4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα"

Transcript

1 4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα Όταν όλες οι πλευρές και οι εσωτερικές γωνίες του πολύγωνου είναι ίσες, τότε λέγεται κανονικό πολύγωνο Κανονικά πολύγωνα με πολλαπλάσιο αριθμό πλευρών προκύπτουν, αν διχοτομήσουμε τις εσωτερικές γωνίες τους. Επειδή οι διχοτόμοι των γωνιών έχουν την ιδιότητα να διχοτομούν και τα αντίστοιχα τόξα, ο κύκλος χωρίζεται σε διπλάσιο αριθμό ίσων τμημάτων. Για παράδειγμα, από το τετράγωνο μπορεί να προκύψει οκτάγωνο, δεκαεξάγωνο, τριανταδυάγωνο κ.ο.κ 4.1 Κατασκευή τριγώνων Κατασκευή ισόπλευρου τριγώνου όταν είναι γνωστή η πλευρά του α. Έστω ευθύγραμμο τμήμα ΑΒ ίσο με την πλευρά του ζητούμενου τριγώνου β. Με κέντρα τα Α και Β και ακτίνα R ίση με ΑΒ γράφω τόξα που τέμνονται στο Γ. Το τρίγωνο ΑΒΓ είναι ισόπλευρο. Πρακτικά, η κατασκευή του ισόπλευρου τριγώνου γίνεται με τη χρήση του τριγώνου 60

2 4.1.2 Κατασκευή τριγώνου όταν είναι γνωστές οι πλευρές του Για την κατασκευή οποιουδήποτε τριγώνου. όταν είναι γνωστές οι πλευρές του (α, β, γ): α. ορίζω ευθύγραμμο τμήμα ίσο με τη μία πλευρά, και β. με κέντρα τα άκρα του και αντίστοιχες ακτίνες ίσες με τις δύο άλλες πλευρές γράφω τόξα που τέμνονται στο σημείο Γ. Το τρίγωνο ΑΒΓ είναι το ζητούμενο Κατασκευή ισοσκελούς τριγώνου με δεδομένες τις πλευρές α και β α. Χαράζω το ευθύγραμμο τμήμα ΑΒ ίσο με το β. β. Με κέντρα τα σημεία Α και Β και με ακτίνα ίση με το α, χαράζω δύο τόξα, τα οποία τέμνονται στο Γ. γ. Στη συνέχεια χαράζω τα ευθύγραμμα τμήματα ΓΑ και ΓΒ. Το τρίγωνο ΑΒΓ είναι το ζητούμενο ισοσκελές. Οι μέθοδοι που προτείνονται παρακάτω βασίζονται σε απλές γεωμετρικές κατασκευές. Αν ανακαλέσουμε γνώσεις από τη Γεωμετρία, θα διαπιστώσουμε ότι υπάρχουν και άλλοι τρόποι επίλυσης. Επίσης δεν πρέπει να ξεχνάμε ότι όπου αυτό είναι δυνατό (π.χ. τετράγωνο, εξάγωνο, οκτάγωνο), απλούστερη αλλά όχι τόσο ακριβής κατασκευή γίνεται με τη χρήση χάρακα και τριγώνου 4.2 Κατασκευή τετραγώνου Α τρόπος α. Χαράζω το ευθύγραμμο τμήμα ΑΒ ίσο με α. β. Με την βοήθεια τριγώνου και ταυ χαράζω δύο ημιευθείες, οι οποίες να έχουν ως αρχή τα σημεία Α και Β, και να είναι κάθετες στο ΑΒ. γ. Στη συνέχεια με τρίγωνο και ταυ, χαράζω τις δύο διαγώνιες του τετραγώνου, οι οποίες τέμνουν τις προηγούμενες ημιευθείες, στα σημεία Γ και Δ. δ. Κατόπιν χαράζω το ευθύγραμμο τμήμα ΓΔ. Το σχήμα ΑΒΓΔ είναι το ζητούμενο τετράγωνο. Β τρόπος α. Δίδεται κύκλος με ακτίνα R. β. Φέρω δύο διαμέτρους ΑΓ και ΒΔ κάθετες μεταξύ τους. Τα σημεία τομής με τον κύκλο είναι και κορυφές του τετραγώνου.

3 4.3 Κατασκευή κανονικού πενταγώνου Κανονικο πεντάγωνο εγγεγραμμένο σε κύκλο α Δίδεται κύκλος με ακτίνα R. β. Φέρω τη διάμετρο ΑΒ και την κάθετη σ'αυτήν ΓΟ. γ. Βρίσκω το μέσον Μ της ΟΒ και με κέντρο αυτό και ακτίνα r1, ίση με ΜΓ, γράφω τόξο, που τέμνει την ΑΒ στο Ν. Η ΓΝ είναι ίση με την πλευρά του πενταγώνου δ. Με κέντρο το Γ και ακτίνα r2 ίση με ΓΝ γράφω τόξο, που τέμνει τον κύκλο στα Δ και Ε. ε. Χωρίζω τον κύκλο σε 5 τόξα, που το καθένα αντιστοιχεί σε χορδή ίση με ΓΔ=ΓΕ, ίση με την πλευρά α5 του πενταγώνου. Τα σημεία τομής με τον κύκλο είναι και κορυφές του κανονικού πενταγώνου Κανονικο πεντάγωνο με γνωστή πλευρά α. Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με την δοθείσα πλευρά β. Με κέντρα τα σημεία Α και Β και ακτίνα R=AB =πλευρά χαράζουμε κύκλους που τέμνονται στα σημεία Γ και Δ γ. Ενώνουμε τα σημεία Γ και Δ δ. Με κέντρο το σημείο Δ και ακτίνα R=AB =πλευρά χαράζουμε κύκλο ο οποίος τέμνει τους δύο προηγούμενους στα σημεία Ε και Ζ και το ευθύγραμμο τμήμα ΓΔ στο Ο ε. Ενώνουμε τα σημεία Ε και Ζ με το Ο και στ. Προεκτείνουμε τις ευθείες μέχρι να συναντήσουν τους κύκλους στα σημεία Η και Θ ζ. Με κέντρο τα σημεία Η και Θ και ακτίνα R=AB =πλευρά χαράζουμε τόξα τα οπόια τέμνονται στο Κ. Ενώνοντας τα σημεία Β, Θ, Κ, Η, Α σχηματίζεται το πεντάγονο 4.4 Κατασκευή κανονικού εξαγώνου (με δοσμένο μήκος πλευράς) Α τρόπος α. Δίδεται κύκλος με ακτίνα R. β. Ξεκινώντας από σημείο Α του κύκλου και με άνοιγμα διαβήτη ίσο με την ακτίνα R χαράζω 6 διαδοχικά ίσα τόξα. Εκεί όπου τέμνουν τον κύκλο βρίσκονται οι κορυφές του κανονικού εξαγώ νου

4 Β τρόπος α. Χαράζουμε κύκλο με ακτίνα το μήκος της πλευράς α. β. Στη συνέχεια χαράζουμε την διάμετρο ΑΟΒ. γ. Με την βοήθεια του τριγώνου 30ο 90ο 60ο, συμπληρώνουμε την κατασκευή όπως φαίνεται στο εικονιζόμενο σχήμα. 4.5 Κατασκευή οποιουδήποτε κανονικού πολυγώνου όταν γνωρίζω τον αριθμό των πλευρών του Παράδειγμα: Έστω ότι ζητώ να χαράξω κανονικό επτάγωνο α Δίδεται κύκλος με ακτίνα R. β. Φέρω διάμετρο ΑΒ και τη διαιρώ σε επτά ίσα τμήματα. γ. Με ακτίνα r ίση με τη διάμετρο και με κέντρα τα σημεία Α και Β γράφω τόξα, που τέμνονται στο Γ. Στη συνέχεια, φέρω ευθεία, που περνά από το Γ και από το δεύτερο σημείο διαίρεσης της διαμέτρου ΑΒ, μέχρι να τμήσει τον κύκλο στο σημείο Δ. δ. Η ΑΔ είναι η πλευρά α7 του ζητούμε νου κανονικού επταγώνου. Με άνοιγμα διαβήτη ίσο με α7 χωρίζω τον κύκλο σε επτά διαδοχικά τόξα. Τα σημεία τομής τους με τον κύκλο είναι οι κορυ φές του επταγώνου. Με τον ίδιο τρόπο, μπορώ να κατασκευάσω οποιοδήποτε άλλο κανονικό πολύγωνο.

5 5. Κύκλοι και τόξα Κύκλος είναι όλα τα σημεία ενός επιπέδου, που ισαπέχουν από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό αυτό σημείο λέγεται κέντρο του κύκλου. Το εσωτερικό του κύκλου λέγεται κυκλικός δίσκος. Χορδή του κύκλου είναι το ευθύγραμμο τμήμα που ενώνει δύο σημεία του. Η χορδή του κύκλου που περνάει από το κέντρο του, λέγεται διάμετρος του κύκλου. Τόξο είναι κάθε τμήμα του κύκλου (κυκλικό τόξο) ή άλλης καμπύλης γραμμής. Εφαπτομένη είναι η ευθεία που περνά από ένα συγκεκριμένο σημείο του κύκλου και είναι κάθετη στην ακτίνα του κύκλου που περνά από το σημείο αυτό. 5.1 Κατασκευή κύκλου που περνά από τρία δοσμένα σημεία. Εύρεση του κέντρου ενός κύκλου. α. Δίδονται τρία σημεία Α, Β και Γ β. Φέρω τις μεσοκαθέτους των ευθυ γραμμων τμημάτων ΑΒ και ΑΓ που τέμνονται στο Ο. γ. Με κέντρο το Ο και ακτίνα ίση με OA ή ΟΒ γράφω το ζητούμενο κύκλο. Αν δίνεται ο κύκλος και ζητώ το κέντρο του, αφού πάρω τρία τυχαία σημεία Α, Β, Γ πάνω στον κύκλο, εφαρμόζω την παραπάνω μέθοδο. 5.2 Κατασκευή εφαπτομένης ευθείας σε κύκλο ή σε τόξο που περνά από σημείο Α Όταν το σημείο Α βρίσκεται πάνω στον κύκλο αρκεί να φέρω την αντίστοιχη ακτίνα του κύκλου που περνά από το Α και στη συνέχεια να χαράξω κάθετη στην ακτίνα αυτή στο σημείο Α

6 5.2.2 Όταν το σημείο Α βρίσκεται έξω από τον κύκλο α. Δίδεται κύκλος και σημείο Α εκτός αυτού. β. Ενώνω το σημείο Α με το κέντρο Ο του κύκλου και φέρω την μεσοκάθετη του OA, που περνά από το σημείο Μ. γ. Με κέντρο το Μ και ακτίνα r ίση με ΟΜ κατασκευάζω κύκλο, που τέμνει τη δοσμένη στα σημεία Γ και Β. Οι ευθείες ΑΓ και ΑΒ εφάπτονται στον κύκλο. οι δύο παραπάνω κατασκευές μπορούν να γίνουν απλούστερα με τη χρήση χάρακα και τριγώνου 5.3 Κατασκευή κυκλικού τόξου (ή κύκλου) Κατασκευή κυκλικού τόξου ή κύκλου που εφάπτεται σε συγκεκριμένο σημείο δοσμένης ευθείας α. Δίδεται η ευθεία (ε), σημείο Α πάνω σ'αυτήν και η ακτίνα R του ζητούμενου τόξου β. Φέρω κάθετη στην (ε) στο σημείο Α και παίρνω πάνω της τμήμα AO ίσο με την ακτίνα R. Με κέντρο το Ο και ακτίνα R γράφω κύκλο ή τόξο.

7 5.3.2 Κατασκευή κυκλικού τόξου ή κύκλου που εφάπτεται σε ευθεία και περνά από σημείο εκτός αυτής α. Δίδεται το σημείο Α, η ευθεία (ε) και η ακτίνα R του ζητούμενου τόξου β. Με κέντρο το Α και ακτίνα R γράφω τόξο (χ) γ. Φέρω ευθεία (ε') παράλληλη στην (ε) σε απόσταση R, η οποία τέμνει το τόξο (χ) στο σημείο Ο δ.με κέντρο το Ο και ακτίνα R γράφω το ζητούμενο τόξο Κατασκευή κυκλικού τόξου ή κύκλου που εφάπτεται σε κύκλο και περνά από συγκεκριμένο σημείο εκτός αυτού α. Δίδεται κύκλος Ο με ακτίνα r, το σημείο Α και η ακτίνα R του ζητούμενου τόξου β. Γράφω τόξο (x) με κέντρο το Α και ακτίνα R γ. Γράφω τόξο (x') στο σημείο Ο' δ. Με κέντρο το Ο' και ακτίνα R κατασκευάζω το ζητούμενο τόξο Κατασκευή κυκλικού τόξου ή κύκλου που εφάπτεται σε δύο κύκλους α. Δίδεται ο κύκλος 01 με ακτίνα r1, ο κύκλος 02 με ακτίνα r2 και η ακτίνα R του ζητού μενου τόξου. β. Με κέντρο το 01 και ακτίνα r1 + R γράφω τόξο (x1) και γ. με κέντρο το 02 και ακτίνα r2 + R γράφω τόξο (x2), που τέμνει το x1 στο Ο. γ. Με κέντρο το Ο και ακτίνα R κατασκευάζω το ζητούμενο τόξο.

8 5.3.5 Χάραξη κυματίου όρθιου Η χάραξη κυματίου όρθιου, στηρίζεται στην χάραξη δύο κύκλων με διαφορετικές ακτίνες και μετατοπισμένα κέντρα. α. Χαράζω τους κατακόρυφους άξονες των δύο κύκλων, που είναι μετατοπισμένοι κατά μία απόσταση χ. β. Χαράζω τον μεγάλο κύκλο με κέντρο Μ και ακτίνα R1. γ. Για να βρω το κέντρο του δευτέρου κύκλου, μετράω από το κέντρο Μ απόσταση, ίση με το άθροισμα των δύο ακτινών (R1+R2), και εκεί που τέμνει τον κατακόρυφο άξονα του δεύτερου κύκλου, είναι το κέντρο του δεύτερου κύκλου (Λ). δ. Χαράζω τον κύκλο με κέντρο Λ και ακτίνα R2. ε. Ενώνω στη συνέχεια τα κέντρα των δύο κύκλων (ΜΛ). Επάνω στην ΜΛ, βρίσκεται η αλλαγή των καταλήξεων των τόξων. Κατόπιν χαράζουμε και το υπόλοιπο κυμάτιο κυμάτιο όρθιο κυμάτιο κείμενο Χάραξη κυματίου κείμενου Η χάραξη κυματίου κείμενου στηρίζεται, στην χάραξη δύο κύκλων με διαφορετικές ακτίνες αλλά με κέντρα επάνω στον ίδιο κατακόρυφο άξονα. Η απόσταση των κέντρων είναι το άθροισμα των ακτινών R1 και R2. Επάνω στον ίδιο άξονα των κέντρων, βρίσκεται η αλλαγή των καταλήξεων των τόξων. Το κυμάτιο χαράζεται όπως και το προηγούμενο. (5.3.6) Κατασκευή κυκλικού τόξου ή κύκλου που εφάπτεται σε κύκλο και σε ευθύγραμμο τμήμα α. Δίδεται το ευθύγραμμο τμήμα ΑΒ, κύκλος Ο, με ακτίνα r και η ακτίνα R του ζητούμε νου τόξου. β. Φέρω την ευθεία (ε) παράλληλη στην ΑΒ. σε απόσταση R από αυτήν, γ. Γράφω τόξο (χ), με κέντρο το 01 και ακτίνα r4 R, που τέμνει την (ε) στο Ο. Με κέντρο το Ο και ακτίνα R κατασκευάζω το ζητούμενο τόξο.

9 5.3.8 Κατασκευή κυκλικού τόξου ή κύκλου που εφάπτεται σε δύο μη παράλληλες ευθείες α. Δίδονται οι ευθείες (ε) και (ε') και η ακτίνα R του ζητούμενου τόξου β. Φέρω τις ευθείες (x) και (x') παράλληλες αντίστοιχα προς τις (ε) και (ε'), σε απόσταση R από αυτές. Το σημείο τομής τους Ο είναι και το κέντρο του ζητούμενου τόξου. Με τον ίδιο τρόπο μπορούμε να χαράξουμε τόξο εγγεγραμμένο σε αμβλεία γωνία Κατασκευή τόξου εγγεγραμμένου σε ορθή γωνία Α ΤΡΟΠΟΣ Έστω η ορθή γωνία ΒΑΓ. Με κέντρο το Α και ακτίνα την δοθείσα α, χαράζω τόξο, το οποίο τέμνει τις πλευρές ΒΑ και ΑΓ της γωνίας αντίστοιχα στα σημεία Κ και Λ. Με κέντρα Κ και Λ και την ίδια ακτίνα α, χαράζω δύο νέα τόξα, τα οποία τέμνονται στο σημείο Ο. Με κέντρο το Ο και ακτίνα την ίδια, χαράζω το τόξο ΚΛ, το οποίο είναι το ζητούμενο. Β ΤΡΟΠΟΣ Έστω η ορθή γωνία ΒΑΓ. Χαράζω παράλληλες προς τις πλευρές της γωνίας ΒΑ και ΑΓ, και σε απόσταση όσο η ακτίνα. Το σημείο Ο που τέμνονται είναι το κέντρο καμπυλότητας. Με κέντρο το Ο και ακτίνα την α χαράζω την καμπυλότητα

10 Α. Κατασκευή κυκλικού τόξου κύκλου που εφάπτεται σε δύο παράλληλες ευθείες α. Δίδονται οι ευθείες (ε) και (ε') παράλληλες μεταξύ τους. β. Φέρω παράλληλη ευθεία (χ) προς τις (ε) και (ε'), που ισαπέχει από αυτές. Το κέντρο του ζητούμενου τόξου βρίσκεται πάνω στην (χ). Β. Κατασκευή κυκλικού τόξου α. Χαράζουμε ευθ. τμήμα ΑΒ β. Βρίσκουμε το μέσο της ΑΒ, που είναι το Λ. γ. Με κέντρο το Λ και ακτίνα R= ΛΑ χαράζουμε τόξο που είναι το ζητούμενο κυκλικό τόξο Χάραξη συμπιεσμένου κυκλικού τόξου α. Χαράζουμε ευθ. τμήμα ΑΒ β. Βρίσκουμε το μέσο της ΑΒ και χαράζουμε κατακόρυφη που διέρχεται από το ζητούμενο κέντρο του τόξου ( Μ) γ. Στη συνέχεια επάνω σ αυτή ορίζουμε το ύψος h του βέλους, που δεν μπορεί να είναι μεγαλύτερο από το ύψος του κυκλικού τόξου. Είναι το σημείο Γ δ. ενώνω το ΑΓ και ΒΓ. ε. Χαράζουμε τις μεσοκαθέτους των ΑΓ & ΒΓ, οι οποίες τέμνονται στο σημείο Μ. στ. Με κέντρο το Μ και ακτίνα ΜΓ, (R) χαράζουμε τόξο, το οποίο είναι το ζητούμενο συμπιεσμένο κυκλικό τόξο. συμπιεσμένο κυκλικό τόξο

11 Χάραξη γοτθικού τόξου α. Χαράζουμε ευθ. τμήμα ΑΒ β. Με κέντρο το Α και ακτίνα το ΑΒ,( R ) χαράζουμε τόξο γ. Με κέντρο το Β και ακτίνα το ΒΑ,(R) χαράζουμε τόξο, το οποίο τέμνει το προηγούμενο τόξο στο σημείο Γ Αυτό είναι το ζητούμενο γοτθικό τόξο. Το ύψος h του βέλους θα είναι πάντα ανάλογο με το άνοιγμα του τόξου, (ΑΒ), και πάντα θα σχηματίζεται ένα ισόπλευρο τρίγωνο, με την σύνδεση των σημείων ΑΓ και ΒΓ Χάραξη πιεσμένου γοτθικού τόξου α. Χαράζουμε ευθ. τμήμα ΑΒ β. Χαράζουμε την μεσοκάθετο του ΑΒ γοτθικό τόξο γ. Πάνω στην μεσοκάθετο ορίζουμε το ύψος h του τόξου, που πρέπει να είναι μικρότερο από το άνοιγμα του τόξου, αλλά μεγαλύτερο από το μισό άνοιγμα δ. Ορίζουμε έτσι το σημείο Γ επάνω στη μεσοκάθετο του ευθ. τμήματος ΑΒ ε. Χαράζουμε τα ευθύγραμμα τμήματα ΑΓ και ΒΓ στ. στη συνέχεια χαράζουμε τις μεσοκαθέτους των ΑΓ και ΑΒ, οι οποίες τέμνουν το ΑΒ στα σημεία Μ1 & Μ2. ζ. Με κέντρο το Μ1 και ακτίνα το Μ1Β, (R1) χαράζουμε τόξο. Με κέντρο το Μ2 και ακτίνα την Μ2Α, (R2) χαράζουμε τόξο, και έτσι σχηματίζεται το ζητούμενο τόξο. πιεσμένο γοτθικό τόξο

12 Χάραξη καλαθοειδούς τόξου από τρία σημεία α. Χαράζουμε ευθ. τμήμα ΑΒ γ. Επάνω στην μεσοκάθετο ορίζουμε το ύψος ΕΜ=h του βέλους. δ. Χαράζουμε τις ΕΑ και ΕΒ ε. Στη συνέχεια βρίσκουμε τη διαφορά α με την βοήθεια του διαβήτη και σημειώνουμε την διαφορά α πάνω στις ΕΑ και ΕΒ ώστε να προκύπτουν τα σημεία Γ και Δ αντίστοιχα. ζ. Χαράζουμε τις μεσοκαθέτους των ΑΓ και ΒΔ και προκύπτουν τα σημεία Μ2, Μ3 επάνω στο ΑΒ και το σημείο τομής τους Μ1. η. Με κέντρο το Μ2 και ακτίνα το Μ2Α (R2), χαράζουμε τόξο, από το Α μέχρι την προέκταση της Μ1Μ2. θ. Με κέντρο το Μ3 και ακτίνα το Μ3Β ( R3 ), Χαράζουμε τόξο, από το Β μέχρι την προέκταση του Μ1 Μ3. ι. Τέλος με κέντρο το Μ1 και ακτίνα την Μ1Ε ( R1 ), χαράζουμε τόξο, από την προέκταση του Μ1Μ3 μέχρι την προέκταση του Μ1Μ2, το οποίο θα διέρχεται και από το Ε. Έτσι χαράζουμε το ζητούμενο καλαθοειδές τόξο Χάραξη αψιδωτού τόξου α. Χαράζουμε ευθ. τμήμα ΑΒ Καλαθοειδές τόξο β. Χωρίζουμε το ΑΒ σε τέσσερα ίσα μέρη, και παίρνουμε τα σημεία Μ1 & Μ2. γ. Χαράζουμε τρεις φορές το 1/4 κάτω από το ΑΒ, και παίρνουμε τα σημεία Μ3 & Μ4. δ. ενώνουμε το Μ1 με το Μ3, και το Μ2 με το Μ4. ε. Με κέντρο το Μ1 και ακτίνα την Μ1Α (R1), χαράζουμε τόξο από το Α μέχρι την προέκταση της Μ3Μ1. στ. Με κέντρο το Μ2 και ακτίνα την Μ2Β (R2) χαράζουμε τόξο, από το Β μέχρι την προέκταση της Μ4Μ2. ζ. Με κέντρο το Μ3 και ακτίνα την R3, χαράζουμε τόξο από την προέκταση της Μ3Μ1 μέχρι την προέκταση της μεσοκαθέτου του ΑΒ η. Με κέντρο το Μ4 και ακτίνα την R4, χαράζουμε τόξο από την προέκταση της Μ4Μ2, μέχρι την προέκταση της μεσοκαθέτου του ΑΒ. Αυτό είναι το ζητούμενο αψιδωτό τόξο. αψιδωτό τόξο

13 Χάραξη κυματιοειδούς τόξου α. Χαράζουμε ευθ. τμήμα ΑΒ β. Χαράζουμε την μεσοκάθετο του ΑΒ γ. Επάνω στη μεσοκάθετο ορίζω το ύψος Γ του βέλους δ. φέρνω παράλληλη προς το ΑΒ που να διέρχεται απ το σημείο Γ ε. φέρνω τις ΑΓ και ΒΓ και βρ λισκβ τα μέσα τουε Δ και Ε αντίστοιχα στ. Χαράζω τις μεσοκαθέτους των ΑΔ, ΔΓ, ΓΕ, ΕΒ που δημιούργησα, και έτσι παίρνω τα σημεία Μ1, Μ2, Μ3 που τα χρησιμοποιώ σαν κέντρα για την χάραξη του κυματιοειδούς τόξου ζ. Με κέντρο το Μ1 και ακτίνα την Μ1Γ ή (R1), χαράζω το πρώτο τόξο από το Δ μέχρι το Ε. η. Με κέντρο το Μ2 και ακτίνα την Μ2Α ή (R2), χαράζω τόξο από το Α μέχρι το Δ. θ. Και τέλος με κέντρο το Μ3 και ακτίνα την Μ3Β ή (R3), χαράζω τόξο από το Β μέχρι το Ε. κυματιοειδές τόξο

14 6. Έλλειψη Η έλλειψη είναι η ορθή προβολή του κύκλου όταν το επίπεδο του δεν είναι παράλληλο ή κάθετο με το επίπεδο προβολής. Πιο απλά, έλλειψη βλέπουμε, αν κοιτάξουμε υπό κλίση έναν κύκλο. Η έλλειψη είναι μια καμπύλη γραμμή που προκύπτει από την τομή ορθού κυκλικού κώνου και επιπέδου το οποίο σχηματίζει οξεία γωνία με τον κύριο άξονά του και δεν τέμνει τη βάση του Η έλλειψη έχει δύο άξονες συμμετρίας κάθετους μεταξύ τους το μεγάλο που λέγε ται κύριος άξονας και το μικρό που λέγεται δευτερεύων. Έχει επίσης δύο εστίες Μπορούμε να κατασκευάσουμε μία έλλειψη, αν γνωρίζουμε κάποια στοιχεία της συνήθως τους δύο άξονές Υπάρχουν πολλοί τρόποι κατασκευής.

15 6.1 Χάραξη έλλειψης όταν δίδονται οι άξονες της Α ΤΡΟΠΟΣ α. Δίδονται οι άξονες ΑΒ και ΓΔ. β. Κατασκευάζω ορθογώνιο παραλληλόγραμμο ΕΘΗΖ με διαμέσους τις ΑΒ και ΓΔ. γ. Χωρίζω την AO και την ΑΕ σε ίδιο αριθμό ίσων τμημάτων. δ. Φέρω την Δ1 έως ότου τμήσει την Γ1', την ΔΖ έως ότου τμήσει την Γ2' κ.ο.κ. Τα σημεία τομής των ευθειών αποτελούν και σημεία της έλλειψης την οποία χαράσσω με τη βοήθεια καμπυλόγραμμου. Β ΤΡΟΠΟΣ α. Μας δίδονται ο μικρός άξονα ΔΓ και ο μεγάλος άξονας ΑΒ. β. Με διαμέτρους τους άξονες που μας έδωσαν, χαράζω δύο ομόκεντρους κύκλους. γ. Χαράζω πολλές διαμέτρους δια μέσου του κέντρου των κύκλων. Μία από αυτές τέμνει στο Ε και Ζ τους κύκλους. δ. Από το Ε χαράσσεται παράλληλη προς τον μεγάλο άξονα και από το Ζ παράλληλη προς τον μικρό. Το σημείο τομής των είναι σημείο της ελλείψεως. Το ίδιο κάνουμε και με τις άλλες διαμέτρους.

16 6.2 Χάραξη οβάλ με δύο κύκλους α. Σχεδιάζω δύο κύκλους με την ίδια ακτίνα και με τέτοιο τρόπο, ώστε κάθε φορά να τέμνονται κέντρα και κύκλος. β. Οι συνδετικές ευθείες των σημείων τομής των κύκλων με κέντρα Κ και Λ, δίνουν τα σημεια Μ και Ν, που είναι τα κέντρα για τα πεπλατυσμένα στοιχεία των τόξων και τα εναλλασσόμενα σημεία των οβάλ τόξων. γ. Στη συνέχεια χαράζω τις ΚΜ, ΚΝ, ΛΜ, ΛΝ. δ. Με κέντρο το Κ και ακτίνα την R (ΚΜ), χαράζω τόξο από το σημείο Α ( σημειοπ τομής με την προέκταση της ευθείας ΚΝ) μέχρι το σημείο Χ (σημείο τομής με την προέκταση της ευθείας ΚΜ. ε. Με κέντρο το Λ και ακτίνα την ίδια, χαράζω τόξο από το σημείο Β (σημείο τομής με την προέκταση της ευθείας ΛΝ) μέχρι του σημείου Ψ (σημείο τομής με την προέκταση της ευθείας ΛΜ). στ. Με κέντρο το Μ και ακτίνα την R3 (ΜΧ), χαράζω τόξο από το σημείο Χ (σημείο τομής με την προέκταση της ευθείας ΜΚ) μέχρι το σημείο Ψ (σημείο τομής με την προέκταση της ευθείας ΜΛ). ζ. Τέλος με κέντρο το Ν και ακτίνα την ίδια χαράζω τόξο από το σημείο Α (σημείο τομής με την προέκταση της ευθείας ΝΚ), μέχρι του σημείου Β (σημείο τομής με την προέκταση της ευθείας ΝΛ). Η παραπάνω κατασκευή έγινε με τέσσερα διαφορετικά στοιχεία τόξων Α Β Ψ Χ Χ Ψ Χάραξη οβάλ χάραξη ωοειδούς καμπύλης 6.3 Xάραξη ωοειδούς καμπύλης α. Χαράζουμε κύκλο με κέντρο Μ1 και δοσμένη ακτίνα R. β. Φέρνω τον κατακόρυφο και οριζόντιο άξονα. Τα σημεία τομής των αξόνων με την περιφέρεια μας δίνουν τα σημεία Μ2, Μ3 και Μ4. γ. Χαράζω τις ευθείες Μ2Μ4 και Μ3Μ4 που μας δίνουν τα εναλλασσόμενα σημεία των τοξοειδών στοιχείων. δ. Με κέντρο το Μ1 και ακτίνα την δοσμένη R, χαράζω τόξο από το Μ3 μέχρι το Μ2. ε. Με κέντρο το Μ2 και ακτίνα την Μ2Μ3 =2 R, χαράζω τόξο από το Μ3 μέχρι το Χ (στην προέκταση της Μ2Μ4). στ. Με κέντρο το Μ3 και ακτίνα την Μ3Μ2=2 R, χαράζω τόξο από το Μ2 μέχρι την Ψ (στην προέκταση της Μ3Μ4). ζ. Τέλος με κέντρο το Μ4 και ακτίνα την R4 =Μ4Χ=ΜΑΨ, χαράζω τόξο από το σημείο Χ μέχρι το Ψ Το ωοειδές που χαράχτηκε είναι το ζητούμενο.

17 6.4 ΚΑΤΑΣΚΕΥΗ ΚΥΛΟΥ ΣΕ ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΒΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΕΛΕΙΨΗΣ

18 7. ΑΣΚΗΣΕΙΣ 1. Σχεδιάστε το παρακάτω διακοσμητικό μοτίβο ΣΧΕΔΙΑΣΤΙΚΑ ΒΗΜΑΤΑ:

19 2. Σχεδιάστε το παρακάτω διακοσμητικό μοτίβο ΣΧΕΔΙΑΣΤΙΚΑ ΒΗΜΑΤΑ: ΤΟ ΙΔΙΟ ΜΟΤΙΒΟ ΣΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΕΚΔΟΧΕΣ ΑΝΑΛΟΓΑ ΜΕ ΤΑ ΣΧΗΜΑΤΑ ΠΟΥ ΕΠΙΛΕΓΟΥΜΕ ΝΑ ΔΙΑΓΡΑΜΜΙΣΟΥΜΕ

20 Σημειώσεις για το μάθημα "Γραμμικό Σχέδιο" ΙΕΚ Σπάρτης ( ) Τμήμα : Συντήρηση Έργων Τέχνης και Αρχαιοτήτων Μαρούλη Ευαγγελία, Αρχιτέκτων Μηχανικός Κουλογεωργίου Μαρία, Αρχιτέκτων Μηχανικός Βιβλιογραφία: «Γραμμικό Σχέδιο, Β τάξη Γενικού Λυκείου», Αλέκα Μονεμβασίτου, Γεώργιος Παυλίδης, Άννα Παυλίδου, Οργανισμός Εκδόσεως Διδακτικών Βιβλίων «Γραμμικό Σχέδιο 1, για υποψηφίους Αρχιτέκτονες και φοιτητές πολυτεχνείου», Παυλίδης Ιορδάνης, Εκδόσεις Ζήτη. «Γραμμικό Σχέδιο, Παραδόσεις για τις Τεχνικές σχεδιάσεις» Ελένη Κ. Άγα, Επίκουρη Καθηγήτρια Ε.Μ.Π. «Τεχνικό Σχέδιο, Β τάξη Γενικού Λυκείου, Τεχνολογική Κατεύθυνση» Ευάγγελος Γράψας, Αριστείδης Δασκαλάκης, Ιωάννης Καραβέλης, Σωτηρία Λαζάρου και Θρασύβουλος Σκίπης. Οργανισμός Εκδόσεως Διδακτικών Βιβλίων «Τεχνικό Κατασκευαστικό σχέδιο Ι, Σημειώσεις Θεωρίας και Σημειώσεις Εργαστηρίων», Τ.Ε.Ι. Λάρισας, Γεώργιος Κολλάτος, Καθηγητής εφαρμογών, Καρδίτσα 2004

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι

ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms. Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες. ΚΕΦΛΙΟ ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ Κανονικά Πολύγωνα. Να δοθεί ο ορισμός του κανονικού πολυγώνου. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.. Να βρεθεί η γωνία

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών Προγραμμάτων Σπουδών. Αναπληρωτής Καθηγητής ΤΕΧΝΙΚΟ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟ ΣΧΕΔΙΟ Ι ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Γ ε 2 Κ Ε ε 1 Ι Ο Θ Η Ζ Α μ α Ψ ε 4 Β Β ( Σελ. 63 120 ) Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΚΕΦΛΙΟ 2 o Τ ΣΙΚ ΓΕΩΜΕΤΡΙΚ ΣΧΗΜΤ Πρωταρχικές έννοιες Όπως τα αντιλαμβανόμαστε : Σημείο, Ευθεία, Επίπεδο. ξιώματα προτάσεις που τις αποδεχόμαστε χωρίς απόδειξη. αξίωμα: πό δυο διαφορετικά σημεία του επιπέδου

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 36653-367784 - Fax: 36405, Ιστοσελίδα: Tel. 36653-367784 - Fax: 36405 Site: ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

Από κάθε κορυφή ενός τετραγώνου «κόβουµε» τριγωνική πυραµίδα όπως φαίνεται στο σχήµα, όπου ΚΛΜ µέσα των ακµών του κύβου. Τούτο κάνουµε µε όλες τις κορυφές του κύβου. Να βρείτε πόσες είναι οι κορυφές του

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΠΟΛΙΤΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «Βυζαντινές προσωπογραφίες. Ανίχνευση της Βυζαντινής τεχνοτροπίας στις μορφές του Δομήνικου Θεοτοκόπουλου»

ΠΟΛΙΤΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «Βυζαντινές προσωπογραφίες. Ανίχνευση της Βυζαντινής τεχνοτροπίας στις μορφές του Δομήνικου Θεοτοκόπουλου» ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΠΟΛΙΤΙΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «Βυζαντινές προσωπογραφίες. Ανίχνευση της Βυζαντινής τεχνοτροπίας στις μορφές του Δομήνικου Θεοτοκόπουλου» ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-14 ΠΟΛΙΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης 1 ο ΕΤΟΣ 1 η φάση: Ερώτημα συζήτησης: Που χρησιμοποιείται τη γεωμετρία στην εργασία σας και στην καθημερινή σας ζωή. (Μια διδακτική ώρα).

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ-ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΡΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων εξετάσεων

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ ΚΕΦΛΙΟ 0ο ΕΜ ΕΠΙΜΕΛΕΙ ΥΕΡΙΝΟΣ ΣΙΛΗΣ 57 ΚΕΦΛΙΟ 0ο ΕΜ Πολυγωνικά χωρία - Πολυγωνικές επιφάνειες. Τι καλούμαι πολυγωνικό χωρίο και πως ονομάζεται αυτό ; Πότε δύο πολυγωνικά χωρία λέγονται

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ 1 Σωτήρης Ε. Λουρίδας 1. ΓΕΝΙΚΑ: 1.1 Θεωρούμε ότι κάθε Μαθηματικό πρόβλημα είναι της μορφής «αν p τότε q», συμβολικά p q. 1.2. Λύση ενός Μαθηματικού προβλήματος

Διαβάστε περισσότερα

Q k = ec5 ΚΟΛ. e-c.o 0 apex

Q k = ec5 ΚΟΛ. e-c.o 0 apex ΘΕΜΑ 2 Θεωρούμε ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) με Γ = Δ = 60, ΑΔ=12 και ΓΔ=20. Φέρουμε τα ύψη του ΑΕ και ΒΖ. α) Να αποδείξετε ότι ΔΕ=ΓΖ και ΑΒ=ΕΖ. (Μονάδες 12) β) Να υπολογίσετε την περίμετρο του τραπεζίου.

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα