμη κάθετη στη φορά της κίνησης W=0 (π.χ. κεντρομόλος, δύναμη Ν κάθετη σε σώμα που ολισθαίνει κτλ. )
10 Έργο σε τρεις διαστάσεις Επειδή W=FΔr cosθ = F Δr = FxΔx + FyΔy + FzΔz και Το έργο που παράγεται από τη βαρύτητα εξαρτάται μόνο από τη μεταβολή του ύψους Δz.
11 Έργο παραγόμενο από μεταβλητή δύναμη σε τρεις διαστάσεις 0 ) ( cos = + + = + + = = = P P z P P y P P x P P z y x P P P P F dz F dy F dx F dz F dy F dx d dr F W r F θ ΔW = F Δr cosθ
12 -T sinφ + S =0 Tcosφ mg = 0 S = mg tanφ W = 5, P P 2 Fxdx = 1 P 2m P mg tanφdx = mgl sinφdφ = mgl[ cosφ] 0 P 5,7 0 2m P mg tanφd ( l sinφ) = 0 5,7 0 0 = mgl(1 cos 0,10) = 600 9,8 20 0,0050 = Το έργο που παράγεται από τη βαρύτητα με z 1 =-l, z 2 =-l(cos5,7 0 ) είναι: W = -mg(-l cos5,7 0 +l) = -mgl(1-cos5,7 0 ) = -590 J 0 mg tanφ( l cosφdφ) = 590J
13 Κινητική ενέργεια Η ποσότητα Κ = ½ mυ 2 ονομάζεται κινητική ενέργεια σωματιδίου. Η μεταβολή της κινητικής ενέργειας ισούται με το έργο που παράγεται πάνω στο σωματίδιο από την ολική δύναμη Κ 2 - Κ 1 = ΔΚ = W (θεώρημα έργου ενέργειας) K = p 2 /2m (ορμή p=mu)
14 Κινητική ενέργεια Πίνακας. Μερικές τιμές κινητικής ενέργειας.
15 Βαρυτική δυναμική ενέργεια Δυναμική ενέργεια η ικανότητα ενός σωματιδίου να παράγει έργο εξαιτίας της θέσης του στο χώρο ησυνάρτηση mgz ονομάζεται βαρυτική δυναμική ενέργεια του σωματιδίου αν η μόνη δύναμη που επιδρά σε σωματίδιο είναι το βάρος του, τότε: W = BΔz = -mg(z 2 -z 1 ) = -mgz 2 +mgz 1 = K 2 -K 1 = ½ mυ 2 2 ½mυ 2 1 K 1 + mgz 1 = K 2 + mgz 2 K + mgz = [σταθ.] = Ε (μηχανική ενέργεια σωματιδίου) (Νόμοςδιατήρησηςμηχανικήςενέργειας)
16 Ε 1 =Ε 2 ½mυ mgz 1 =½mυ 2 2 +mgz 2 mgz 1 = ½ mυ 22 υ 2 = 54 m/s
17
18
19 Σύνοψη
20 Ασκήσεις
21 Ασκήσεις
22 Ασκήσεις
23 Ασκήσεις
24 Ασκήσεις
25 Κεφάλαιο 8 Διατήρηση της ενέργειας
26 Σύνοψη κεφ. 7
27 Σύνοψη κεφ. 7 αν η μόνη δύναμη που επιδρά σε σωματίδιο είναι το βάρος του, τότε: W = BΔz = -mg(z 2 -z 1 ) = -mgz 2 +mgz 1 = K 2 -K 1 = ½ mυ 2 2 ½mυ 2 1 K + mgz = Ε (μηχανική ενέργεια σωματιδίου) = [σταθερά] Νόμοςδιατήρησηςμηχανικήςενέργειας (ενός σωματιδίου που κινείται υπό την επίδραση της βαρύτητας) Εδώ διατύπωση του γενικού νόμου διατήρησης της μηχανικής ενέργειας (όταν (και) άλλες δυνάμεις δρουν πάνω στο σωματίδιο)
28 Διατηρητική δύναμη Μια δύναμη F είναι διατηρητική, όταν το έργο αυτής της δύναμης εξαρτάται από τη θέση των τελικών σημείων P 1 και P 2 και όχι από το σχήμα του δρόμου ανάμεσα στα σημεία (βλ. Σχήμα). το έργο μιας διατηρητικής δύναμης είναι μηδέν για οποιαδήποτε διαδρομή συμπληρώνει ένα κλειστό δρόμο (Σχήμα) ή Παραδείγματα διατηρητικής δύναμης: βαρύτητα? δύναμη ελατηρίου? δύναμη κινητικής τριβής?
29 Δυναμική ενέργεια Διατηρητικής δύναμης
30 Δυναμική ενέργεια Διατηρητικής δύναμης Έστω διατηρητική δύναμη F. Έστω σημείο αναφοράς P 0 με δυναμική ενέργεια U(P 0 ). Σε οποιοδήποτε άλλο σημείο P η τιμή της δυναμικής ενέργειας είναι: Τότε, η μεταβολή της δυναμικής ενέργειας ανάμεσα στα σημεία P 1 και P 2 προσδιορίζεται:
31 Δυναμική ενέργεια Διατηρητικής δύναμης Επειδή η μεταβολή της κινητικής ενέργειας ισούται με το έργο δηλαδή Ε = Κ + U (νόμοςδιατήρησηςτηςμηχανικήςενέργειας)
32 Δυναμική ενέργεια Διατηρητικής δύναμης
33 Δυναμική ενέργεια Διατηρητικής δύναμης
34 Η αρχική ενέργεια στο σημείο x 1 =-6cm είναι: Ε =½mυ 12 +½ kx 12 = 0 + ½ kx 1 2 Ηενέργειαστοx 2 = 0 cm είναι: E = ½ mυ 22 +½ kx 2 2 = ½ mυ Άρα, ½kx 12 = ½ mυ 22 υ 2 = = k / mx1 12m / s
35 Μη διατηρητική δύναμη ΔΚ + ΔU =ΔΕ = W μη διατηρητική Όχι τόσο χρήσιμη, όσο η σχέση που ισχύει όταν δεν υπάρχουν διατηρητικές δυνάμεις (υπολογισμός θέσης-ταχύτητας από τη σχέση ΔΚ+ΔU=0, βλ. παραπάνω παραδείγματα), διότι η τιμή της W μη διατηρητική δεν εξαρτάται μόνο από τη μεταβολή της θέσης αλλά και από τιςλεπτομέρειεςτηςκίνησης, και άρα το W μη διατηρητική δεν μπορεί να υπολογιστεί επακριβώς εκτός και αν γίνουν γνωστές οι λεπτομέρειες της κίνησης
36 Μη διατηρητική δύναμη
37 Υπολογισμός της δύναμης από τη δυναμική ενέργεια Και στην περίπτωση που dy=0 και dz=0, έτσι ώστε du = - F x dx Fy U = y Fz U = z ή Fx = U x Αν για παράδειγμα η δυναμική ενέργεια ελατηρίου είναι: U(x)= ½ kx 2, τότε : F x U = x 1 ( k = 2 x x 2 ) = kx
38 Άλλες μορφές ενέργειας Θερμότητα: Χημική ενέργεια: Πυρηνική ενέργεια: η άτακτη κινητική και δυναμική ενέργεια των ατόμων ενός σώματος, π.χ. εξαιτίας της τριβής. κινητική και δυναμική ενέργεια των ηλεκτρονίων στοεσωτερικότωνατόμων κινητική και δυναμική ενέργεια των πρωτονίων και νετρονίων στο εσωτερικό των πυρήνων των ατόμων Μονάδες: 1 ev = 1, J 1 kw h = J 1 kcal = 4, J 1 Btu = 1, J
39 Πίνακας. Μερικές ενέργειες
40 Μάζα και ενέργεια Η ενέργεια μπορεί να μετατραπεί σε μάζα και αντίστροφα (θεωρία σχετικότητας Einstein): E = mc 2 (c = 3, m/s) ή Δm = ΔΕ/c 2 δηλ. η ενέργεια έχει μάζα, δηλ. κάθε φορά που η ενέργεια ενός σώματος μεταβάλλεται, ημάζατου(και το βάρος του) μεταβάλλονται. Όταν π.χ. αυξάνει η κινητική ενέργεια ενός σώματος, ημάζατου(και το βάρος του) αυξάνει. Σε μικρές ταχύτητες η αύξηση της μάζας είναι ανεπαίσθητη, αλλά όταν π.χ. η ταχύτητα στοιχειωδών σωματιδίων φθάνει στο 0, c η μάζα τους είναι φορές μεγαλύτερη από τη μάζα του ηλεκτρονίου που ηρεμεί.
41 Μάζα και ενέργεια Άρα, οι νόμοι διατήρησης της μάζας και της ενέργειας δεν είναι δύο ανεξάρτητοι νόμοι, αλλά ο ένας εξυπακούει τον άλλο. π.χ. η αντίδραση σχάσης 1 kg U αποδίδει ενέργεια 8, J. Η αντίδραση διατηρεί την ενέργεια, μετασχηματίζοντας την πυρηνική σε θερμότητα, φως και κινητική ενέργεια, αλλά δεν αλλάζει τη συνολική ποσότητα της ενέργειας (θάλαμος αντιδραστήρα ερμητικά κλειστός και θερμικά μονωμένος). Αν ανοιχτεί, θα διαφύγει φως και θερμότητα και θα έχει χαθεί το 0,1% της μάζας του U. Το ίδιο φαινόμενο συμβαίνει και σε μια χημική (εξώθερμη) αντίδραση, όπου η μάζα των καταλοίπων είναι ελαφρώς μικρότερη (μη μετρήσιμη) από την αρχική μάζα.
42 Ισχύς Μέση Ισχύς: Στιγμιαία ισχύς: Μονάδες: P μέση = ΔW/Δt P = dw/dt 1 watt = 1 W = 1 J/s 1 horsepower = 1 hp = 550 ft lbf/s = 745,7 W P = ΔW/Δt = FΔz/Δt = Fυ =mgυ =900 kg 9,8 m/s 2 1,8m/s = 1, W = 4 1hp = 1,6 10 W = 746 W 21hp
43 Αφού η επιτάχυνση κατά μήκος του δρόμου είναι μηδέν,
44
45 Πίνακας. Μερικές τιμές ισχύος
46 Σύνοψη
47 Σύνοψη
48 Ασκήσεις
ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ
Έργο και Ενέργεια ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ Έστω ένα σωμάτιο πάνω στο οποίο εξασκείται μια σταθερή δύναμη F. Έστω ότι η κίνηση είναι ευθύγραμμη κατά την διεύθυνση του διανύσματος F. Το έργο που
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 3 ο μάθημα Κεφάλαιο 6 Δυναμική Δυνάμεις και η λύση της εξίσωσης κίνησης
Κεφάλαιο 5. Ενέργεια συστήματος
Κεφάλαιο 5 Ενέργεια συστήματος Εισαγωγή στην ενέργεια Οι νόμοι του Νεύτωνα και οι αντίστοιχες αρχές μας επιτρέπουν να λύνουμε μια ποικιλία προβλημάτων. Ωστόσο, μερικά προβλήματα, που θεωρητικά μπορούν
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
Ευθύγραμμη ομαλή κίνηση
Διάγραμμα s - Ευθύγραμμη Κίνηση (m) Μέση αριθμητική ταχύτητα (μονόμετρο) Μέση διανυσματική ταχύτητα Μέση επιτάχυνση 1 4 Διάγραμμα u - (sec) Απόσταση (x) ονομάζουμε την ευθεία που ενώνει την αρχική και
εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B
4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε
ΚΕΦΑΛΑΙΟ 2.1 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
Σχολικό Έτος 016-017 8 ΚΕΦΑΛΑΙΟ.1 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ 1. ΕΡΓΟ Το έργο σαν φυσικό μέγεθος εκφράζει την μεταφορά ενέργειας από ένα σώμα σε ένα άλλο ή την μετατροπή της από μια μορφή σε μια
Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1
Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση
ΕΡΓΟ -ΕΝΕΡΓΕΙΑ. Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα:
ΕΡΓΟ -ΕΝΕΡΓΕΙΑ Το στοιχειώδες έργο dw δύναμης F που ασκείται σε ένα σώμα κατά τη στοιχειώδη μετατόπισή του d s είναι η ποσότητα: d F d s Παρατηρήσεις Το έργο εκφράζει την ποσότητα της ενέργειας που παράγεται
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 06 Διατήρηση της ενέργειας ΦΥΣ102 1 Δυναμική Ενέργεια και διατηρητικές δυνάμεις
1. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις
. Δυναμική Ενέργεια και Διατηρητικές Δυνάμεις Εξετάζοντας την αιώρα παρατηρούμε ότι στα ανώτατα σημεία η ενέργεια μοιάζει να έχει αποθηκευτεί υπό κάποια άλλη μορφή, που συνδέεται με το ύψος της πάνω από
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ
ΕΡΓΟ Το έργο, εκφράζει την ενέργεια που μεταφέρεται από ένα σώμα σ ένα άλλο ή που μετατρέπεται από μια μορφή σε μία άλλη. Για σταθερή δύναμη δίνεται από τη σχέση W F Δx Είναι μονόμετρο μέγεθος και η μονάδα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ
1 O ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΤΡΑΣ 2015 ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΨΩΜΑΘΙΑΝΟΣ ΕΜΜΑΝΟΥΗΛ ΔΥΝΑΜΗ Τις δυνάμεις τις διακρίνουμε βασικά με δύο τρόπους: Συντηρητικές Μη συντηρητικές
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
5 η Εβδομάδα Έργο και κινητική ενέργεια. Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας
5 η Εβδομάδα Έργο και κινητική ενέργεια Ομαλή κυκλική κίνηση Έργο δύναμης Κινητική ενέργεια Θεώρημα έργου ενέργειας Ομαλή κυκλική κίνηση Κίνηση σωματίου σε κύκλο με ταχύτητα σταθερού μέτρου. Επιτάχυνση
Έργο - Ενέργεια. Ενέργεια έχει ένα σώμα το οποίο έχει την εσωτερική ικανότητα να. Η ενέργεια εμφανίζεται με διάφορες μορφές όπως Κινητική,
Κεφάλαιο 5 ο Έργο - Ενέργεια Έργο Ενέργεια έχει ένα σώμα το οποίο έχει την εσωτερική ικανότητα να παράγει έργο. Η ενέργεια εμφανίζεται με διάφορες μορφές όπως Κινητική, Δυναμική, Φωτεινή, Πυρηνική, Ηλεκτρική
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Τζαγκαράκης Γιάννης, Δημοπούλου Ηρώ, Αδάμη Μαρία, Αγγελίδης Άγγελος, Παπαθανασίου Θάνος, Παπασταμάτης Στέφανος
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 7 ο μάθημα 1 Σύνοψη προηγούμενου κεφαλαίου Κεφάλαιο 10 Συστήματα σωματιδίων
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
Βασική έννοια. Μηχανική ενέργεια.
Έργο - Ενέργεια Βασική έννοια. Μηχανική, Ηλεκτρομαγνητική, Χημική, Θερμική, Πυρηνική, κ.α. Δυνατότητα μετατροπής της μίας μορφής σε άλλη. Μηχανική ενέργεια. Λύση προβλημάτων μηχανικής. α) ος νόμος Νεύτωνα,
Κεφάλαιο 7. Δυναμική ενέργεια και διατήρηση της ενέργειας
Κεφάλαιο 7 Δυναμική ενέργεια και διατήρηση της ενέργειας Στόχοι 7 ου Κεφαλαίου Βαρυτική δυναμική ενέργεια. Ελαστική δυναμική ενέργεια. Δύναμη και δυναμική ενέργεια. Ενεργειακά διαγράμματα. Δυναμική ενέργεια.
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4
ΙΣΧΥΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ ΕΝΕΡΓΕΙΑΣ
ΙΣΧΥΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ ΕΝΕΡΓΕΙΑΣ Η ισχύς... Η ισχύς (ενός κινητήρα και γενικότερα οποιαδήποτε μηχανής) ισούται με το πηλίκο του έργου το οποίο παράγει ο κινητήρας, προς το χρονικό διάστημα που απαιτείται
Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx
ΣΥΝΟΨΗ 3 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Κεφάλαιο 5 Δυναμική - Οι νόμοι του Newton Ο 1 ος νόμος του Newton (νόμος
ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου
ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 8 ο μάθημα 1 Κεφάλαιο 11 Συγκρούσεις 2 Συγκρούσεις Στις συγκρούσεις μεταξύ
6 ο Μάθημα Ισχύς Διατήρηση της ενέργειας. Ισχύς Δυναμική ενέργεια Διατήρηση της μηχανικής ενέργειας Διατήρηση της ενέργειας
6 ο Μάθημα Ισχύς Διατήρηση της ενέργειας Ισχύς Δυναμική ενέργεια Διατήρηση της μηχανικής ενέργειας Διατήρηση της ενέργειας Μια δύναμη F δρα σε σώμα στη x-κατεύθυνση και έχει μέτρο που εξαρτάται από το
Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής
ΖΗΤΗΜΑ Ο Ερωτήσεις ΣΩΣΤΟΥ ΛΑΘΟΥΣ Σωστές διατυπώσεις Η ταχύτητα εκφράζει το ρυθμό μεταβολής της θέσης του κινητού Ο ρυθμός μεταβολής της θέσης ( ταχύτητα ) του κινητού στην Ε.Ο.. είναι σταθερός Η επιτάχυνση
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα
Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα
1 ΦΕΠ 01 Φυσική και Εφαρμογές Διάλεξη 8 η Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα Νόμοι του Νεύτωνα: Fx = Fσυνθ = m α Χ (1) Fy + N = mg (δεν υπάρχει
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x
Εισαγωγή στις Φυσικές Επιστήμες (4 7 09) Μηχανική ΘΕΜΑ Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= s ). Αν η ταχύτητα στη θέση x 0 = 0
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΕΡΓΟ ΚΑΙ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 6 7 ΕΡΓΟ ΚΑΙ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ Έργο και Κινητική Ενέργεια Έργο Βαρυτικής Δύναμης και Δύναμης Ελατηρίου Έργο Μεταβλητής Δύναμης Ισχύς ΔΥΝΑΜΙΚΗ
Λυμένες ασκήσεις. Έργο σταθερής δύναμης
Λυμένες ασκήσεις Έργο σταθερής δύναμης 1. Στο σώμα που απεικονίζεται δίπλα τα μέτρα των δυνάμεων είναι F = 20 N, F 1 = 20 N, T = 5 N, B = 40 N. Το σώμα μετατοπίζεται οριζόντια κατά S = 10 m. Να βρεθούν
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις
ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία
γραπτή εξέταση στο μάθημα
3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
Κεφάλαιο 1: Έργο-Ισχύς-Ενέργεια
Κεφάλαιο 1: Έργο-Ισχύς-Ενέργεια Έργο «Έργο δύναμης ονομάζουμε το γινόμενο της δύναμης F επί τη μετατόπιση Δχ του σημείου εφαρμογής της, κατά τη διεύθυνση της. Αυτό εκφράζει την ενέργεια που μεταφέρεται
ΣΥΝΟΨΗ 2 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
Όπου m είναι η μάζα του σώματος και υ η ταχύτητά του.
1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ ΙΣΧΥΣ Η ενέργεια είναι από εκείνες τις έννοιες που δύσκολα ορίζονται στη Φυσική. Ένα σώμα μπορεί να έχει, να παίρνει ή να δίνει ενέργεια. Η ίδια η ενέργεια μπορεί να μετατρέπεται από μια
Έργο δύναμης. Γενικά το έργο δύναμης είναι το εσωτερικό γινόμενο δύο δυανυσμάτων: της δύναμης επί την μετατόπιση
Έργο δύναμης Γενικά το έργο δύναμης είναι το εσωτερικό γινόμενο δύο δυανυσμάτων: της δύναμης επί την μετατόπιση W F d Fd cos( θ ) θ F F cos ( θ ) d Έργο από μεταβαλλόμενη δύναμη Έστω ότι το μέτρο της δύναμης
... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου.
ΝΟΜΟΙ ΤΟΥ NEWTON Αδρανειακά η Γαλιλαιϊκά συστήματα αναφοράς Μη Αδρανειακά συστήματα αναφοράς Αρχή της αιτιοκρατίας Συμμετρία αντιστροφής χρόνου Νόμοι του Newton I. O Χώρος είναι Ευκλείδειος II. Όλοι οι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.
ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική
Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς
Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης
ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση
Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις
Διαγώνισμα Φυσικής Προσανατολισμού Β Λυκείου Οριζόντια Βολή Ορμή Κρούσεις Θέμα Α 1) Δύο σώματα ρίχνονται την ίδια χρονική στιγμή από το ίδιο σημείο με οριζόντιες ταχύτητες υ 1 και υ 2, με υ 1 > υ 2. Τα
Κεφάλαιο 5: Ενέργεια
Κεφάλαιο 5: Ενέργεια Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Τι είναι η Ενέργεια; Όλος ο κόσμος μας αποτελείται από ύλη και ενέργεια. Την ύλη είναι εύκολο να την καταλάβουμε
Εργο Θεώρημα Έργου ενέργειας. Ισχύς
Εργο Θεώρημα Έργου ενέργειας Ισχύς Θεώρημα Έργου ενέργειας Έργο που παράγει η δύναμη του καρφιού πάνω στο σφυρί; Τι παθαίνει η κινητική ενέργεια του σφυριού; Έργο που παράγει η δύναμη του σφυριού πάνω
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
φορτισμένου πυκνωτή με διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου, όπως
Ημερομηνία: 26/04/15 Διάρκεια διαγωνίσματος: 150 Εξεταζόμενο μάθημα: Φυσική Κατ. Β Λυκείου Υπεύθυνος καθηγητής: Μήτρου Ιωάννης ΘΕΜΑ 1 Ο Σωστό Λάθος A)1. Η κεντρομόλος δύναμη είναι η συνισταμένη των δυνάμεων
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 4 ο μάθημα Κεφάλαιο 9 Βαρύτητα Ηλιακό σύστημα (όχι σε κλίμακα) Βαρύτητα
9 o Γ.Λ. ΠΕΙΡΑΙΑ ιαγώνισµα ΦΥΣΙΚΗΣ (2) 0. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς /5 / 2007
1) Ένα σώµα εκτοξεύεται από τη βάση λείου κεκλιµένου επιπέδου µε αρχική ταχύτητα υ 0, προς τα πάνω (θέση 1) και σταµατά στη θέση (2) που βρίσκεται σε ύψος h. i) Ποια πρόταση που αναφέρεται στο έργο του
ΦΥΣΙΚΗ. Ενότητα 6: ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 6: ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2
ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Εφαρμόζουμε την αρχή διατήρησης της ορμής (θετική φορά προς τα δεξιά) :
) Η συνολική μάζα του αρχικού σώματος είναι m =,kg. Επομένως : m = m + m, = m + 0, m = kg Οι εσωτερικές δυνάμεις που εμφανίζονται κατά την έκρηξη είναι πολύ μεγαλύτερες των εξωτερικών δυνάμεων επομένως
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας
Έργο. Είναι μονόμετρο φυσικό μέγεθος και μετράται σε Joule = Ν m. Παραγόμενο έργο, καταναλισκόμενο έργο, μηδενικό έργο
Ενέργεια Έργο Ισχύς Ενέργεια Δυναμική ενέργεια Κινητική ενέργεια Θεώρημα έργου-ενέργειας Κινητική ενέργεια και ορμή Διατήρηση της Ενέργειας Μηχανές Απόδοση 1 Έργο Έργο δύναμης ορίζεται ως το γινόμενο της
Θεώρημα μεταβολής της Κινητικής ενέργειας
Θεώρημα μεταβολής της Κινητικής ενέργειας Λυμένες ασκήσεις Σώμα με μάζα = 2 Kg κινείται σε οριζόντιο επίπεδο με αρχική ταχύτητα υ 0 = 10 /s. Ασκείται σε αυτό οριζόντια δύναμη F = 10 N για χρόνο t = 2 s.
Lamborghini Aventador : production February 2011 present km/h (0 60 mph): 2,9 s Top speed 350km/h Mass: 1600kgr
Laborghn Aventador : producton February 0 preent Max power 700PS, 684hp, 50kW 0 97 k/h (0 60 ph):,9 Top peed 350k/h Ma: 600kgr Μερικά στοιχεία για την κίνηση αυτοκινήτου. Τριβή μεταξύ ελαστικών και οδοστρώματος:
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Έργο Σταθερής Δύναμης
Έργο Σταθερής Δύναμης o Δx a) Το σώμα κερδίζει ενέργεια (κινητική) o b) Τ Δx Τ Το σώμα χάνει ενέργεια (κινητική), που μετατρέπεται σε θερμότητα o =0 c) Η Δυναμική ενέργεια μετατρέπεται σε κινητική d) Το
16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι...
1. Ο νόµος του Hooke υποστηρίζει ότι οι ελαστικές παραµορφώσεις είναι.των...που τις προκαλούν. 2. Ο τρίτος νόµος του Νεύτωνα υποστηρίζει ότι οι δυνάµεις που αναφέρονται στο νόµο αυτό έχουν... µέτρα,......
Γενική Φυσική. Ενότητα 5: Έργο, ενέργεια. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών
Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Έργο - Ενέργεια Βασική έννοια. Μηχανική, Ηλεκτρομαγνητική, Χημική, Θερμική, Πυρηνική, κ.α. Δυνατότητα μετατροπής της μίας μορφής
Μηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 5: Έργο και Ενέργεια Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Λύση Α. Σωστή η επιλογή α. Β.
1) Αρνητικά φορτισμένο σωμάτιο κινείται σε ομογενές ηλεκτρικό πεδίο μεγάλης έκτασης. Να επιλέξετε τη σωστή πρόταση. Αν η κατεύθυνση της κίνησης του σωματίου παραμένει σταθερή, τότε: α. Συμπίπτει με την
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ ΚΡΟΥΣΕΙΣ - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. γ Αα. β Α3α. β Α4α. α Αβ. γ Αβ. δ Α3β. δ Α4β. δ Α5. Σ, Λ, Σ, Λ, Σ ΘΕΜΑ Β Β. Σωστή απάντηση η γ. Ισχύει:
Έργο Ενέργεια Ώθηση. F dp=f dt p=p p F dt I(t)
Έργο Ενέργεια 1/1 Η «φυσική» λύση της εξίσωσης του Νεύτωνα απαιτεί την γνώση της δύναμης σαν συνάρτηση του χρόνου. Τις περισσότερες φορές όμως γνωρίζουμε την δύναμη σαν συνάρτηση της γεωμετρίας (της θέσης
Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 5 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 5 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ασκήσεις Ο ΚΡΟΥΣΕΙΣ ΟΡΜΗ ΣΩΜΑΤΟΣ Ορμή ενός σώματος είναι το διανυσματικό
F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
W = 6.34 kn (2) F = u 2 f = u2 i + 2a(x f x i ) a = u2 f u2 i 2x f. F = d U(x) (5)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-2: Φυσική Ι Χειµερινό Εξάµηνο 208 ιδάσκων : Γ. Καφεντζής Λύσεις 3ου Φροντιστηρίων Ασκηση. Επιλέγουµε ως σύστηµα τη σφάιρα. Το σύστηµα είναι µη αποµονωµένο.
Μία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h.
ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων Β τάξης Γυμνασίου 2/4/2017 Θέμα 1 ο Μία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h. Α. Να υπολογίσετε
ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)
ΘΕΜΕΛΙΩΔΗ ΜΕΓΕΘΗ Προκύπτουν άμεσα. Δεν ορίζονται με τη βοήθεια άλλων μεγεθών Μήκος: έχει μονάδα μέτρησης το ΜΕΤΡΟ (m) Χρόνος: έχει μονάδα μέτρησης το ΔΕΥΤΕΡΟΛΕΠΤΟ (s ή sec) Μάζα: έχει μονάδα μέτρησης το
Κεφάλαιο 8 Διατήρηση της Ενέργειας
Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές
γ) να υπολογίστε το έργο για τη μετατόπιση του σώματος από τη θέση A = 10j μέχρι
ΑΣΚΗΣΗ 4. Σε σώμα μάζας = Kg ασκείται η δύναμη F = 5j, όπου j το μοναδιαίο διάνυσμα κατακόρυφης διεύθυνσης με φορά προς τα πάνω. α) να υπολογίσετε το έργο για τη μετατόπιση του σώματος από τη θέση A =
E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,