Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7"

Transcript

1 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Ε ΑΦΟΜΗΧΑΝΙΚΗ ΚΕΦΑΛΑΙΟ 7 Τοίχοι Αντιστήριξης ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 010 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7. Το ίδιο βάρος του εδάφους έχει ως αποτέλεσµα την ανάπτυξη κατακόρυφωνγεωστατικώντάσεωνσ v οιοποίεςαυξάνονταιµετοβάθος. Αν αφαιρεθεί η επιρροή της πίεσης του νερού των πόρων u w, η ενεργός κατακόρυφητάσησυµβολίζεταικατάταγνωστάωςσ v Η οριζόντιαγεωστατική ενεργόςτάσηµπορεί να υπολογιστεί από τηνσ v καιένανσυνεντελεστήκκαισυµβολίζεταιωςσ h Η συνισταµένη των οριζόντιων εδαφικών τάσεων ονοµάζεται εδαφική ώθηση και έχει µεγάλο ενδιαφέρον στην µελέτη έργων αντιστήριξης (συγκράτησης εδαφικών πρανών ή µαζών). Η τιµή των πλευρικών ωθήσεων δεν είναι σταθερή αλλά µεταβάλλεται µεταξύ µιας µέγιστης και µιας ελάχιστης τιµής, ανάλογα µε την σχετική µετακίνηση του έργου αντιστήριξης

2 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.3 ιακρίνονται τρεις περιπτώσεις ανάπτυξης ωθήσεων Ενεργητική κατάσταση Κατάσταση ηρεµίας =0 Παθητική κατάσταση P o ολίσθηση µηδενική µετακίνηση h,ο ολίσθηση Ωθήσειςηρεµίας P o Ενεργητικέςωθήσεις (ελάχιστη τιµή πλευρικών τάσεων εδάφους) ανατροπή Παθητικέςωθήσεις (µέγιστη τιµή πλευρικών τάσεων εδάφους) στροφή Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.4 Υπολογισµός ωθήσεων σε κατάσταση ηρεµίας Ο προσδιορισµός των εδαφικών ωθήσεων σε κατάσταση ηρεµίας (µηδενική µετακίνηση εδάφους-τοίχου) γίνεται ως εξής: Κατάσταση ηρεµίας 1) Υπολογίζονται οι κατακόρυφες ενεργές =0 τάσειςστοέδαφοςσ v ) Προσδιορίζεται ο συντελεστής ωθήσεωνσεηρεµία o 3) Υπολογίζονται οι οριζόντιες εδαφικές τάσειςστοέδαφοςσ hαπότησχέση: o v = 1 v = h o v P o µηδενική µετακίνηση για ισότροπο γραµµικά ελαστικό έδαφος (συνήθως δεν ισχύει) h,ο o = 1 sinφ για κανονικά στερεοποιηµένες άµµους-αργίλους (Jaky, 1944) o ( ) 0.5 = 1 sinφ OCR για υπερστερεοποιηµένα εδάφη (EC7, έδαφος δίχως κλίση) 4)Ησυνισταµένητωνοριζόντιωνεδαφικώντάσεωνδίνειτηνώθησηηρεµίας P o

3 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.5 Υπολογισµός ωθήσεων σε κατάσταση ηρεµίας Σε περίπτωση που υπάρχει υπόγειος υδάτινος ορίζοντας, πέραν της ώθησης του εδάφους στον τοίχο ασκείται και η υδροστατική πίεση, σύµφωνα µε το σχήµα: =0 Κατάσταση ηρεµίας (µηδενική µετακίνηση τοίχου-εδάφους) P o,1 z z w P o, P o,3 P w = h,ο o v,o = σ u u = γ z w w w w σ = γ z Οι ωθήσεις από τριγωνική κατανοµή τάσεων ασκούνται στο 1/3 του ύψους του τριγώνου Συνολικήώθηση P = P o,1 + P o, + P o,3 + P w Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.6 Υπολογισµός ενεργητικών και παθητικών ωθήσεων Ο προσδιορισµός των εδαφικών ωθήσεων σε κατάσταση αστοχίας (ενεργητικών ή παθητικών) δεν είναι εύκολη διαδικασία καθώς εµπλέκεται σηµαντικός αριθµός παραµέτρων όπως: - Η ύπαρξη τριβής µεταξύ τοίχου-εδάφους - Η ύπαρξη κλίσης στην επιφάνειας του εδαφικού πρανούς - Η πολυπλοκότητα της κατανοµής των τάσεωνστοέδαφοςπίσωαπότοντοίχο - Η πραγµατική επιφάνεια αστοχίας στο έδαφος δεν είναι ευθεία αλλά καµπύλη, και δεν είναι πάντα απλός ο προσδιορισµός της επιφάνεια αστοχίας Στη συνέχεια του Κεφαλαίου θα παρουσιαστεί ο προσδιορισµός των εδαφικών ωθήσεων µε τη µέθοδο του Rankine (1857) που θεωρεί λεία επιφάνεια τοίχου και µηδενική κλίση του εδαφικού πρανούς που αντιστηρίζεται.

4 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.7 Υπολογισµός ενεργητικών ωθήσεων Ο προσδιορισµός των ενεργητικών εδαφικών ωθήσεων κατά Rankine συµβαίνει τη στιγµήπουοτοίχοςκινείταιπροςτηνεκσκαφήκαιτοέδαφοςπίσωαπότοντοίχο αστοχεί, άρα αναπτύσσεται η ελάχιστη οριζόντια τάση. Αµµώδη εδάφη (c=0): φ Συντελεστής α = tan 45 ενεργητικών ωθήσεων = P α α v,o 1 = H Υπολογίζεται ανάλογα µε τη µορφήτωνσ hκάθεφορά Η Άµµος Αργιλικά εδάφη (c 0): c α φ = α tan 45 = c P α v,o α 1 = H z ( ) α o Συντελεστής ενεργητικών ωθήσεων Υπολογίζεται ανάλογα µε τη µορφήτωνσ hκάθεφορά z o Η Άργιλος Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.8 Υπολογισµός παθητικών ωθήσεων Ο προσδιορισµός των παθητικών εδαφικών ωθήσεων κατά Rankine συµβαίνει τη στιγµήπουοτοίχοςκινείταιπροςτοέδαφος, τοοποίοεξαντλείτηναντοχήτουκαι αστοχεί, άρα αναπτύσσεται η µέγιστη οριζόντια τάση. Αµµώδη εδάφη (c=0): φ Συντελεστής p = tan 45 + παθητικών ωθήσεων = p v,o Η Άµµος P p 1 = H Υπολογίζεται ανάλογα µε τη µορφήτωνσ hκάθεφορά Αργιλικά εδάφη (c 0): c p φ = + p tan 45 = + c p v,o p Συντελεστής παθητικών ωθήσεων Η Άργιλος P p + c p = H Υπολογίζεται ανάλογα µε τη µορφήτωνσ hκάθεφορά

5 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.9 Υπολογισµός ενεργητικών και παθητικών ωθήσεων Για την πλήρη ανάπτυξη της ενεργητικής ή της παθητικής ώθησης απαιτείται µετακίνηση του τοίχου, σαφώς σηµαντικότερη στην περίπτωση της παθητικής κατάστασης. Προκύπτουνµεγάλητιµήτου p καιµεγάλεςτιµέςπαθητικώνωθήσεων. (Σχήµα: Τσότσος 1991) Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός ενεργητικών και παθητικών ωθήσεων Στον πίνακα δίνονται υπολογισµένες οι τιµές του συντελεστή ενεργητικών ωθήσεων Κ α καιτουσυντελεστήπαθητικών ωθήσεωνκ p κατά Rankine, για διάφορεςγωνίεςτριβήςεδάφους. φ ( ) α p φ ( ) α p

6 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός ενεργητικών και παθητικών ωθήσεων Ενδεικτικά η ανάπτυξη ενεργητικών και παθητικών ωθήσεων σε διάφραγµα για διαφορετική θέση του σηµείου στροφής κατά την οριακή κατάσταση δίνεται στα παρακάτω σχήµατα (Μαραγκός, 009) Το σηµείο στροφής Κ βρίσκεται στη βάση του διαφράγµατος Το σηµείο στροφής Κ βρίσκεται ψηλότερα από τη βάση του διαφράγµατος z h h 1 σ = γ h σ = γ h α α 1 p p Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.1 Ωθήσεις λόγω επιφόρτισης Παρακάτω δίνονται οι πρόσθετες εδαφικές ωθήσεις λόγω επιφόρτισης είτε κατανεµηµένης µε άπειρο µήκος και πλάτος είτε λόγω σηµειακού φορτίου. Περισσότερες περιπτώσεις δίνονται από τους Γραµµατικόπουλο κ.α. (1994). Κατανεµηµένο φορτίο q q Σηµειακό φορτίο Q s Q Σταθερή τιµή οριζόντιας τάσης µετοβάθος σ q s Σταθερή τιµή οριζόντιας τάσης µετοβάθοςκάτω απόβάθος s σ Q Ενεργητική τάση σ = q α,q α Παθητική τάση σ = q p,q p Ενεργητική τάση Παθητική τάση σ Q Q = α,q α 4 s p,q p σ = 4 s

7 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός ωθήσεων σε τοίχο αντιστήριξης Ο υπολογισµός της ενεργητικής και της παθητικής ώθησης κατά Rankine είναι περισσότερο πολύπλοκος από τις απλές περιπτώσεις των προηγούµενων διαφανειών λόγω της ενδεχόµενης ταυτόχρονης: (α) ύπαρξης υπόγειου υδάτινου ορίζοντα (β) ύπαρξης διαφορετικών εδαφικών στρώσεων στο ύψος του τοίχου αντιστήριξης (γ) ύπαρξης επιφόρτισης στην επιφάνεια του εδάφους Η διαδικασία προσδιορισµού των ωθήσεων κατά Rankine µπορεί να περιγραφεί ως: 1) Υπολογισµός των κατακόρυφων ενεργών τάσεων λόγω ιδίου βάρους του εδάφους µετοβάθος ) Υπολογισµός των οριζόντιων τάσεων λόγω ιδίου βάρους του εδάφους µε το βάθος 3) Υπολογισµός των οριζόντιων υδροστατικών τάσεων µε το βάθος 4) Υπολογισµός των οριζόντιων τάσεων λόγω επιφόρτισης µε το βάθος 5) Προσδιορισµός της τιµής και θέσης εφαρµογής της οριζόντιας ώθησης για κάθε ένααπότα () (3) (4) ωςσυνισταµένητωναντίστοιχωνοριζόντιωντάσεων Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Εφαρµογή : Να σχεδιαστεί το διάγραµµα οριζόντιων ενεργητικών τάσεων κατά Rankine και η συνισταµένη ώθηση στον τοίχο αντιστήριξης του σχήµατος. Στη συνέχεια να υπολογιστεί ο συντελεστής ασφαλείας σε ανατροπή και ολίσθηση του τοίχου (απλοποιητικάγ=γ κορ, γ w =10kN/m³, γ σκυροδ =5kN/m³ ). Στηβάσηαδιαπέρατουλικό. Επίλυση : Η ενδεχόµενη ανατροπή του τοίχου θα ελεγχθεί ως προς το σηµείο Κ, όπου θα πρέπει η ροπή ευστάθειας να είναι µεγαλύτερηαπότηροπήανατροπής. Η δύναµη και η ροπή ευστάθειας οφείλονται στο ίδιο βάρος του τοίχου που δρα σταθεροποιητικά. Η δύναµη ολίσθησης και η ροπή ανατροπής οφείλονται στις ενεργητικές ωθήσεις του εδάφους (λόγω ιδίου βάρους, επιφόρτισης και υδροστατικών τάσεων). 5m 0.5m.5m 0kN/m² Χαλαρή άµµος γ=16kn/m², φ=30 Πυκνή άµµος γ=18kn/m², φ=40 0.0m -1.5m Το αδιαπέρατο υλικό στη βάση εµποδίζει την ανάπτυξη υποπιέσεων του νερού

8 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός των ενεργητικών ωθήσεων στο έδαφος (1) Υπολογίζονται οι κατακόρυφες ενεργές τάσεις λόγω του ιδίου βάρους εδάφους z = 1.5m σ = m = 4 3 uw = 0 = σ uw = 4kPa z = 5.0m σ = 16 kn 3 1.5m m = 87 m kn uw = m = 35kPa 3 m = σ uw = 5kPa () Υπολογίζονται οι οριζόντιες τάσεις του εδάφους λόγω ιδίου βάρους Χαλαρήάµµος (φ=30 ) Κ α = z = 0.0m σ = Κ α = = 0kPa z = 1.5m σ = Κ α = = 8.00kPa Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός των ενεργητικών ωθήσεων στο έδαφος () Υπολογίζονται οι οριζόντιες τάσεις του εδάφους λόγω ιδίου βάρους Πυκνήάµµος (φ=40 ) Κ α =0.174 z = 1.5m = Κ α = = 5.kPa (3) Υπολογίζονται οι οριζόντιες υδροστατικές τάσεις z = 5.0m σ = Κ α = = 11.30kPa Η τιµή και η κατανοµή των οριζόντιων υδροστατικών τάσεων µε το βάθος είναι όµοιες µε τις κατακόρυφες υδροαστατικές τάσεις (4) Υπολογίζονται οι οριζόντιες τάσεις λόγω επιφόρτισης Για επιφόρτιση οµοιόµορφο κατανεµηµένο φορτίο q=0kn/m² προκύπτουν οριζόντιες ενεργητικές τάσεις: Χαλαρή άµµος: Πυκνή άµµος: = Κ q = kPa = 6.67kPa α,q α,q α = Κ q = kPa= 4.35kPa α

9 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός των ενεργητικών ωθήσεων στο έδαφος 0kN/m² 0.0m P P q,1 α, kpa 6.67 kpa z 4kPa 4kPa -1.5m 5. kpa z w, P q,,3 G kpa 1 G = α v,o α,q 4.35 kpa 5kPa = σ u w u = γ z w P w 35kPa w w σ -5.0m 87kPa (5) Υπολογίζονται οι τιµές και οι θέσεις εφαρµογής των ενεργητικών ωθήσεων Ο υπολογισµός της τιµής και της θέσης εφαρµογής της κάθε ώθησης συχνά απαιτεί τη διάσπαση του διαγράµµατος τάσεων σε απλά σχήµατα (τρίγωνα και ορθογώνια) µε γνωστό κέντρο βάρους Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός των ενεργητικών ωθήσεων στο έδαφος (5) Υπολογίζονται οι τιµές και οι θέσεις εφαρµογής των ενεργητικών ωθήσεων Ενεργητική ώθηση εδάφους: 1 Pα,1 = m = 6.00 Θέσηεφαρµογήςτης,1 απότηβάσητουτοίχου: 1 1.5m 3.5m 4.00m 3 + = Pα, = m = 18.7 Θέσηεφαρµογήςτης, απότηβάσητουτοίχου: 1 3.5m 1.75m = 1 Pα,3 = ( ) 3.5 m = Θέσηεφαρµογήςτης,3 απότηβάσητουτοίχου: 1 3.5m 1.167m 3 =

10 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ Υπολογισµός των ενεργητικών ωθήσεων στο έδαφος (5) Υπολογίζονται οι τιµές και οι θέσεις εφαρµογής των ενεργητικών ωθήσεων Ώθηση λόγω υδροστατικών πιέσεων: 1 Pw = m = 61.5 Σηµείωση: οι µονάδες kn/m αναφέρονται σε δύναµη (kn) ανά µέτρο µήκους του τοίχου αντιστήριξης Θέσηεφαρµογήςτης P w απότηβάσητουτοίχου: Ώθηση λόγω επιφόρτισης q=0kn/m²: Pq,1 = m = Θέσηεφαρµογήςτης P q,1 απότηβάσητουτοίχου: Pq, = m = 15.3 Θέσηεφαρµογήςτης P q, απότηβάσητουτοίχου: 1 3.5m 1.167m 3 = 1 1.5m 3.5m 4.5m + = 1 3.5m 1.75m = Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.0 Υπολογισµός των δυνάµεων ευστάθειας Οι δυνάµεις ευστάθειας είναι το βάρος του τοίχου αντιστήριξης 1 G1 = A1 γσκυροδ = (.5 0.5m ) 5.0m 5 = Απόστασηεφαρµογήςτης G 1 απότοσηµείοκ: (.5 0.5m ) 1.333m 3 = G = A γσκυροδ = 0.5m 5.0m 5 = m Απόστασηεφαρµογήςτης G απότοσηµείοκ: (.5 0.5) m+ =.5 m

11 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.1 Υπολογισµός των ροπών ευστάθειας ως προς το Κ: knm Mευστ = G m+ G.5 m = m m = m Σηµείωση: οι µονάδες knm/m αναφέρονται σε ροπή (knm) ανά µέτρο µήκους του τοίχου αντιστήριξης Υπολογισµός των ροπών ανατροπής ως προς το Κ: Mανατρ = Pα,1 4.00m+ Pα, 1.75m+ Pα, m+ Pw 1.167m+ Pq,1 4.5m+ Pq, 1.75m Mανατρ = m m m m m m m + m knm Mανατρ = m Υπολογισµός συντελεστή ασφαλείας σε ανατροπή: M ευσταθ FSανατρ = = = 1.47 Μανατρ Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7. Υπολογισµός συντελεστή ασφαλείας σε ολίσθηση: υνάµεις ολίσθησης: Fολισθ = Pα,1 + Pα, + Pα,3 + Pw + Pq,1 + Pq, kn Fολισθ = = m υνάµεις ευστάθειας σε ολίσθηση: Ως δύναµη ευστάθειας σε ολίσθηση λειτουργεί η τριβή µεταξύ της βάσης του τοίχου και του εδάφους (πυκνή άµµος) που αναπτύσσεται λόγω του βάρους του τοίχου F ευσταθ kn = Gολ tanφ = ( ) tan40 = kN m Συντελεστής ασφαλείας σε ολίσθηση: F = = = ευσταθ FSολισθ 1.30 Fολισθ 11.40

12 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.3 Εφαρµογή : Να υπολογιστεί το βάθος έµπηξης της πασσαλοσανίδας του σχήµατος ώστε να εξασφαλιστεί η ισορροπία της σε στροφή γύρω από τη βάση (σηµείο Κ) (Μαραγκός, 009). Επίλυση : Το έδαφος τη στιγµή της αστοχίας (στροφή γύρω από το Κ) αναπτύσσει τόσο ενεργητικές όσο και παθητικές ωθήσεις Ενεργητικές ωθήσεις στο έδαφος αναπτύσσονται από την δεξιά πλευρά της πασσαλοσανίδας και τείνουν να την ανατρέψουνωςπροςτοσηµείοκ Παθητικές ωθήσεις στο έδαφος αναπτύσσονται από την αριστερά πλευρά της πασσαλοσανίδας και τείνουν να διατηρήσουν την ισορροπία ως προς το Κ 9.0m d Κ Άµµος γ=0kn/m³ φ=30 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.4 Ανάπτυξη ενεργητικών και παθητικών ωθήσεων Σχεδιάζεται το σκαρίφηµα µε την µετατόπιση της πασσαλοσανίδας και τα διαγράµµατα των αναπτυσσόµενων οριζόντιων τάσεων Υπολογισµός των ενεργητικών ωθήσεων στο έδαφος z = ( 9+ dm ) Άµµοςφ=30 Κ α = kn = α = 6.667( 9+ d) m = 0 3 ( 9+ dm ) = 0 ( 9+ d) Άµµος γ=0kn/m³ φ=30 9.0m d P α = 1 9+ d = d kn ( ) ( ) m Κ Θέσηεφαρµογήςτης απότοκ: ( ) 1 9 d m 3 +

13 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.5 Υπολογισµός των παθητικών ωθήσεων στο έδαφος z = dm = 0 dm = 0 d 3 Άµµοςφ=30 Κ p = kn = p = 60 d m Άµµος γ=0kn/m³ φ=30 9.0m P = 1 d = 1 60 d d = 30 d kn p ( ) m Προς την πλευρά της ασφαλείας θεωρείται πως η παθητική ώθηση (δύναµη ευστάθειας) δεν αναπτύσσεται µε την πλήρη τιµή της αλλά µε τα /3 τηςτιµήςτης. Κ d kn kn Pp = 30 d = 0 d 3 m m Θέσηεφαρµογήςτης απότοκ: 1 dm 3 Μάθηµα: Εδαφοµηχανική (3ο εξάµηνο) σελ. 7.6 Υπολογισµός απαιτούµενου βάθους έµπηξης d: Για να µην ανατραπεί η πασσαλοσανίδα γύρω από το σηµείο Κ θα πρέπει το άθροισµα των ροπών τωνωθήσεωνωςπροςκναείναιίσοµεµηδέν. 1 1 ΣΜΚ = 0 Pp d Pα ( 9+ d) = Άµµος γ=0kn/m³ φ=30 9.0m d d ( 9+ d) ( 9+ d) = ( ) d d = 0 d Από την επίλυση της παραπάνω εξίσωσης προκύπτει ότι d=11.0m Κ Συνεπώς θα πρέπει το µήκος έµπηξης d της πασσαλοσανίδας να είναι τουλάχιστο 11.0m ώστε να µην ανατραπεί λόγω των αναπτυσσόµενων εδαφικών ωθήσεων

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4

Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Τεχνολογικό Εκπαιδευτικό Ίδρυµα Σερρών Σχολή Τεχνολογικών Εφαρµογών Τµήµα Πολιτικών οµικών Έργων Θ Ε Μ Ε Λ Ι Ω Σ Ε Ι Σ ΚΕΦΑΛΑΙΟ 4 Βαθιές θεµελιώσεις ιδάσκων: Κίρτας Εµµανουήλ Σέρρες, Σεπτέµβριος 2010 1

Διαβάστε περισσότερα

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1

Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΕΝΕΡΓΗΤΙΚΩΝ ΩΘΗΣΕΩΝ ΚΑΤΑ RANKINE 2 ) ΚΙ=0,49 2 ) ΚΙΙ=0,589 ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΕΡΓΩΝ ΚΑΤΑΚΟΡΥΦΩΝ ΤΑΣΕΩΝ

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΩΝ ΕΝΕΡΓΗΤΙΚΩΝ ΩΘΗΣΕΩΝ ΚΑΤΑ RANKINE 2 ) ΚΙ=0,49 2 ) ΚΙΙ=0,589 ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΕΡΓΩΝ ΚΑΤΑΚΟΡΥΦΩΝ ΤΑΣΕΩΝ 1 Τ.Ε.Ι. ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ - 1/03/011 ΘΕΜΑ 1 ο a) Να προσδιοριστεί και να σχεδιαστεί η κατανομή των ενεργητικών ωθήσεων καθ'ύψος του τοίχου (γ w=1t/m 3 ) b) Να υπολογιστεί

Διαβάστε περισσότερα

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1

Γιώργος Μπουκοβάλας. Φεβρουάριος 2015. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 3. Ανάλυση & Σχεδιασμός ΕΥΚΑΜΠΤΩΝ ΑΝΤΙΣΤΗΡΙΞΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής

Διαβάστε περισσότερα

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6

Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών ομικών Έργων Ε Α Φ Ο Μ Η Χ Α Ν Ι Κ Η ΚΕΦΑΛΑΙΟ 6 Επιφανειακών Θεμελιώσεων ιδάσκων: Κίρτας Εμμανουήλ Σέρρες, Σεπτέμβριος

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 18-6-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 4.0) ίνεται

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τµήµα Πολιτικών οµικών Έργων Κατασκευές Οπλισµένου Σκυροδέµατος Ι Ασκήσεις ιδάσκων: Παναγόπουλος Γεώργιος Ονοµατεπώνυµο: Σέρρες 29-1-2010 Εξάµηνο Α Βαθµολογία: ΖΗΤΗΜΑ 1 ο (µονάδες 6.0) Στο

Διαβάστε περισσότερα

Μελέτη τοίχου ανιστήριξης

Μελέτη τοίχου ανιστήριξης FESPA 5.2.0.88-2012 LH Λογισμική Μελέτη τοίχου ανιστήριξης Σύμφωνα με τους Ευρωκώδικες Ο Μηχανικός Σχέδιο τοίχου αντιστήριξης 0 0.55 1.1 1.65 2.2 2.75 3.3 3.85 4.4 4.95 5.5 0 0.53 1.06 1.59 2.12 2.65 3.18

Διαβάστε περισσότερα

Στερεοποίηση των Αργίλων

Στερεοποίηση των Αργίλων Στερεοποίηση των Αργίλων Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 17 Λεπτά. 1 Τι είναι Στερεοποίηση ; Όταν μία κορεσμένη άργιλος φορτίζεται εξωτερικά, GL Στάθμη εδάφους κορεσμένη άργιλος το νερό συμπιέζεται

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ)

ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) Σχεδιασμός Θεμελιώσεων με Πασσάλους με βάση τον Ευρωκώδικα 7.1 Β. Παπαδόπουλος Τομέας Γεωτεχνικής ΕΜΠ ΘΕΜΕΛΙΩΣΕΙΣ ΜΕ ΠΑΣΣΑΛΟΥΣ ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (ΠΙΝΑΚΑΣ ΕΝΔΕΙΚΤΙΚΟΣ) ΑΣΤΟΧΙΑΣ Απώλεια συνολικής ευστάθειας

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο Β. ΜΑΡΙΝΟΣ, Επ. ΚΑΘ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, ΚΑΘ. Φεβρουάριος 2015 ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ

ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ ΠIΝΑΚΑΣ ΠΕΡIΕΧΟΜΕΝΩΝ Πρόλογος...13 Πίνακας κυριότερων συμβόλων...17 Εισαγωγή...25 ΚΕΦΑΛΑIΟ 1: Επιφανειακές θεμελιώσεις 33 1.1 Εισαγωγή...33 1.2 Διατάξεις Ευρωκώδικα ΕΝ 1997-1...35 1.3 Μεμονωμένα πέδιλα...39

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2

ΕΔΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 4. Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.2 ΕΔΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 4 Προσδιορισμός συνθηκών υπεδάφους Επιτόπου δοκιμές Είδη θεμελίωσης Εδαφομηχανική - Μαραγκός Ν. (2009) σελ. 4.1 Προσδιορισμός των συνθηκών υπεδάφους Με δειγματοληπτικές γεωτρήσεις

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. F 1 β. F 2 γ. F 3 δ. F 4 3. 2 Ένα σώμα δέχεται πολλές ομοεπίπεδες δυνάμεις. Τότε: α. οι ροπές

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Κατακόρυφος αρμός για όλο ή μέρος του τοίχου

Κατακόρυφος αρμός για όλο ή μέρος του τοίχου ΤΥΠΟΙ ΦΕΡΟΝΤΩΝ ΤΟΙΧΩΝ ΚΑΤΑ EC6 Μονόστρωτος τοίχος : τοίχος χωρίς ενδιάμεσο κενό ή συνεχή κατακόρυφο αρμό στο επίπεδό του. Δίστρωτος τοίχος : αποτελείται από 2 παράλληλες στρώσεις με αρμό μεταξύ τους (πάχους

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000

2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ ΧΩΡΙΚΟΥ ΚΤΙΡΙΑΚΟΥ ΦΟΡΕΑ ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ SAP-2000 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ ΚΑΙ ΥΝΑΜΙΚΗΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ 2 Η ΑΣΚΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗ

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ 1. Κατά την ηλέκτριση με τριβή μεταφέρονται από το ένα σώμα στο άλλο i. πρωτόνια. ii. ηλεκτρόνια iii iν. νετρόνια ιόντα. 2. Το σχήμα απεικονίζει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Περατότητα και Διήθηση διαμέσου των εδαφών

Περατότητα και Διήθηση διαμέσου των εδαφών Περατότητα και Διήθηση διαμέσου των εδαφών Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια = 17 λεπτά 1 Τι είναι Περατότητα των εδαφών? Ένα μέτρο για το πόσο εύκολα ένα ρευστό (π.χ., νερό) μπορεί να περάσει

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά - Ορισμός: Η αγορά ενός αγαθού είναι η διαδικασία (θεσμικό πλαίσιο) μέσω της οποίας έρχονται σε επικοινωνία οι αγοραστές και οι πωλητές του συγκεκριμένου

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΣΗΜΕΙΩΣΕΙΣ Ε ΑΦΟΜΗΧΑΝΙΚΗΣ Σύνταξη σηµειώσεων : Πλαστήρα Β. ΑΙΓΑΛΕΩ, 2010 2 3 ΠΡΟΛΟΓΟΣ Στις σηµειώσεις αυτές έχουν καταγραφεί θεµελιώδεις

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Εξαμήνου - Matlab

Προτεινόμενα Θέματα Εξαμήνου - Matlab ΕΘΝΙΚΟ ΜΕΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑ ΟΜΟΤΑΤΙΚΗ ΕΡΓΑΤΗΡΙΟ ΤΑΤΙΚΗ ΚΑΙ ΑΝΤΙΕΙΜΙΚΩΝ ΕΡΕΥΝΩΝ Ακαδ. Έτος: 2012-2013 Μάθημα: Εφαρμογές Ηλεκτρονικού Υπολογιστή Τρίτη, 27/11/2012 ιδάσκοντες:

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων

ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ II ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ ΜΕΛΕΤΗ ΚΑΤΑΣΚΕΥΗ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ βασική απαίτηση η επαρκής γνώση των επιμέρους στοιχείων - πληροφοριών σχετικά με: Φύση τεχνικά χαρακτηριστικά

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα

ADAPTOR. Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης. Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα ADAPTOR Λογισµικό Προσαρµογής του ETABS στις Απαιτήσεις της Ελληνικής Πράξης Εγχειρίδιο Επαλήθευσης για Μεµονωµένα Πέδιλα Version 1.0 Ιανουάριος 004 ΠΝΕΥΜΑΤΙΚΑ ΙΚΑΙΩΜΑΤΑ Το λογισµικό Adaptor και όλα τα

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΣΕΙΣ ΣΥΓΧΡΟΝΩΝ ΚΤΙΡΙΩΝ

ΘΕΜΕΛΙΩΣΕΙΣ ΣΥΓΧΡΟΝΩΝ ΚΤΙΡΙΩΝ ΘΕΜΕΛΙΩΣΕΙΣ ΣΥΓΧΡΟΝΩΝ ΚΤΙΡΙΩΝ Θεμελίωση είναι η βάση πάνω στην οποία κατασκευάζεται ένα κτίριο ή μία κατασκευή Είναιταβασικότεραμέρητουφέρονταοργανισμούενόςδομικούέργου γιατί μ αυτά επιτυγχάνεται η ασφαλής

Διαβάστε περισσότερα

Γεωτεχνική Διερεύνηση Υπεδάφους. Αφήγηση από: Δρ. Κώστα Σαχπάζη

Γεωτεχνική Διερεύνηση Υπεδάφους. Αφήγηση από: Δρ. Κώστα Σαχπάζη 1 Αυτή είναι μια προσπάθεια να δημιουργηθεί μια αυτοτελής ενότητα εκμάθησης στο γνωστικό αντικείμενο της Γεωτεχνικής Διερεύνησης του Υπεδάφους. Παρακαλώ «δέστε τις ζώνες σας». Καθίστε πίσω αναπαυτικά,

Διαβάστε περισσότερα

ΣΕΙΣΜΙΚΗ ΜΟΝΩΣΗ ΤΟΙΧΩΝ Ε ΑΦΙΚΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΜΕ ΓΕΩΑΦΡΟ ΙΟΓΚΩΜΕΝΗΣ ΠΟΛΥΣΤΕΡΙΝΗΣ ΠΑΡΑΜΕΤΡΙΚΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

ΣΕΙΣΜΙΚΗ ΜΟΝΩΣΗ ΤΟΙΧΩΝ Ε ΑΦΙΚΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΜΕ ΓΕΩΑΦΡΟ ΙΟΓΚΩΜΕΝΗΣ ΠΟΛΥΣΤΕΡΙΝΗΣ ΠΑΡΑΜΕΤΡΙΚΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΣΕΙΣΜΙΚΗ ΜΟΝΩΣΗ ΤΟΙΧΩΝ Ε ΑΦΙΚΗΣ ΑΝΤΙΣΤΗΡΙΞΗΣ ΜΕ ΓΕΩΑΦΡΟ ΙΟΓΚΩΜΕΝΗΣ ΠΟΛΥΣΤΕΡΙΝΗΣ ΠΑΡΑΜΕΤΡΙΚΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΤΡΙΒΗ ΓΙΑ

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

Εκπαιδευτικές σημειώσεις για το μάθημα:

Εκπαιδευτικές σημειώσεις για το μάθημα: ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εκπαιδευτικές σημειώσεις για το μάθημα: ΘΕΜΕΛΙΩΣΕΙΣ Γ. ΜΠΕΛΟΚΑΣ Δρ Πολιτικός

Διαβάστε περισσότερα

ΥΠΟΓΕΙΟ ΝΕΡΟ. Εισαγωγή - Ορισμοί

ΥΠΟΓΕΙΟ ΝΕΡΟ. Εισαγωγή - Ορισμοί ΥΠΟΓΕΙΟ ΝΕΡΟ Εισαγωγή - Ορισμοί Ως «υπόγειο νερό» ορίζεται το προερχόμενο από τη διήθηση νερού ατμοσφαιρικής προέλευσης, που πληροί τα δομικά κενά των γεωλογικών υλικών και μαζών κάτω από την επιφάνεια

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Χαράλαμπος Ζερβογιάννης Δρ. Πολιτικός Μηχανικός

Χαράλαμπος Ζερβογιάννης Δρ. Πολιτικός Μηχανικός EΡΓA ΑΝΤΙΣΤΗΡΙΞΗΣ Χαράλαμπος Ζερβογιάννης Δρ. Πολιτικός Μηχανικός EΡΓA ΑΝΤΙΣΤΗΡΙΞΗΣ ΣΕ ΑΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Απαραίτητες προϋποθέσεις για την ασφαλή κατασκευή ενός συστήματος αντιστήριξης: Γεωτεχνική έρευνα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης

Διαβάστε περισσότερα

Υπόγεια Υδραυλική. 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών

Υπόγεια Υδραυλική. 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών Υπόγεια Υδραυλική 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών Υδροδυναμική Ανάλυση Πηγών Η υδροδυναμική ανάλυση των πηγαίων εκφορτίσεων υπόγειου νερού αποτελεί, ασφαλώς, μια βασική μεθοδολογία υδρογεωλογικής

Διαβάστε περισσότερα

Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει.

Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει. ΚΕΦΑΛΑΙΟ 3 ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης 1. Τι είναι δύναμη; Δύναμη είναι η αιτία που μπορεί να προκαλέσει μεταβολή στην ταχύτητα ενός σώματος ή που μπορεί να το παραμορφώσει. 2. Ποια είναι τα χαρακτηριστικά

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5.

ΑΝΤΛΙΕΣ. 1.-Εισαγωγή-Γενικά. 2.-Χαρακτηριστικές καμπύλες. 3.-Επιλογή Αντλίας. 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη. 5. ΑΝΤΛΙΕΣ 1.-Εισαγωγή-Γενικά 2.-Χαρακτηριστικές καμπύλες 3.-Επιλογή Αντλίας 4.-Αντλίες σε σειρά και σε παράλληλη διάταξη 5.-Ειδική Ταχύτητα 1.-Εισαγωγή-Γενικά - Μετατροπή μηχανικής ενέργειας σε υδραυλική

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ III. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ III. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ III Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών (4) Αλλαγές μεταβολές του γεωϋλικού με το χρόνο Αποσάθρωση: αλλοίωση (συνήθως χημική) ορυκτών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Η Οδύσσεια μιας μπίλιας ή

Η Οδύσσεια μιας μπίλιας ή Η Οδύσσεια μιας μπίλιας ή ΠΩΣ ΘΑ ΚΙΝΗΘΕΙ MIA ΜΠΙΛΙΑ ΠΟΥ ΑΦΗΝΟΥΜΕ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ΚΑΙ ΜΕΑ ΣΥΝΕΧΙΖΕΙ ΣΕ ΟΡΙΖΟΝΙΟ ΕΠΊΠΕΔΟ ΚΑΙ ΕΠΙΣΡΕΦΕΙ A ϕ Στο σχήμα απεικονίζεται κεκλιμένο επίπεδο κλίσης φ=30 ο και

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs.

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs. Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός hp://www.perifysikhs.com Αναζητώντας την αιτία των κινήσεων Η µελέτη των κινήσεων,

Διαβάστε περισσότερα

ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ -

ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - Σχήµα 2.1: Τυπική µεταφορική ταινία Σχήµα 2.2α: Κοίλη µεταφορική ταινία Σχήµα 2.2β: Κυρτή µεταφορική ταινία Σχήµα 2.2γ: Οριζόντια

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ Σχολικό έτος 2012-2013 Πελόπιο, 23 Μαΐου 2013 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ ΘΕΜΑ

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

Συστήματα και Μέθοδοι Δόνησης

Συστήματα και Μέθοδοι Δόνησης ΠΩΣ ΝΑ ΕΠΙΛΕΞΕΤΕ ΗΛΕΚΤΡΟΔΟΝΗΤΗ ITALVIBRAS Συστήματα και Μέθοδοι Δόνησης Τα συστήματα στα οποία χρησιμοποιείται η δόνηση μπορούν να χωριστούν στις εξής κατηγορίες: Συστήματα ελεύθερης ταλάντωσης, τα οποία

Διαβάστε περισσότερα

Πίνακας 8.1 (από Hoek and Bray, 1977)

Πίνακας 8.1 (από Hoek and Bray, 1977) Κεφάλαιο 8: Βραχόµαζα και υπόγεια νερά 8.1 8. ΒΡΑΧΟΜΑΖΑ ΚΑΙ ΥΠΟΓΕΙΑ ΝΕΡΑ Τα πετρώµατα όταν αυτά είναι συµπαγή και δεν παρουσιάζουν πρωτογενή ή δευτερογενή κενά είναι αδιαπέρατα. Αντίθετα όταν παρουσιάζουν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Μοντελοποίηση (FEM) της δυναµικής συµπεριφοράς του κοπτικού εργαλείου κατά το φραιζάρισµα

Μοντελοποίηση (FEM) της δυναµικής συµπεριφοράς του κοπτικού εργαλείου κατά το φραιζάρισµα Μοντελοποίηση (FEM) της δυναµικής συµπεριφοράς του κοπτικού εργαλείου κατά το φραιζάρισµα Κατά την διάρκεια των κοπών η κοπτική ακµή καταπονείται οµοιόµορφα σε µήκος της επιφάνειας αποβλίττου ίσο µε το

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 7 Έργο και Ενέργεια Περιεχόµενα Κεφαλαίου 7 Το έργο σταθερής δύναµης Εσωτερικό Γινόµενο δύο διανυσµάτων Έργο µεταβλητής δύναµης Σχέση Ενέργειας και έργου 7-1 Το έργο σταθερής δύναµης Το έργο που

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Σχέδιο Ειδικότητας Αµαξωµάτων

Σχέδιο Ειδικότητας Αµαξωµάτων 89 ιδακτικοί στόχοι: Στο τέλος αυτής της διδακτικής ενότητας θα είσαι σε θέση: Να µπορείς να απεικονίζεις σε σκαρίφηµα τα κυριότερα µέρη των αµαξωµάτων. Να γνωρίζεις τη σειρά συναρµολόγησης των τµηµάτων

Διαβάστε περισσότερα

Παραδείγµατα καθηµερινότητας ΣΚΙΕΡΣ

Παραδείγµατα καθηµερινότητας ΣΚΙΕΡΣ 1 2 Παραδείγµατα καθηµερινότητας ΣΚΙΕΡΣ Σκιέρ : Ελαστικά τρακτέρ-φορτηγών : Καρφιά: Συµπεράσµατα: Εξάρτηση της πίεσης (P) από : I. Επιφάνεια επαφής (S-> αντιστρόφως ανάλογη) II. Μέγεθος της δύναµης (F->

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 Μάθηµα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα εξέτασης: Σάββατο, 4 Ιουνίου 2011 8:30 11:30

Διαβάστε περισσότερα

Εισαγωγή στην Γεωτεχνική Μηχανική

Εισαγωγή στην Γεωτεχνική Μηχανική Εισαγωγή στην Γεωτεχνική Μηχανική SIVA έδαφος Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 12 Λεπτά 1 Σύνηθες Γεωτεχνικό Έργο Γεω-Εργαστήριο ~ για δοκιμές Ιδιότητες εδάφους Γραφείο Μελετών ~ για σχεδιασμό

Διαβάστε περισσότερα