ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
|
|
- É Αγγελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ Φαξ: ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 16 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ημερομηνία: Δευτέρα, 6/6/16 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΡΟΣ A : Να λύσετε και τις 1 ασκήσεις. Κάθε άσκηση βαθμολογείται με 5 μονάδες. 1) Δίνεται έλλειψη με εξίσωση x + y = 1. Να βρείτε τις συντεταγμένες των εστιών, την εκκεντρότητα 5 16 και τις εξισώσεις των διευθετουσών της έλλειψης. α = 5, β = 4. γ = α β = 5 16 = 3 Εστίες: ( 3,), (3,), Εκκεντρότητα: ε = γ α = 3 5, Διευθετούσες: x = ± α ε = ± = ± 5 3. ) Δίνεται η συνάρτηση f(x) = (x 1) 4, x R. Να αποδείξετε ότι η f στρέφει τα κοίλα προς τα πάνω στο πεδίο ορισμού της. f(x) = (x 1) 4 f (x) = 4(x 1) 3 f (x) = 1(x 1), x R Άρα η f στρέφει τα κοίλα προς τα πάνω στο πεδίο ορισμού της 3) Δίνεται ο πίνακας Α = ( 3 1 ). (α) Να αποδείξετε ότι Α = Ι (όπου Ι είναι ο x μοναδιαίος πίνακας). (β) Να βρείτε τον πίνακα Β = Α 17 + Α 1 3Α. (α) Α = Α Α = ( 3 1 ) ( 3 1 ) = (1 1 ) = Ι 1
2 Επειδή Α Α = Ι, λόγω της μοναδικότητας του αντίστροφου πίνακα έχουμε Α = Α 1. (β) Β = Α 17 + Α 1 3Α = (Α ) 18 Α + Α 3Α = Ι 18 Α + Α 3Α = Ι Α + Α 3Α = = Α + Α 3Α = όπου = ( ). 4) Δίνεται η συνάρτηση f(x) = x + x + 5, x [ 1,]. Να βρείτε και να χαρακτηρίσετε τα τοπικά ακρότατα της συνάρτησης f. f(x) = x + x + 5 f (x) = x + Για f (x) = x + = x = 1 f(1) = 6 f( 1) = f() = 5 Άρα το (1,6) είναι τοπικό μέγιστο, το ( 1,) είναι τοπικό ελάχιστο και το (,5) είναι τοπικό ελάχιστο. Σημειώνεται ότι το (1,6) είναι και ολικό μέγιστο και το ( 1,) είναι και ολικό ελάχιστο. 5) Δίνεται η συνάρτηση f με τύπο f(x) = 1 x. (α) Να αποδείξετε ότι η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο της (4,8) είναι (ε): y = 4x 8. (β) Να βρείτε το εμβαδόν του χωρίου που περικλείεται από την γραφική παράσταση της συνάρτησης f, την εφαπτομένη (ε) και τον ημιάξονα Ox. f(x) = 1 x f (x) = x λ εφ = f (4) = 4 Εξίσωση εφαπτομένης στο σημείο (4,8): y y 1 = λ εφ (x x 1 ) y 8 = 4(x 4) y = 4x 8 4 E = x dx Β τρόπος 8 E = ( y+8 y ) dy 4 E τριγ = x3 ] = 8 τ. μ. 3 = y + y 8 3 y(3 ) 8 = ] 16 = 8 τ. μ. 3 3
3 6) (α) Να δώσετε τον ορισμό της παραβολής. (β) Δίνεται η παραβολή y = 4x, > με εστία Ε και διευθετούσα (δ). Από σημείο Τ της παραβολής φέρουμε ευθεία παράλληλη με τον άξονα x x που τέμνει την διευθετούσα (δ) στο σημείο Α έτσι ώστε AE = 6 μονάδες. Αν η περίμετρος του τριγώνου ΤΑΕ είναι ίση με (1 + 6 ) μονάδες, να βρείτε το εμβαδόν του τριγώνου ΤΑΕ. (α) Παραβολή ονομάζεται ο Γεωμετρικός Τόπος του σημείου του επιπέδου που κινείται έτσι ώστε να ισαπέχει από σταθερό σημείο Ε και σταθερή ευθεία δ του επιπέδου. Το σημείο Ε ονομάζεται Εστία και η ευθεία δ ονομάζεται διευθετούσα της παραβολής (β) Σύμφωνα με τον ορισμό ΤΑ = ΤΕ Π ΑΤΕ = TA + TE + AE = TΕ + TΕ + 6 = ΤΕ = 6 άρα ΤΑ = 6 Προκύπτει (ΑΕ) = (ΑΤ) + (ΤΕ) δηλαδή ισχύει το Πυθαγόρειο Θεώρημα που σημαίνει ότι το τρίγωνο ΑΤΕ είναι Ορθογώνιο τρίγωνο με κάθετες πλευρές τις ΤΑ και ΤΕ Β τρόπος Ε ΑΤΕ = (ΤΑ)(ΤΕ) = 6 6 = 18 τ. μ. Για το υπολογισμό του εμβαδού του τριγώνου ΤΑΕ μπορούμε να χρησιμοποιήσουμε τον τύπο του Ήρωνα του Αλεξανδρέα, αφού γνωρίζουμε τα μήκη των πλευρών του τριγώνου α = 6, β = 6 και γ = 6. Η ημιπερίμετρος του τριγώνου είναι τ = Άρα το εμβαδόν του τριγώνου είναι α + β + γ = = Ε = τ(τ α)(τ β)(τ γ) = (6 + 3 )(3 )(3 )(6 3 ) = (36 18)18 = 18 τ. μ. 7) Να υπολογίσετε το ολοκλήρωμα dx x 6x τεμθ, < θ < π είτε οποιονδήποτε άλλο τρόπο., για x > 4 χρησιμοποιώντας είτε την αντικατάσταση x = x = 3 + τεμθ, < θ < π τεμθ = (x 3) εφ θ + 1 = τεμ θ εφθ = + τεμ θ 1 = (x 3) 1 = x 6x + 8 3
4 τεμθ = (x 3) τεμθ εφθ dθ = dx dx = x 6x+8 τεμθ εφθ εφθ dθ = τεμθ dθ = ln τεμθ + εφθ + c = ln x 3 + x 6x c 8) Να βρείτε πόσοι από τους ενιαψήφιους αριθμούς που σχηματίζονται χρησιμοποιώντας τους φυσικούς αριθμούς 1,, 3, 4, 5, 6, 7, 8, 9 χωρίς επανάληψη, έχουν το πριν από το 3 και το 8 πριν από το 9 (π.χ. ο είναι ένας τέτοιος αριθμός). Όλοι οι ενιαψήφιοι αριθμοί που μπορούμε να σχηματίσουμε κάτω από τις προϋποθέσεις της άσκησης είναι: M 9 = 9! = 3688 Στους μισούς από τους πιο πάνω αριθμούς (18144), το προηγείται του 3. Στη συνέχεια, στους μισούς από αυτούς τους αριθμούς (97), το 8 προηγείται του 9. Άρα, οι αριθμοί που μας «ενδιαφέρουν» είναι 97. Β τρόπος Από τις 9 θέσεις επιλέγονται οι δύο για να τοποθετηθουν το και το 3, κατά ( 9 ) τρόπους. Από τις 7 υπόλοιπες θέσεις επιλέγονται οι δύο για να τοποθετηθεί το 8 και το 9, κατά ( 7 ) τρόπους. Τα υπόλοιπα 5 ψηφία μπορούν να τοποθετηθούν στις υπόλοιπες 5 θέσεις κατά M 5 = 5! τρόπους. Άρα υπάρχουν ( 9 )(7 )5! = 97 τέτοιοι ενιαψήφιοι αριθμοί, που ζητούνται στο πρόβλημα. 9) Δίνεται κύκλος με κέντρο το σημείο Κ(1, 3) και με ακτίνα τέτοια ώστε η αρχή των αξόνων Ο να βρίσκεται εκτός του κύκλου. Από το Ο φέρουμε τις εφαπτομένες ε 1, ε προς τον κύκλο. Αν η μια από τις εφαπτομένες έχει εξίσωση x y =, να βρείτε την εξίσωση της άλλης εφαπτομένης. Έστω ε 1 : x y =, ε : y = λx και R η ακτίνα του πιο πάνω κύκλου. Είναι R = d(k, ε 1 ) = = 5 μονάδες 1 +( ) (R < (KO) = 1 μονάδες). Επιπλέον, R = d(k, ε ) = 1 λ 1 3 λ + ( 1) = 5 (λ 3) = 5(λ + 1) λ + 3λ = (λ + )(λ 1) = 4
5 λ ε1 = 1, λ ε = Τελικά, η εξίσωση της ε είναι: x + y = Β τρόπος Επειδή η ακτίνα του κύκλου είναι ρ = 5 και η ΚΟ = 1 θα έχουμε από το Πυθαγόρειο θεώρημα ότι τα εφαπτόμενα τμήματα από το Ο προς τον κύκλο θα έχουν μήκος 5. Επομένως το τετράπλευρο που σχηματίζεται από τα σημεία επαφής των εφαπτομένων με τον κύκλο και τα σημεία Κ, Ο θα είναι τετράγωνο. Άρα οι εφαπτόμενες ε 1, ε θα είναι κάθετες στην αρχή των αξόνων Ο. Αφού λοιπόν η δεδομένη εφαπτομένη έχει κλίση λ 1 = 1 η ζητούμενη εφαπτομένη θα έχει κλίση λ =. Άρα η εξίσωση της άλλης εφαπτομένης θα είναι y = x 1) Σε ένα παιχνίδι με ζάρια οι παίκτες Α και Β ρίχνουν δύο αμερόληπτα ζάρια ο κάθε ένας και υπολογίζουν κάθε φορά το άθροισμα των αριθμών που εμφανίζονται στις πάνω έδρες τους. Ο Α κερδίζει το παιχνίδι εάν κατά την ρίψη των δύο ζαριών του φέρει άθροισμα ενδείξεων 7 και ο Β κερδίζει το παιχνίδι εάν κατά τη ρίψη των δύο ζαριών του φέρει άθροισμα ενδείξεων 1. Οι Α και Β παίζουν το παιχνίδι, ο ένας μετά τον άλλο, μέχρι να κερδίσει ο ένας από τους δύο. Αν ο Α ξεκίνησε να παίζει πρώτος, (α) να βρείτε την πιθανότητα να κερδίσει ο Β στην πρώτη του προσπάθεια (β) να βρείτε την πιθανότητα να κερδίσει το παιχνίδι ο Β Ορίζουμε τα ενδεχόμενα: A i : «Ο Α φέρει άθροισμα ενδείξεων 7 στην i του προσπάθεια» Β i : «Ο Β φέρει άθροισμα ενδείξεων 1 στην i του προσπάθεια», i = 1,, 3, Έχουμε: P(A i ) = 1 και P(B 6 i) = 1, για κάθε i = 1,,3, 1 (α) Ο Β κερδίζει στην πρώτη του προσπάθεια: P(Α 1 B 1 ) = = 5 7 (β) Ο Β κερδίζει το παιχνίδι: P(A 1 B 1 ) + P(A 1 B 1 A B ) + P(A 1 B 1 A B A 3 B 3 ) + = (5 6 ) (5 6 ) ( 11 1 ) = =
6 ΜΕΡΟΣ B : Να λύσετε και τις 5 ασκήσεις. Κάθε άσκηση βαθμολογείται με 1 μονάδες. 1. Δίνεται η συνάρτηση f με τύπο f(x) = x x+1. Αφού βρείτε το πεδίο ορισμού της συνάρτησης, τα σημεία τομής με τους άξονες των συντεταγμένων, τα διαστήματα μονοτονίας, τα τοπικά ακρότατα και τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης, να την παραστήσετε γραφικά. Πεδίο Ορισμού: D f = R { 1} Σημεία τομής με τους άξονες των συντεταγμένων: O(, ) Μονοτονία Ακρότατα: Η συνάρτηση f είναι παραγωγίσιμη στο R { 1}, με f (x) = 4x(x + 1) x (x + 1) = x + 4x x(x + ) = (x + 1) (x + 1) f (x) = x(x + ) = x = ή x = Η μονοτονία και τα ακρότατα της f φαίνονται στον πιο κάτω πίνακα. Η f είναι: Γνησίως αύξουσα στα διαστήματα (, ], [, + ) Γνησίως φθίνουσα στα διαστήματα [, 1), ( 1, ] Η f έχει τοπικό ελάχιστο το f() = και τοπικό μέγιστο το f( ) = 8. Ασύμπτωτες: Είναι: lim f(x) = + x 1 + lim f(x) = x 1 Άρα, η ευθεία x = 1 είναι κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f. Είναι: x x + 1 = x + x + 1 H ευθεία y = x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της f, αφού lim ( x (x )) = x + x + 1 lim lim ( x (x )) = x x + 1 lim x + x x + 1 = x + 1 = 6
7 Γραφική παράσταση της f:. Σε ένα κουτί Κ 1 υπάρχουν πράσινες και 5 μαύρες φανέλες και σε ένα άλλο κουτί Κ υπάρχουν 3 γαλάζιες και 4 μαύρες φανέλες. Από μία ομάδα 1 κοριτσιών και 8 αγοριών, επιλέγεται τυχαία ένα παιδί. Αν είναι κορίτσι θα πάρει φανέλες από το κουτί Κ 1 ενώ αν είναι αγόρι θα πάρει φανέλες από το κουτί Κ. Η επιλογή των δύο φανελών θα γίνει τυχαία χωρίς επανατοποθέτηση. Να υπολογίσετε τις πιθανότητες των ενδεχομένων: (α) Ε 1 : «να επιλεγεί αγόρι και να επιλέξει φανέλες διαφορετικού χρώματος». (β) Ε : «οι δύο φανέλες που θα επιλεγούν να είναι διαφορετικού χρώματος». (γ) Ε 3 : «να έχει επιλεγεί αγόρι δεδομένου ότι οι δύο φανέλες που έχουν επιλεχθεί είναι διαφορετικού χρώματος». (δ) E 4 : «να έχει επιλεγεί αγόρι δεδομένου ότι οι φανέλες που έχουν επιλεχθεί είναι και οι δύο γαλάζιες». Θεωρούμε τα ενδεχόμενα: Α: «Επιλέγεται αγόρι», Κ: «Επιλέγεται κορίτσι», Γ: «Επιλέγονται γαλάζιες φανέλες και Δ: «Επιλέγονται φανέλες διαφορετικού χρώματος». Σύμφωνα με τα δεδομένα του προβλήματος, έχουμε: Ρ(Α) = 8 = 5 και Ρ(Κ) = 1 =
8 (α) Ρ(Ε 1 ) = Ρ(Α Δ) = Ρ(Α) Ρ(Δ Α) = ( 7 ) = (β) Ρ(Ε ) = Ρ((Α Δ) (Κ Δ)) = Ρ(Α Δ) + Ρ(Κ Δ) = Ρ(Α) Ρ(Δ Α) + Ρ(Κ) Ρ(Δ Κ) = ( 7 ) = (γ) Ρ(Ε 3 ) = Ρ(Α Δ) = Ρ(Α Δ) Ρ(Δ) (δ) Ρ(Ε 4 ) = Ρ(Α Γ) = 1. = Ρ(Ε 1 ) 8 = Ρ(Ε ) 35 = Δίνεται ισοσκελής υπερβολή xy = c με εστίες Ε και Ε. Τα Β (ct, c ) και Γ (cρ, c ) με t, ρ, και t, ρ ±1, είναι τυχαία σημεία της υπερβολής. t ρ (α) Να αποδείξετε ότι η ευθεία ΒΓ έχει εξίσωση tρy + x = c(t + ρ). (β) Φέρουμε τις εφαπτόμενες της υπερβολής στα σημεία B και Γ. Να αποδείξετε ότι οι συντεταγμένες του σημείου τομής Σ των εφαπτομένων είναι ( ctρ t+ρ, c t+ρ ). (γ) Αν η ευθεία ΒΓ περνά από την εστία Ε, να βρείτε την εξίσωση της καμπύλης πάνω στην οποία βρίσκεται ο γεωμετρικός τόπος του σημείου Σ. 8
9 (α) λ ΒΓ = (c t c ρ ) ct cρ = 1 tρ Η εξίσωση της χορδής ΒΓ είναι: y c = 1 (x ct) t tρ ytρ cρ = x + ct tρy + x = c(t + ρ). (β) Παραγωγίζουμε την εξίσωση xy = c της υπερβολής ως προς x: y + x dy dx = dy dx = y x. Η κλίση της εφαπτομένης στο Β είναι λ εφ = dy dx B = 1 t Η εξίσωση της εφαπτομένης στο Β είναι: y c t = 1 t (x ct) t y + x = ct (1). Ανάλογα η εξίσωση της εφαπτομένης στο Γ είναι: ρ y + x = cρ (). Αφαιρούμε κατά μέλη τις (1), () και παίρνουμε (t ρ )y = c(t ρ) y = c, με t + ρ t+ρ Αντικαθιστούμε στην (1) y = c t+ρ και παίρνουμε x = ctρ t+ρ. Άρα Σ ( ctρ t + ρ, c t + ρ ). (γ) Είναι Ε(c, c ) και, επειδή η ευθεία ΒΓ περνά από το Ε, θα είναι: tρc + c = c(t + ρ) tρ + = t + ρ (3). Αν Σ(x, y) είναι σημείο του γ.τ., από το (β) έχουμε: x = ctρ tρ = x t + ρ y y = c t + ρ = c { t + ρ { y Αντικαθιστούμε τις τελεταίες στη (3) και έχουμε: που είναι η ζητούμενη εξίσωση. x c + = x + y = c x + y = c y y 4. Δίνεται κύκλος κ 1 με εξίσωση κ 1 : x + y = 1 ο οποίος τέμνει τον άξονα των τετμημένων x x στα σημεία Γ και Δ. Ένας άλλος κύκλος κ με κέντρο το σημείο Δ και ακτίνα ρ με < ρ <, τέμνει τoν κύκλο κ 1 στα σημεία Ζ και Ζ. Έστω Ζ το σημείο με θετική τεταγμένη (y > ) και Σ το σημείο τομής του κ με το ευθύγραμμο τμήμα ΓΔ. (α) Να αποδείξετε ότι το εμβαδόν του τριγώνου ΔΣΖ δίνεται από τον τύπο Ε(ρ) = ρ 4 ρ 4 (β) Να βρείτε την ακτίνα ρ ώστε το εμβαδόν του τρίγωνου ΔΣΖ να είναι μέγιστο. 9
10 (α) Τα σημεία τομής του κύκλου κ 1 : x + y = 1 με τον άξονα των τετμημένων x x, ας υποθέσουμε ότι είναι τα σημεία Γ( 1,) και Δ(1,) (δεν επηρεάζεται η λύση του προβλήματος αν πάρουμε Γ(1,) και Δ( 1,)). Επομένως ο κύκλος κ με κέντρο το σημείο Δ και ακτίνα ρ με < ρ < θα έχει εξίσωση κ : (x 1) + y = ρ Για να βρούμε τα σημεία τομής των κύκλων κ 1, κ, λύνουμε το σύστημα x + y = 1 { (x 1) + y = ρ ή { y = 1 x = ± 1 x (x x + 1) + 1 x ή {y = ρ x = ρ και αφού από την υπόθεση έχουμε y >, θα πάρουμε y = 1 ( ρ ) ή y = 4ρ ρ 4 4 ή y = ρ 4 ρ Επομένως το εμβαδόν του τριγώνου ΔΣΖ θα είναι Ε(ρ) = ρy = ρ ρ 4 ρ = ρ 4 ρ 4, ρ (,) (β) Παραγωγίζοντας την τελευταία συνάρτηση θα έχουμε Ε (ρ) = 1 (ρ 4 4 ρ ρ3 4 ρ ) = 1 ) ρ 3 4 (ρ(4 ρ ) = 1 4 ρ 4 (8ρ 3ρ3 και θα έχουμε για τα ακρότατα της Ε 4 ρ ) Ε (ρ) = 8ρ 3ρ 3 = ρ = 4 4 ρ 8 = ρ 6 3 Ε (ρ) + Ε(ρ) Πράγματι Το εμβαδόν του τρίγωνου ΔΣΖ είναι μέγιστο όταν ρ =
11 5. Έστω δύο συνεχείς συναρτήσεις, f: R R με f( x) = f(x) και g: R R με g( x) = g(x). (α) Να δείξετε ότι: (β) Να υπολογίσετε το: f(x) e g(x) dx = f(x) dx + 1 π συν x + 5 e ημx + dx π (α) Χρησιμοποιώντας τις ιδιότητες των ορισμένων ολοκληρωμάτων θα έχουμε για το πρώτο μέλος της ισότητας που θέλουμε να αποδείξουμε ότι Το Ι 1 = f(x) e g(x) dx = f(x) + 1 e g(x) + 1 dx + f(x) e g(x) dx = Ι 1 + Ι (1) + 1 f(x) dx e g(x) +1 Επειδή du = dx και παίρνουμε, χρησιμοποιώντας τον μετασχηματισμό u = x, θα γίνει. Ι 1 = f(x) e g(x) + 1 dx = f( u) e g( u) + 1 du = f( x) e g( x) + 1 du = f(x) e g(x) + 1 dx = f(x)eg(x) 1 + e Επομένως η (1) γίνεται f(x) e g(x) dx = f(x) + 1 e g(x) + 1 dx + f(x) e g(x) dx = f(x)eg(x) e x u = f(x)(eg(x) + 1) 1 + e g(x) dx = f(x)dx. (β) Θέτουμε f(x) = συν x + 5 τότε και α α α α g(x) dx f( x) = συν ( x) + 5 = συν x + 5 = f(x). Και g(x) = ημx τότε και g( x) = ημ( x) = ημx = g(x). Άρα από το (α) παίρνουμε α + f(x) e g(x) dx + 1 g(x) dx 11
12 π π συν x + 5 e ημx + dx = συν x + 5 (e ημx + 1) dx = 1 (συν x + 5)dx π π π π = 1 (συνx ) dx = 4 (ημx + 11x) π 11π = 8. 1
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ημερομηνία:
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 009 Ημερομηνία και ώρα εξέτασης: ευτέρα, 1 Ιουνίου 009 7:30 10:30
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 7-2278101 Φαξ: 7-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ -ΩΡΟ
Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ
Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 16 Μάθημ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνί κι ώρ εξέτσης: Δευτέρ, 6/6/16 8: 11: ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ.
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία και ώρα εξέτασης: Παρασκευή, 19/05/2017 8:00 11:00
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 1, Στρόβολος, Λευκωσία Τηλ. 57-7811 Φαξ: 57-791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Δευτέρα, Ιουνίου 14 ΠΡΟΤΕΙΝΟΜΕΝΕΣ
1 0, να βρείτε την τιμή του α. 4. Οι παραμετρικές εξισώσεις μιας καμπύλης είναι : χ=3(2θ ημ2θ) ψ=3(1 συν2θ) α) Να δείξετε ότι : =σφθ
ΛΥΚΕΙΟ ΠΑΡΑΛΙΜΝΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ -4 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΑΛΓΕΒΡΑ Αν =e t και y=e t να δείξετε ότι : y d y +χ dy = d d Αν χ= d d t και ψ=τοξημt,
την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του
ΑΣΚΗΣΗ 47 Δίνεται η συνάρτηση f(x) = και οι ευθείες (ε ): y = x και (ε ): y = x +. Να αποδείξετε ότι:. Η (ε ) είναι ασύμπτωτη της C f στο, ενώ η (ε ) είναι ασύμπτωτη της C f στο +. Για κάθε x R ισχύει
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017
Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία και ώρα εξέτασης: Τρίτη, 3/5/ 8:3 :3 ΜΕΡΟΣ Α d.. Να ρείτε
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ
ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2019 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφείο 102, Στρόβολος 200, Λευκωσία Τηλέφωνο: 57 2278101, Φαξ: 57 2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2019 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφείο 102, Στρόβολος 200, Λευκωσία Τηλέφωνο: 57 2278101, Φαξ: 57 2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου
Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό
Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;
Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 99 Α. α) Ψ β) Η συνάρτηση
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k
3o Επαναληπτικό Διαγώνισμα 2016
3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,
για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω
1ο Επαναληπτικό διαγώνισμα στα Μαθηματικά Προσανατολισμού Γ Λυκείου
Θέμα Α ο Επαναληπτικό διαγώνισμα στα Μαθηματικά Προσανατολισμού Γ Λυκείου Α Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα
Διαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.
Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν
Παραγώγοι - Ορια. lim Μέρος Α 4) Να υπολογίσετε το όριο 2006 Μέρος Α Β σειρά 3) Να υπολογίσετε το όριο. lim. lim.
6 Μέρος Α 4) Να υπολογίσετε το όριο 6 Μέρος Α Β σειρά 3) Να υπολογίσετε το όριο 7 Μέρος Α Παραγώγοι - Ορια x ln x lim. x x e lnx x lim x x 9) Να αποδείξετε ότι: Toξημx, x (, ) 7-Μέρος Α Β σειρά x 4) Να
2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.
. Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία
ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ
ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία και
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <
Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [008-009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)
. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε
Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες
Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε
Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α
Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Α Σ Κ Η Σ Ε Ι Σ 1. Να υπολογιστεί το ολοκλήρωμα: Ι ΑΠ. 36 2. Να δείξετε ότι: i) Για κάθε x (0, + ), 2x e x + e x -1 > 0 ii) Θεωρώ την συνάρτηση f(x) = 2x e x + e x - 1 iii. Αρκεί
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΥΝΔΥΑΣΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ) ΔΙΑΔΙΚΤΥΑΚΟ
ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει
Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο
Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ
Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ
1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των
ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )
() Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
f(x 2) 5 x 1 α) Να αποδείξετε ότι: i) f (3) = 5 και ii) f (3) = 6 x 2 f(x)
. Έστω η συνάρτηση = + e. Να μελετήσετε την f ως προς τη μονοτονία.. Να λύσετε την εξίσωση e = 3. Θεωρούμε τη γνησίως μονότονη συνάρτηση g : R R η οποία για κάθε R ικανοποιεί τη σχέση g() + e g() = +.
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή
Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος
Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
20 επαναληπτικά θέματα
0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος σχολικό έτος 03-04) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Μπούζας Δημήτρης Πετρόπουλος
ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50
ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 1:5 Σελίδα από 11 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 11 / 6 / 18 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Γ ΓΕΛ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.
Ασκήσεις Επανάληψης Γ Λυκείου
Ασκήσεις Επανάληψης Γ Λυκείου Ασκήσεις Επανάληψης σε όλο το εύρος της διδακτέας ύλης Κων/νος Παπασταματίου Κ. Καρτάλη 8 (με Δημητριάδος) Τηλ. 4 3 598 Θε ματα ΟΕΦΕ - 5 Επιμέλεια Κων/νος Παπασταματίου Σελίδα
1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.
o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α Δίνεται τετράγωνο με κορυφές τα σημεία Α,, Β,, Γ, και Δ, και μία συνεχής στο, συνάρτηση της οποίας η γραφική παράσταση βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ. B. Nα βρείτε
ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt
ΑΣΚΗΣΗ Δίνεται η συνάρτηση f με τύπο: f (x)= ημ x, x (0,π). α) Να μελετήσετε την f ως προς τη μονοτονία και τα κοίλα. β) Να βρείτε της ασύμπτωτες της γραφικής παράστασης της f. γ) Να βρείτε το σύνολο τιμών
1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η
Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε
Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;
1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών
Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,
aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 2014
aμαθηματικα ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ Α Α. Σελ 5 Α. Σελ 73 Α3. Σελ 5 Α4. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β B. Θέτω z yi στην εξίσωση και έχουμε: z z z i 4 i yi yi yi i 4 i y i 4 i y i 4 i y 4 i Συνεπώς πρέπει να
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της
ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο
= π 3 και a = 2, β =2 2. a, β
1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)
3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
20 επαναληπτικά θέματα
0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Ζαχαράκης Δημήτρης Καρύμπαλης Νώντας Κλίτσας Γιώργος Κοτσώνης Γιώργος Μπούζας Δημήτρης Πετρόπουλος
ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50
ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 1:5 Σελίδα από 11 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: 11 / 6 / 18 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Γ ΓΕΛ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
9 Ιουνίου ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Επαναληπτικών Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)
ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και
g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως
ΘΕΜΑ Α Α. Απόδειξη θεωρήματος σελ. 99 σχολικού βιβλίου. Α. α. Ψευδής β. Θεωρούμε τη συνάρτηση, 0 g, 0 η οποία έχει γραφική παράσταση (σχήμα σχολικού βιβλίου σελ.5): y O y=g() Η g είναι συνάρτηση στο Ag
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις
Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ
Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής
f '(x 0) lim lim x x x x
Α Θ Ε Μ Α A Θ Ε Ω Ρ Η Μ Α ( F e r m a t ) Έστω μια συνάρτηση ορισμένη σ ένα διάστημα Δ και ένα εσωτερικό σημείο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, τότε:
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x
ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ. 15 Α. α) Ψ β) Σχήμα 1 και μελέτη της f, όπου η f είναι συνεχής στο και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α. Ορισμός σελ. 7 Α. α) Λ β) Σ γ)
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ
Ολοκληρωτικός Λογισμός
Ολοκληρωτικός Λογισμός Ορισμένο Ολοκλήρωμα Αόριστο Ολοκλήρωμα o Ιδιότητες Αόριστου Ολοκληρώματος o Βασικά Αόριστα ολοκληρώματα o Τεχνικές Ολοκλήρωσης o Ολοκλήρωση ρητών συναρτήσεων Εφαρμογές Ολοκληρώματος
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες
20 επαναληπτικά θέματα
επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος 3 σχολικό έτος 4-5) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Λιτζερίνος Χρήστος Μπούζας
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÏÅÖÅ. x και f ( x ) >, τότε f ( ) 0
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα ο Α. α) Έστω η συνάρτηση ( ) στο R και ισχύει: f '( ) ηµ f = συν. Να αποδείξετε ότι η f είναι παραγωγίσιµη
Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Ολοκληρώματα Κώστας Γλυκός 9 ΑΣΚΗΣΕΙΣ Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7.. 8 8. 8 8 Kglykos.gr / / 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : -6.78 κινητό : 697-.88.88 Επιλεγμένες ασκήσεις από βιβλία Σε
γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΜΑΪΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ o A. Έστω
Εξετάσεις 11 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
Εξετάσεις Ιουνίου 8 Μαθηματικά Προσανατολισμού Γ Λυκείου (Θετικών Σπουδών και Σπουδών Οικονομίας-Πληροφορικής) ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 777 59 ΑΡΤΑΚΗΣ - Κ ΤΟΥΜΠΑ THΛ: 99
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 01 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία και
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ (IMF: 4o µεσοπρόθεσµο.) ( WWF:.εξοικονόµηση πόρων.) MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 5 ΣΕΠΤΕΜΒΡΙΟΥ... ΜΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 7 ΣΕΠΤΕΜΒΡΙΟΥ...
3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε